Structural Basis of Membrane Protein Chaperoning three Intermembrane Space

Cell 175, 1365-1379.e25 DOI: 10.1016/j.cell.2018.10.039

Citation Report

#	Article	IF	CITATIONS
1	Structural basis for client recognition and activity of Hsp40 chaperones. Science, 2019, 365, 1313-1319.	6.0	104
2	Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biological Chemistry, 2019, 401, 117-129.	1.2	46
3	A MICOS–TIM22 Association Promotes Carrier Import into Human Mitochondria. Journal of Molecular Biology, 2019, 431, 2835-2851.	2.0	43
4	Frustrated Interfaces Facilitate Dynamic Interactions between Native Client Proteins and Holdase Chaperones. ChemBioChem, 2019, 20, 2803-2806.	1.3	17
5	The Yeast Voltage-Dependent Anion Channel Porin: More IMPORTant than Just Metabolite Transport. Molecular Cell, 2019, 73, 861-862.	4.5	3
6	Transport of Proteins into Mitochondria. Protein Journal, 2019, 38, 330-342.	0.7	116
7	Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Molecular Cell Biology, 2019, 20, 267-284.	16.1	569
8	Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. Progress in Nuclear Magnetic Resonance Spectroscopy, 2020, 116, 56-84.	3.9	96
9	The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology, 2020, 18, 2.	1.7	34
10	Studying protein import into mitochondria. Methods in Cell Biology, 2020, 155, 45-79.	0.5	20
11	Unveiling invisible protein states with NMR spectroscopy. Current Opinion in Structural Biology, 2020, 60, 39-49.	2.6	73
12	The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. International Journal of Molecular Sciences, 2020, 21, 7262.	1.8	38
13	Biogenesis of Mitochondrial Metabolite Carriers. Biomolecules, 2020, 10, 1008.	1.8	32
14	The selectivity filter of the mitochondrial protein import machinery. BMC Biology, 2020, 18, 156.	1.7	15
15	The intermembrane space protein Mix23 is a novel stress-induced mitochondrial import factor. Journal of Biological Chemistry, 2020, 295, 14686-14697.	1.6	14
16	Tim17 Updates: A Comprehensive Review of an Ancient Mitochondrial Protein Translocator. Biomolecules, 2020, 10, 1643.	1.8	17
17	Structural basis of client specificity in mitochondrial membrane-protein chaperones. Science Advances, 2020, 6, .	4.7	21
18	Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Frontiers in Physiology, 2020, 11, 515.	1.3	45

ATION RED

#	Article	IF	CITATIONS
19	Defining the Substrate Spectrum of the TIM22 Complex Identifies Pyruvate Carrier Subunits as Unconventional Cargos. Current Biology, 2020, 30, 1119-1127.e5.	1.8	29
20	Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. Journal of Molecular Biology, 2020, 432, 2890-2912.	2.0	17
21	Mitochondria-Associated Proteostasis. Annual Review of Biophysics, 2020, 49, 41-67.	4.5	49
22	Porins as helpers in mitochondrial protein translocation. Biological Chemistry, 2020, 401, 699-708.	1.2	13
23	Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Review of Proteomics, 2020, 17, 119-136.	1.3	6
24	Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nature Communications, 2020, 11, 2155.	5.8	48
25	Automated assignment of methyl NMR spectra from large proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 2020, 118-119, 54-73.	3.9	23
26	Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148323.	0.5	23
27	Proteomic Profiling of Mitochondrial-Derived Vesicles in Brain Reveals Enrichment of Respiratory Complex Sub-assemblies and Small TIM Chaperones. Journal of Proteome Research, 2021, 20, 506-517.	1.8	14
28	Molecular chaperones and their denaturing effect on client proteins. Journal of Biomolecular NMR, 2021, 75, 1-8.	1.6	8
29	The assembly of βâ€barrel membrane proteins by BAM and SAM. Molecular Microbiology, 2021, 115, 425-435.	1.2	18
30	Defining the architecture of the human TIM22 complex by chemical crosslinking. FEBS Letters, 2021, 595, 157-168.	1.3	7
31	Cryo-EM structure of the human mitochondrial translocase TIM22 complex. Cell Research, 2021, 31, 369-372.	5.7	50
32	Structure of the mitochondrial TIM22 complex from yeast. Cell Research, 2021, 31, 366-368.	5.7	27
33	Properdin oligomers adopt rigid extended conformations supporting function. ELife, 2021, 10, .	2.8	10
34	Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature, 2021, 590, 163-169.	13.7	60
35	NMR-Based Methods for Protein Analysis. Analytical Chemistry, 2021, 93, 1866-1879.	3.2	43
36	NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell, 2021, 184, 577-595.	13.5	103

