Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promo Both T and NK Cells

Cell 175, 1731-1743.e13 DOI: 10.1016/j.cell.2018.10.014

Citation Report

CITATION	ODT

#	Article	IF	CITATIONS
2	NKG2A Blockade Potentiates CD8ÂT Cell Immunity Induced by Cancer Vaccines. Cell, 2018, 175, 1744-1755.e15.	13.5	241
3	NKG2A, a New Kid on the Immune Checkpoint Block. Cell, 2018, 175, 1720-1722.	13.5	83
4	Different Features of Tumor-Associated NK Cells in Patients With Low-Grade or High-Grade Peritoneal Carcinomatosis. Frontiers in Immunology, 2019, 10, 1963.	2.2	21
5	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). , 2019, 7, 184.		413
6	Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology, 2019, 158, 63-69.	2.0	45
7	Strategies to Augment Natural Killer (NK) Cell Activity against Solid Tumors. Cancers, 2019, 11, 1040.	1.7	40
8	Anti-Cancer Effects of Pristimerin and the Mechanisms: A Critical Review. Frontiers in Pharmacology, 2019, 10, 746.	1.6	50
9	Immune checkpoint inhibitor combinations: Current efforts and important aspects for success. Drug Resistance Updates, 2019, 45, 13-29.	6.5	82
10	Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Frontiers in Immunology, 2019, 10, 1179.	2.2	269
11	NK Cell-Based Immunotherapy for Hematological Malignancies. Journal of Clinical Medicine, 2019, 8, 1702.	1.0	54
12	Artificial Natural Killer Cells for Specific Tumor Inhibition and Renegade Macrophage Reâ€Education. Advanced Materials, 2019, 31, e1904495.	11.1	59
13	The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. International Journal of Molecular Sciences, 2019, 20, 5080.	1.8	39
14	NK Cell-Fc Receptors Advance Tumor Immunotherapy. Journal of Clinical Medicine, 2019, 8, 1667.	1.0	17
15	Mobilizing unconventional T cells. Science, 2019, 366, 302-303.	6.0	20
16	Monalizumab: inhibiting the novel immune checkpoint NKG2A. , 2019, 7, 263.		182
17	NK Cell Metabolism and Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 2278.	2.2	264
18	Immune Checkpoint Inhibitor Toxicity in Head and Neck Cancer: From Identification to Management. Frontiers in Pharmacology, 2019, 10, 1254.	1.6	21
19	Harnessing Natural Killer Cell Antitumor Immunity: From the Bench to Bedside. Cancer Immunology Research, 2019, 7, 1742-1747.	1.6	37

#	Article	IF	CITATIONS
20	The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2354.	2.2	70
21	Exploiting NK Cell Surveillance Pathways for Cancer Therapy. Cancers, 2019, 11, 55.	1.7	41
22	Naturally Killing the Silent Killer: NK Cell-Based Immunotherapy for Ovarian Cancer. Frontiers in Immunology, 2019, 10, 1782.	2.2	45
23	The Cynomolgus Macaque MHC Polymorphism in Experimental Medicine. Cells, 2019, 8, 978.	1.8	25
24	Impact of Tumor and Immunological Heterogeneity on the Anti-Cancer Immune Response. Cancers, 2019, 11, 1217.	1.7	36
25	A Natural Impact: NK Cells at the Intersection of Cancer and HIV Disease. Frontiers in Immunology, 2019, 10, 1850.	2.2	21
26	NK Cell Dysfunction and Checkpoint Immunotherapy. Frontiers in Immunology, 2019, 10, 1999.	2.2	105
27	Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. International Journal of Molecular Sciences, 2019, 20, 4315.	1.8	21
28	Natural killer cells and cancer therapy, what we know and where we are going. Immunotherapy, 2019, 11, 1231-1251.	1.0	8
29	Innate lymphoid cells and cancer at border surfaces with the environment. Seminars in Immunology, 2019, 41, 101278.	2.7	11
30	Achievements and futures of immune checkpoint inhibitors in non-small cell lung cancer. Experimental Hematology and Oncology, 2019, 8, 19.	2.0	30
31	The Role of Natural Killer Cells as a Platform for Immunotherapy in Pediatric Cancers. Current Oncology Reports, 2019, 21, 93.	1.8	16
32	Echinococcus multilocularis inoculation induces NK cell functional decrease through high expression of NKG2A in C57BL/6 mice. BMC Infectious Diseases, 2019, 19, 792.	1.3	12
33	Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 662-675.	8.2	87
34	The innate immune architecture of lung tumors and its implication in disease progression. Journal of Pathology, 2019, 247, 589-605.	2.1	32
35	Negative regulation of innate lymphoid cell responses in inflammation and cancer. Immunology Letters, 2019, 215, 28-34.	1.1	10
36	Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Frontiers in Immunology, 2019, 10, 946.	2.2	104
37	Enriched HLA-E and CD94/NKG2A Interaction Limits Antitumor CD8+ Tumor-Infiltrating T Lymphocyte Responses. Cancer Immunology Research, 2019, 7, 1293-1306.	1.6	46

ARTICLE IF CITATIONS # PD/1-PD-Ls Checkpoint: Insight on the Potential Role of NK Cells. Frontiers in Immunology, 2019, 10, 38 2.2 130 1242. NK Cells in the Human Lungs. Frontiers in Immunology, 2019, 10, 1263. 2.2 An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and 40 2.2 57 More. Frontiers in Immunology, 2019, 10, 1415. Inhibition of the NKp44-PCNA Immune Checkpoint Using a mAb to PCNA. Cancer Immunology Research, 2019, 7, 1120-1134. Current Prospects of Molecular Therapeutics in Head and Neck Squamous Cell Carcinoma. 42 1.0 10 Pharmaceutical Medicine, 2019, 33, 269-289. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacological Research, 2019, 145, 104258. 3.1 Helper-like innate lymphoid cells and cancer immunotherapy. Seminars in Immunology, 2019, 41, 101274. 44 2.7 25 NK cells to cure cancer. Seminars in Immunology, 2019, 41, 101272. 2.7 70 The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by 46 7.0 120 regulating c-Myc. Nature Immunology, 2019, 20, 865-878. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers, 2019, 1.7 11, 628. Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological 48 2.2 54 Conditions. Frontiers in Immunology, 2019, 10, 910. Enhancing Dendritic Cell Therapy in Solid Tumors with Immunomodulating Conventional Treatment. 49 44 Molecular Therapy - Oncolytics, 2019, 13, 67-81. Innate lymphoid cells: A potential link between microbiota and immune responses against cancer. 50 2.7 13 Seminars in Immunology, 2019, 41, 101271. Natural killer cells: From surface receptors to the cure of highâ€risk leukemia (Ceppellini Lecture). Hla, 0.4 2019, 93, 185-194. Immunological and clinical implications of immune checkpoint blockade in human cancer. Archives of 52 2.7 17 Pharmacal Research, 2019, 42, 567-581. Targeting natural killer cells in solid tumors. Cellular and Molecular Immunology, 2019, 16, 415-422. 166 Host tissue determinants of tumour immunity. Nature Reviews Cancer, 2019, 19, 215-227. 54 12.8 150 Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Scientific Reports, 2019, 9, 4487.

#	Article	IF	CITATIONS
56	Immunotherapy for head and neck cancers: an update and future perspectives. Immunotherapy, 2019, 11, 561-564.	1.0	4
57	Ex vivo Hsp70-Activated NK Cells in Combination With PD-1 Inhibition Significantly Increase Overall Survival in Preclinical Models of Glioblastoma and Lung Cancer. Frontiers in Immunology, 2019, 10, 454.	2.2	48
58	The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy. Cancers, 2019, 11, 440.	1.7	43
59	NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nature Communications, 2019, 10, 1507.	5.8	109
60	Strengthening the AntiTumor NK Cell Function for the Treatment of Ovarian Cancer. International Journal of Molecular Sciences, 2019, 20, 890.	1.8	34
61	Adding to the checkpoint blockade armamentarium. Nature Medicine, 2019, 25, 203-205.	15.2	5
62	The NKG2A immune checkpoint — a new direction in cancer immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 277-278.	12.5	75
63	Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cellular and Molecular Immunology, 2019, 16, 430-441.	4.8	327
64	Targeting the EGFR and Immune Pathways in Squamous Cell Carcinoma of the Head and Neck (SCCHN): Forging a New Alliance. Molecular Cancer Therapeutics, 2019, 18, 1909-1915.	1.9	21
65	Inhibition-Resistant CARs for NK Cell Cancer Immunotherapy. Trends in Immunology, 2019, 40, 1078-1081.	2.9	4
66	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2019, 629, xxi-xl.	0.4	1
68	Liver-Mediated Adaptive Immune Tolerance. Frontiers in Immunology, 2019, 10, 2525.	2.2	125
69	Harnessing NK Cells for Cancer Treatment. Frontiers in Immunology, 2019, 10, 2836.	2.2	66
70	Precision medicine in the clinical management of respiratory tract infections including multidrug-resistant tuberculosis. Current Opinion in Pulmonary Medicine, 2019, 25, 233-241.	1.2	8
71	Harnessing innate immunity in cancer therapy. Nature, 2019, 574, 45-56.	13.7	533
72	Immune Checkpoint Inhibitors: Anti-NKG2A Antibodies on Board. Trends in Immunology, 2019, 40, 83-85.	2.9	37
73	Natural killer cell transcriptional control, subsets, receptors and effector function. Immunology, 2019, 156, 109-110.	2.0	1
74	Born to Kill: NK Cells Go to War against Cancer. Trends in Cancer, 2019, 5, 143-145.	3.8	2