	CITATION	KEPORT	
#	Article	IF	CITATIONS
37	Molecular Insights into Mitochondrial Protein Translocation and Human Disease. Genes, 2021, 12, 1031.	1.0	2
38	Diverse Functions of Tim50, a Component of the Mitochondrial Inner Membrane Protein Translocase. International Journal of Molecular Sciences, 2021, 22, 7779.	1.8	5
39	The Biogenesis Process of VDAC – From Early Cytosolic Events to Its Final Membrane Integration. Frontiers in Physiology, 2021, 12, 732742.	1.3	11
40	Short-form OPA1 is a molecular chaperone in mitochondrial intermembrane space. Science China Life Sciences, 2022, 65, 227-235.	2.3	5
41	Quality control of protein import into mitochondria. Biochemical Journal, 2021, 478, 3125-3143.	1.7	6
42	Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 749756.	1.1	18
43	Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 720656.	1.8	25
44	Architecture and assembly dynamics of the essential mitochondrial chaperone complex TIM9·10·12. Structure, 2021, 29, 1065-1073.e4.	1.6	10
45	Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Advances, 2021, 11, 32476-32493.	1.7	7
49	How do Chaperones Bind (Partly) Unfolded Client Proteins?. Frontiers in Molecular Biosciences, 2021, 8, 762005.	1.6	17
52	Structural Basis for Protein Translocation by the Translocase of the Outer Mitochondrial Membrane. Seibutsu Butsuri, 2020, 60, 280-283.	0.0	1
55	Mitochondrial Determinants of Anti-Cancer Drug-Induced Cardiotoxicity. Biomedicines, 2022, 10, 520.	1.4	14
56	Structures of <i>Tetrahymena</i> 's respiratory chain reveal the diversity of eukaryotic core metabolism. Science, 2022, 376, 831-839.	6.0	45
57	Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. Journal of Biological Chemistry, 2022, 298, 101870.	1.6	11
58	Solid-State NMR: Methods for Biological Solids. Chemical Reviews, 2022, 122, 9643-9737.	23.0	31
59	A journey through the gateway of polytopic inner membrane proteins: The carrier translocase machinery. Current Opinion in Physiology, 2022, 26, 100533.	0.9	1
60	Targeting and Insertion of Membrane Proteins in Mitochondria. Frontiers in Cell and Developmental Biology, 2021, 9, 803205.	1.8	16
61	Structural basis of DegP protease temperature-dependent activation. Science Advances, 2021, 7, eabj1816.	4.7	8

CITATION REPORT

#	Article	IF	CITATIONS
62	Crosstalk between Mitochondrial Protein Import and Lipids. International Journal of Molecular Sciences, 2022, 23, 5274.	1.8	6
63	Mechanistic insights into fungal mitochondrial outer membrane protein biogenesis. Current Opinion in Structural Biology, 2022, 74, 102383.	2.6	2
64	The hydrogenosome of <i>Trichomonas vaginalis</i> . Journal of Eukaryotic Microbiology, 2022, 69, e12922.	0.8	7
65	Describing Dynamic Chaperone–Client Complexes by Solution NMR Spectroscopy. New Developments in NMR, 2022, , 277-302.	0.1	0
66	NMR Observation of Sulfhydryl Signals in SARSâ€CoVâ€2 Main Protease Aids Structural Studies. ChemBioChem, 2022, 23, .	1.3	4
69	Folding of heterologous proteins in bacterial cell factories: Cellular mechanisms and engineering strategies. Biotechnology Advances, 2023, 63, 108079.	6.0	10
70	The role of heat shock proteins in preventing amyloid toxicity. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
71	Proteostasis in aging-associated ocular disease. Molecular Aspects of Medicine, 2022, 88, 101157.	2.7	10
72	Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nature Cell Biology, 2023, 25, 467-480.	4.6	20
73	Mitochondrial protein transport: Versatility of translocases and mechanisms. Molecular Cell, 2023, 83, 890-910.	4.5	24
81	Solution NMR Studies of Chaperone–Client Systems. , 2023, , 86-135.		0
82	Studying Molecular Chaperones and Their Client Interactions by Nanometer Distance Restraints from Electron Paramagnetic Resonance Spectroscopy. , 2023, , 217-241.		0
84	Preparing Chaperone–Client Protein Complexes for Biophysical and Structural Studies. , 2023, , 136-161.		0
87	Modular Assembly of Mitochondrial β-Barrel Proteins. Methods in Molecular Biology, 2024, , 201-220.	0.4	0