#	Article	IF	CITATIONS
75	The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends in Immunology, 2019, 40, 142-158.	2.9	218
76	Checkpoint ahead — be prepared to stop!. Nature Reviews Cancer, 2019, 19, 61-61.	12.8	0
77	A cytofluorimetric assay to evaluate intracellular cytokine production by NK cells. Methods in Enzymology, 2020, 631, 343-355.	0.4	8
78	The Immune Microenvironment and Cancer Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037424.	2.9	57
79	Tumour-intrinsic resistance to immune checkpoint blockade. Nature Reviews Immunology, 2020, 20, 25-39.	10.6	856
80	The inhibitory receptor CD94/NKG2A on CD8+ tumor-infiltrating lymphocytes in colorectal cancer: a promising new druggable immune checkpoint in the context of HLAE/β2m overexpression. Modern Pathology, 2020, 33, 468-482.	2.9	44
81	Evaluation of NK cell cytotoxic activity against malignant cells by the calcein assay. Methods in Enzymology, 2020, 631, 483-495.	0.4	10
82	Tumorâ€derived exosomes (TDEs): How to avoid the sting in the tail. Medicinal Research Reviews, 2020, 40, 385-412.	5.0	35
83	NK cell-based therapeutics for lung cancer. Expert Opinion on Biological Therapy, 2020, 20, 23-33.	1.4	52
84	Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomaterials Science, 2020, 8, 1045-1057.	2.6	20
85	Understanding genetic determinants of resistance to immune checkpoint blockers. Seminars in Cancer Biology, 2020, 65, 123-139.	4.3	9
86	NK cells for cancer immunotherapy. Nature Reviews Drug Discovery, 2020, 19, 200-218.	21.5	709
87	Natural Killer Cell Regulation of B Cell Responses in the Context of Viral Infection. Viral Immunology, 2020, 33, 334-341.	0.6	17
88	Patrolling Monocytes Control NK Cell Expression of Activating and Stimulatory Receptors to Curtail Lung Metastases. Journal of Immunology, 2020, 204, 192-198.	0.4	28
89	New avenues for melanoma immunotherapy: Natural Killer cells?. Scandinavian Journal of Immunology, 2020, 91, e12861.	1.3	13
90	Cord-Blood Natural Killer Cell-Based Immunotherapy for Cancer. Frontiers in Immunology, 2020, 11, 584099.	2.2	20
91	Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. , 2020, 8, e001054.		54
92	Harnessing Memory NK Cell to Protect Against COVID-19. Frontiers in Pharmacology, 2020, 11, 1309.	1.6	31

#	Article	IF	CITATIONS
93	Antibody and antibody fragments for cancer immunotherapy. Journal of Controlled Release, 2020, 328, 395-406.	4.8	63
94	NK cells and ILCs in tumor immunotherapy. Molecular Aspects of Medicine, 2021, 80, 100870.	2.7	134
95	COVID-19 Infection: Concise Review Based on the Immunological Perspective. Immunological Investigations, 2020, , 1-20.	1.0	11
96	NK cells in the tumor microenvironment: Prognostic and theranostic impact. Recent advances and trends. Seminars in Immunology, 2020, 48, 101407.	2.7	31
97	Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Seminars in Immunology, 2020, 48, 101417.	2.7	132
98	Mechanisms of resistance to immune checkpoint inhibitors and strategies to reverse drug resistance in lung cancer. Chinese Medical Journal, 2020, 133, 2444-2455.	0.9	7
99	Immune Escape Mechanisms and Their Clinical Relevance in Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2020, 21, 7032.	1.8	20
100	The NK cell–cancer cycle: advances and new challenges in NK cell–based immunotherapies. Nature Immunology, 2020, 21, 835-847.	7.0	243
101	Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. , 2020, 8, e000772.		36
102	Myeloma cells induce the accumulation of activated CD94low NK cells by cell-to-cell contacts involving CD56 molecules. Blood Advances, 2020, 4, 2297-2307.	2.5	11
103	Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Reports, 2020, 32, 107848.	2.9	100
104	Gaining insights on immune responses to the novel coronavirus, COVID-19 and therapeutic challenges. Life Sciences, 2020, 257, 118058.	2.0	11
105	<p>Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect</p> . Cancer Management and Research, 2020, Volume 12, 5957-5974.	0.9	21
106	Antagonistic Inflammatory Phenotypes Dictate Tumor Fate and Response to Immune Checkpoint Blockade. Immunity, 2020, 53, 1215-1229.e8.	6.6	131
107	Genetic Variants of the NKG2C/HLA-E Receptor–Ligand Axis Are Determinants of Progression-Free Survival and Therapy Outcome in Aggressive B-Cell Lymphoma. Cancers, 2020, 12, 3429.	1.7	5
108	Puzzling out the COVID-19: Therapy targeting HLA-G and HLA-E. Human Immunology, 2020, 81, 697-701.	1.2	20
109	Emerging immune checkpoint inhibitors for the treatment of head and neck cancers. Expert Opinion on Emerging Drugs, 2020, 25, 501-514.	1.0	7
110	Multidimensional molecular controls defining NK/ILC1 identity in cancers. Seminars in Immunology, 2021, 52, 101424.	2.7	15

#	Article	IF	CITATIONS
111	Adoptive natural killer cell therapy: a human pluripotent stem cell perspective. Current Opinion in Chemical Engineering, 2020, 30, 69-76.	3.8	3
112	Cancer Immunotherapy by Blocking Immune Checkpoints on Innate Lymphocytes. Cancers, 2020, 12, 3504.	1.7	30
113	A Highlight of the Mechanisms of Immune Checkpoint Blocker Resistance. Frontiers in Cell and Developmental Biology, 2020, 8, 580140.	1.8	10
114	Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment. Nature Communications, 2020, 11, 6268.	5.8	206
115	The Immune Checkpoint PD-1 in Natural Killer Cells: Expression, Function and Targeting in Tumour Immunotherapy. Cancers, 2020, 12, 3285.	1.7	85
116	Growth Factor Receptor Expression in Oropharyngeal Squamous Cell Cancer: Her1–4 and c-Met in Conjunction with the Clinical Features and Human Papillomavirus (p16) Status. Cancers, 2020, 12, 3358.	1.7	5
117	Antagonistic anti-LILRB1 monoclonal antibody regulates antitumor functions of natural killer cells. , 2020, 8, e000515.		27
118	Induced pluripotent stem cell-derived natural killer cells gene-modified to express chimeric antigen receptor-targeting solid tumors. International Journal of Hematology, 2021, 114, 572-579.	0.7	8
119	Cancer immunotherapy with γδT cells: many paths ahead of us. Cellular and Molecular Immunology, 2020, 17, 925-939.	4.8	180
120	Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nature Communications, 2020, 11, 3819.	5.8	71
121	The Potential of Five Immune-Related Prognostic Genes to Predict Survival and Response to Immune Checkpoint Inhibitors for Soft Tissue Sarcomas Based on Multi-Omic Study. Frontiers in Oncology, 2020, 10, 1317.	1.3	18
122	The Role of NK Cells and Innate Lymphoid Cells in Brain Cancer. Frontiers in Immunology, 2020, 11, 1549.	2.2	43
123	Make killers sweeter: targeting metabolic checkpoints of NK cells. Nature Immunology, 2020, 21, 970-971.	7.0	1
124	Immunotherapy for squamous cell carcinoma of the head and neck. Japanese Journal of Clinical Oncology, 2020, 50, 1089-1096.	0.6	39
125	Targeting immune checkpoints in hematological malignancies. Journal of Hematology and Oncology, 2020, 13, 111.	6.9	66
126	Immunotherapy in Hematologic Malignancies: Emerging Therapies and Novel Approaches. International Journal of Molecular Sciences, 2020, 21, 8000.	1.8	25
127	Harnessing Natural Killer Cell Function for Genitourinary Cancers. Urologic Clinics of North America, 2020, 47, 433-442.	0.8	6
128	Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduction and Targeted Therapy, 2020, 5, 250.	7.1	86

	CITATION RE	PORT	
#	Article	IF	CITATIONS
129	Natural Killer Cells in Immunotherapy: Are We Nearly There?. Cancers, 2020, 12, 3139.	1.7	15
130	Immune Response Resetting as a Novel Strategy to Overcome SARS-CoV-2–Induced Cytokine Storm. Journal of Immunology, 2020, 205, 2566-2575.	0.4	16
131	Immunotherapy Breakthroughs in the Treatment of Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. Cancers, 2020, 12, 2691.	1.7	39
132	Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. Journal of Clinical Medicine, 2020, 9, 2967.	1.0	23
133	Type 1 Diabetes: Interferons and the Aftermath of Pancreatic Beta-Cell Enteroviral Infection. Microorganisms, 2020, 8, 1419.	1.6	17
134	NK cells beat T cells at early breast cancer control. OncoImmunology, 2020, 9, 1806010.	2.1	8
135	Inhibitory Receptors and Checkpoints in Human NK Cells, Implications for the Immunotherapy of Cancer. Frontiers in Immunology, 2020, 11, 2156.	2.2	49
136	Covid-19: Perspectives on Innate Immune Evasion. Frontiers in Immunology, 2020, 11, 580641.	2.2	113
137	Diversity Outbred Mice Reveal the Quantitative Trait Locus and Regulatory Cells of HER2 Immunity. Journal of Immunology, 2020, 205, 1554-1563.	0.4	8
138	Multidimensional Analyses of Donor Memory-Like NK Cells Reveal New Associations with Response after Adoptive Immunotherapy for Leukemia. Cancer Discovery, 2020, 10, 1854-1871.	7.7	83
139	Role of the Main Non HLA-Specific Activating NK Receptors in Pancreatic, Colorectal and Gastric Tumors Surveillance. Cancers, 2020, 12, 3705.	1.7	10
140	Epstein–Barr virus peptides derived from latent cycle proteins alter NKG2A + NK cell effector function. Scientific Reports, 2020, 10, 19973.	1.6	16
141	The Tumor Microenvironment and Immunotherapy of Oropharyngeal Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 545385.	1.3	14
142	Current Trends in Cancer Immunotherapy. Biomedicines, 2020, 8, 621.	1.4	34
143	Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Frontiers in Immunology, 2020, 11, 575609.	2.2	34
144	Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens, 2020, 9, 1027.	1.2	20
145	Immunesenescence: A Predisposing Risk Factor for the Development of COVID-19?. Frontiers in Immunology, 2020, 11, 573662.	2.2	42
146	Tumor-Secreted GRP78 Promotes the Establishment of a Pre-metastatic Niche in the Liver Microenvironment. Frontiers in Immunology, 2020, 11, 584458.	2.2	17

#	Article	IF	CITATIONS
147	Future of immune checkpoint inhibitors: focus on tumor immune microenvironment. Annals of Translational Medicine, 2020, 8, 1095-1095.	0.7	27
148	Differences of the Immune Phenotype of Breast Cancer Cells after Ex Vivo Hyperthermia by Warm-Water or Microwave Radiation in a Closed-Loop System Alone or in Combination with Radiotherapy. Cancers, 2020, 12, 1082.	1.7	23
149	Clonal expansion of innate and adaptive lymphocytes. Nature Reviews Immunology, 2020, 20, 694-707.	10.6	66
150	Therapeutic ISCOMATRIXâ,,¢ adjuvant vaccine elicits effective anti-tumor immunity in the TRAMP-C1 mouse model of prostate cancer. Cancer Immunology, Immunotherapy, 2020, 69, 1959-1972.	2.0	7
151	Can blocking inflammation enhance immunity during aging?. Journal of Allergy and Clinical Immunology, 2020, 145, 1323-1331.	1.5	50
152	Immune checkpoints in hematologic malignancies: What made the immune cells and clinicians exhausted!. Journal of Cellular Physiology, 2020, 235, 9080-9097.	2.0	19
153	Drug repurposing against COVID-19: focus on anticancer agents. Journal of Experimental and Clinical Cancer Research, 2020, 39, 86.	3.5	57
154	Functional and metabolic targeting of natural killer cells to solid tumors. Cellular Oncology (Dordrecht), 2020, 43, 577-600.	2.1	25
155	The NKG2A–HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clinical Cancer Research, 2020, 26, 5549-5556.	3.2	101
156	Dichotomous Regulation of Acquired Immunity by Innate Lymphoid Cells. Cells, 2020, 9, 1193.	1.8	17
157	Harnessing Natural Killer Immunity in Metastatic SCLC. Journal of Thoracic Oncology, 2020, 15, 1507-1521.	0.5	50
158	Human cancer germline antigen-specific cytotoxic T cell—what can we learn from patient. Cellular and Molecular Immunology, 2020, 17, 684-692.	4.8	12
159	Consideration of Severe Coronavirus Disease 2019 As Viral Sepsis and Potential Use of Immune Checkpoint Inhibitors. , 2020, 2, e0141.		18
160	IL-6-induced CD39 expression on tumor-infiltrating NK cells predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2020, 69, 2371-2380.	2.0	30
161	Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1295.	2.2	58
162	Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Frontiers in Immunology, 2020, 11, 1512.	2.2	126
163	The cancer–natural killer cell immunity cycle. Nature Reviews Cancer, 2020, 20, 437-454.	12.8	308
164	Evolving insights into the mechanisms of toxicity associated with immune checkpoint inhibitor therapy. British Journal of Clinical Pharmacology, 2020, 86, 1778-1789.	1.1	34

#	Article	IF	CITATIONS
165	Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget. Journal of Leukocyte Biology, 2020, 108, 397-417.	1.5	11
166	Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. Journal of Leukocyte Biology, 2020, 108, 1455-1489.	1.5	22
167	A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Research, 2020, 30, 745-762.	5.7	391
168	LPAR1, Correlated With Immune Infiltrates, Is a Potential Prognostic Biomarker in Prostate Cancer. Frontiers in Oncology, 2020, 10, 846.	1.3	59
169	Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clinical and Translational Medicine, 2020, 10, 374-411.	1.7	33
170	Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
171	From cellular microbiology to bacteriaâ€based next generations of cancer immunotherapies. Cellular Microbiology, 2020, 22, e13187.	1.1	3
172	Immune-based therapies for hepatocellular carcinoma. Oncogene, 2020, 39, 3620-3637.	2.6	154
173	miRNAs in NK Cell-Based Immune Responses and Cancer Immunotherapy. Frontiers in Cell and Developmental Biology, 2020, 8, 119.	1.8	26
174	Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. International Journal of Cancer, 2020, 147, 1778-1792.	2.3	21
175	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 635, xix-xxxviii.	0.4	0
176	Targeting Natural Killer Cells for Tumor Immunotherapy. Frontiers in Immunology, 2020, 11, 60.	2.2	80
177	Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular and Molecular Immunology, 2020, 17, 533-535.	4.8	1,450
178	You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy. Cancers, 2020, 12, 706.	1.7	73
179	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 636, xvii-xxxvi.	0.4	0
180	Recent progress in and challenges in cellular therapy using NK cells for hematological malignancies. Blood Reviews, 2020, 44, 100678.	2.8	38
181	Human ovarian cancer intrinsic mechanisms regulate lymphocyte activation in response to immune checkpoint blockade. Cancer Immunology, Immunotherapy, 2020, 69, 1391-1401.	2.0	10
182	Immunotherapeutic Potential of TGF-Î ² Inhibition and Oncolytic Viruses. Trends in Immunology, 2020, 41, 406-420.	2.9	55

#	Article	IF	CITATIONS
183	Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking Aptamers for Enhanced Adoptive Immunotherapy in Solid Tumors. Angewandte Chemie - International Edition, 2020, 59, 12022-12028.	7.2	114
184	Inhibition of MICA and MICB Shedding Elicits NK-Cell–Mediated Immunity against Tumors Resistant to Cytotoxic T Cells. Cancer Immunology Research, 2020, 8, 769-780.	1.6	72
185	Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathogens, 2020, 16, e1008377.	2.1	14
186	Targets and Antibody Formats for Immunotherapy of Neuroblastoma. Journal of Clinical Oncology, 2020, 38, 1836-1848.	0.8	74
187	Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases. Cells, 2020, 9, 671.	1.8	100
188	Pleiotropic Role and Bidirectional Immunomodulation of Innate Lymphoid Cells in Cancer. Frontiers in Immunology, 2019, 10, 3111.	2.2	24
189	NK Cell-Based Immune Checkpoint Inhibition. Frontiers in Immunology, 2020, 11, 167.	2.2	211
190	Boosting Cytotoxic Antibodies against Cancer. Cell, 2020, 180, 822-824.	13.5	3
191	Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunology, Immunotherapy, 2020, 69, 879-899.	2.0	33
192	Cutting Edge: Inhibition of the Interaction of NK Inhibitory Receptors with MHC Class I Augments Antiviral and Antitumor Immunity. Journal of Immunology, 2020, 205, 567-572.	0.4	3
193	Identification of druggable inhibitory immune checkpoints on Natural Killer cells in COVID-19. Cellular and Molecular Immunology, 2020, 17, 995-997.	4.8	56
194	A novel gene signature to predict immune infiltration and outcome in patients with prostate cancer. Oncolmmunology, 2020, 9, 1762473.	2.1	33
195	Roles of NK Cell Receptors 2B4 (CD244), CS1 (CD319), and LLT1 (CLEC2D) in Cancer. Cancers, 2020, 12, 1755.	1.7	37
196	Harnessing NK Cell Checkpoint-Modulating Immunotherapies. Cancers, 2020, 12, 1807.	1.7	17
197	Blood natural killer cell deficiency reveals an immunotherapy strategy for atopic dermatitis. Science Translational Medicine, 2020, 12, .	5.8	57
198	Helper Innate Lymphoid Cells in Human Tumors: A Double-Edged Sword?. Frontiers in Immunology, 2019, 10, 3140.	2.2	9
199	Unleashing Natural Killer Cells in the Tumor Microenvironment–The Next Generation of Immunotherapy?. Frontiers in Immunology, 2020, 11, 275.	2.2	101
200	Seleniumâ€Containing Nanoparticles Combine the NK Cells Mediated Immunotherapy with Radiotherapy and Chemotherapy Advanced Materials 2020, 32, e1907568	11.1	192

#	Article	IF	CITATIONS
201	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 631, xxiii-xlii.	0.4	1
202	Two-dimensional dynamic evaluation of natural killer cell-mediated lysis of adherent target cells. Methods in Enzymology, 2020, 631, 289-304.	0.4	0
203	B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nature Reviews Immunology, 2020, 20, 294-307.	10.6	363
204	NK Cell-Based Immunotherapy in Renal Cell Carcinoma. Cancers, 2020, 12, 316.	1.7	20
205	Exploiting Human NK Cells in Tumor Therapy. Frontiers in Immunology, 2019, 10, 3013.	2.2	37
206	Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer?. Frontiers in Immunology, 2019, 10, 3010.	2.2	48
207	The Immuno-Modulatory Effects of Inhibitor of Apoptosis Protein Antagonists in Cancer Immunotherapy. Cells, 2020, 9, 207.	1.8	38
208	Development and application of two novel monoclonal antibodies against overexpressed CD26 and integrin α3 in human pancreatic cancer. Scientific Reports, 2020, 10, 537.	1.6	4
209	<p>Resistance Mechanism of PD-1/PD-L1 Blockade in the Cancer-Immunity Cycle</p> . OncoTargets and Therapy, 2020, Volume 13, 83-94.	1.0	27
210	Non-Genetically Improving the Natural Cytotoxicity of Natural Killer (NK) Cells. Frontiers in Immunology, 2019, 10, 3026.	2.2	16
211	Preface: More than two decades of modern tumor immunology. Methods in Enzymology, 2020, 632, xxiii-xlii.	0.4	0
212	CD8+ T Cells Form the Predominant Subset of NKG2A+ Cells in Human Lung Cancer. Frontiers in Immunology, 2019, 10, 3002.	2.2	30
213	Innate Lymphocyte Mechanisms in Skin Diseases. Annual Review of Immunology, 2020, 38, 171-202.	9.5	10
214	Mechanism of tumor cells escaping from immune surveillance of NK cells. Immunopharmacology and Immunotoxicology, 2020, 42, 187-198.	1.1	17
215	Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opinion on Therapeutic Targets, 2020, 24, 545-558.	1.5	9
216	Non–clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cellâ€derived anti–glypicanâ€3 chimeric antigen receptorâ€expressing natural killer/innate lymphoid cells. Cancer Science, 2020, 111, 1478-1490.	1.7	74
217	Lifting the innate immune barriers to antitumor immunity. , 2020, 8, e000695.		50
218	Future Challenges in Cancer Resistance to Immunotherapy. Cancers, 2020, 12, 935.	1.7	41

#	Article	IF	Citations
219	Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents. Medical Hypotheses, 2020, 140, 109777.	0.8	69
220	Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. British Journal of Pharmacology, 2020, 177, 2889-2903.	2.7	10
221	Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. Critical Reviews in Oncology/Hematology, 2020, 150, 102966.	2.0	45
222	Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking Aptamers for Enhanced Adoptive Immunotherapy in Solid Tumors. Angewandte Chemie, 2020, 132, 12120-12126.	1.6	17
223	Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nature Reviews Clinical Oncology, 2020, 17, 475-492.	12.5	80
224	Mechanisms of Resistance to NK Cell Immunotherapy. Cancers, 2020, 12, 893.	1.7	34
225	Resistance to anti-epidermal growth factor receptor in metastatic colorectal cancer: What does still need to be addressed?. Cancer Treatment Reviews, 2020, 86, 102023.	3.4	34
226	Glucocorticoids and the cytokines IL-12, IL-15, and IL-18 present in the tumor microenvironment induce PD-1 expression on human natural killer cells. Journal of Allergy and Clinical Immunology, 2021, 147, 349-360.	1.5	65
227	The unique immune microenvironment of liver metastases: Challenges and opportunities. Seminars in Cancer Biology, 2021, 71, 143-156.	4.3	35
228	Paths taken towards NK cell–mediated immunotherapy of human cancer—a personal reflection. Scandinavian Journal of Immunology, 2021, 93, e12993.	1.3	5
229	Non-coding RNA derived from extracellular vesicles in cancer immune escape: Biological functions and potential clinical applications. Cancer Letters, 2021, 501, 234-246.	3.2	20
230	Tumour targetable and microenvironment-responsive nanoparticles simultaneously disrupt the PD-1/PD-L1 pathway and MAPK/ERK/JNK pathway for efficient treatment of colorectal cancer. Journal of Drug Targeting, 2021, 29, 454-465.	2.1	6
231	The role of natural killer cell in gastrointestinal cancer: killer or helper. Oncogene, 2021, 40, 717-730.	2.6	54
232	Decidual-Like NK Cell Polarization: From Cancer Killing to Cancer Nurturing. Cancer Discovery, 2021, 11, 28-33.	7.7	19
233	T Cells: Warriors of SARS-CoV-2 Infection. Trends in Immunology, 2021, 42, 18-30.	2.9	142
234	Tumor-Infiltrating Natural Killer Cells. Cancer Discovery, 2021, 11, 34-44.	7.7	223
235	NK cell infiltration is associated with improved overall survival in solid cancers: A systematic review and meta-analysis. Translational Oncology, 2021, 14, 100930.	1.7	95
236	Chimeric antigen receptor (CAR) natural killer (NK)â€cell therapy: leveraging the power of innate immunity. British Journal of Haematology, 2021, 193, 216-230.	1.2	61

	CITATION	Report	
#	Article	IF	CITATIONS
237	Emerging immunotherapies for metastasis. British Journal of Cancer, 2021, 124, 37-48.	2.9	32
238	Retinoblastoma cell-derived Twist protein promotes regulatory T cell development. Cancer Immunology, Immunotherapy, 2021, 70, 1037-1048.	2.0	1
239	Dual functional nanoparticles efficiently across the blood–brain barrier to combat glioblastoma <i>via</i> simultaneously inhibit the PI3K pathway and NKG2A axis. Journal of Drug Targeting, 2021, 29, 323-335.	2.1	24
240	Tumor-infiltrating lymphocytes in the immunotherapy era. Cellular and Molecular Immunology, 2021, 18, 842-859.	4.8	403
241	Exploring the NK cell platform for cancer immunotherapy. Nature Reviews Clinical Oncology, 2021, 18, 85-100.	12.5	605
242	Reinvigorating exhausted CD8 ⁺ cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Medicinal Research Reviews, 2021, 41, 156-201.	5.0	56
243	Higher-Order Structure Characterization of NKG2A/CD94 Protein Complex and Anti-NKG2A Antibody Binding Epitopes by Mass Spectrometry-Based Protein Footprinting Strategies. Journal of the American Society for Mass Spectrometry, 2021, 32, 1567-1574.	1.2	8
244	Predictive Systems Biomarkers of Response to Immune Checkpoint Inhibitors. SSRN Electronic Journal, 0, , .	0.4	0
245	Checkpoint inhibition in the fight against cancer: NK cells have some to say in it. , 2021, , 267-304.		1
246	Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplantation, 2021, 30, 096368972110106.	1.2	10
247	Challenges for NK cell-based therapies: What can we learn from lymph nodes?. , 2021, , 33-51.		0
248	DDX39 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in patients with clear cell renal cell carcinoma. International Journal of Biological Sciences, 2021, 17, 3158-3172.	2.6	14
249	Inability of granule polarization by NK cells defines tumor resistance and can be overcome by CAR or ADCC mediated targeting. , 2021, 9, e001334.		19
250	Functional Heterogeneity and Therapeutic Targeting of Tissue-Resident Memory T Cells. Cells, 2021, 10, 164.	1.8	9
251	Colon cancer and immunotherapy—can we go beyond microsatellite instability?. Translational Gastroenterology and Hepatology, 2021, 6, 12-12.	1.5	19
252	Harnessing NK cells for cancer immunotherapy: immune checkpoint receptors and chimeric antigen receptors. BMB Reports, 2021, 54, 44-58.	1.1	7
253	An immunogenetic view of COVID-19. Genetics and Molecular Biology, 2021, 44, e20210036.	0.6	10
254	Update of Immune Therapies in Recurrent/Metastatic Head and Neck Cancer. , 2021, , 297-306.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
255	The SIRPα–CD47 immune checkpoint in NK cells. Journal of Experimental Medicine, 2	2021, 218, .	4.2	82
256	Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and C Pathogenesis. Immune Network, 2021, 21, e1.	OVID-19	1.6	9
257	NK Cells in Immunotherapy: How Important Are They?. , 2021, , 65-81.			0
258	Immunometabolic targeting of NK cells to solid tumors. , 2021, , 349-368.			0
259	NK cells and CD8 T cells in cancer immunotherapy: Similar functions by different mecha 3-31.	nisms. , 2021, ,		2
260	Combination blockade of KLRG1 and PD-1 promotes immune control of local and disser Oncolmmunology, 2021, 10, 1933808.	minated cancers.	2.1	21
261	The role of NK cells in oncolytic viral therapy: a focus on hepatocellular carcinoma. , 202	21, 5, 304-322.		2
262	A High-Dimensional Window into the Micro-Environment of Triple Negative Breast Cano 2021, 13, 316.	cer. Cancers,	1.7	16
263	TIM-3 levels correlate with enhanced NK cell cytotoxicity and improved clinical outcome patients. Oncolmmunology, 2021, 10, 1889822.	in AML	2.1	21
264	Minimal Residual Disease, Metastasis and Immunity. Biomolecules, 2021, 11, 130.		1.8	21
265	Low number of KIR ligands in lymphoma patients favors a good rituximab-dependent NI OncoImmunology, 2021, 10, 1936392.	< cell response.	2.1	14
266	Increased expression of adenosine A3 receptor in tumor-infiltrating natural killer cells. C Molecular Immunology, 2021, 18, 496-497.	Cellular and	4.8	2
267	Engineered Multifunctional Nano―and Biological Materials for Cancer Immunotherapy Healthcare Materials, 2021, 10, e2001680.	<i>ı.</i> Advanced	3.9	17
269	The role of donorâ€unrestricted Tâ€cells, innate lymphoid cells, and NK cells in antiâ€m immunity. Immunological Reviews, 2021, 301, 30-47.	ycobacterial	2.8	20
270	Graft Versus Leukemia: Current Status and Future Perspectives. Journal of Clinical Onco 361-372.	ology, 2021, 39,	0.8	11
271	A combination of pirfenidone and TGF-β inhibition mitigates cystic echinococcosis-asso injury. Parasitology, 2021, 148, 767-778.	ciated hepatic	0.7	4
272	Immune checkpoint inhibition in COVID-19: risks and benefits. Expert Opinion on Biolog 2021, 21, 1173-1179.	gical Therapy,	1.4	27
273	Targeting Innate Immunity in Cancer Therapy. Vaccines, 2021, 9, 138.		2.1	57

#	ARTICLE	IF	CITATIONS
274	Killing the Invaders: NK Cell Impact in Tumors and Anti-Tumor Therapy. Cancers, 2021, 13, 595.	1.7	22
275	Metabolism of Innate Immune Cells in Cancer. Cancers, 2021, 13, 904.	1.7	29
276	Quantitative modeling predicts competitive advantages of a next generation antiâ€NKG2A monoclonal antibody over monalizumab for the treatment of cancer. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 220-229.	1.3	3
277	TRIGGERED: could refocused cell signaling be key to natural killer cell-based HIV immunotherapeutics?. Aids, 2021, 35, 165-176.	1.0	4
278	Immune Therapy Resistance and Immune Escape of Tumors. Cancers, 2021, 13, 551.	1.7	32
279	Adaptive Natural Killer Cells Facilitate Effector Functions of Daratumumab in Multiple Myeloma. Clinical Cancer Research, 2021, 27, 2947-2958.	3.2	24
280	Elevated GAS2L3 Expression Correlates With Poor Prognosis in Patients With Glioma: A Study Based on Bioinformatics and Immunohistochemical Analysis. Frontiers in Genetics, 2021, 12, 649270.	1.1	3
281	HLA-E expression constitutes a novel determinant for ALL disease monitoring following hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2021, 56, 1723-1727.	1.3	2
282	Remodeling of Stromal Cells and Immune Landscape in Microenvironment During Tumor Progression. Frontiers in Oncology, 2021, 11, 596798.	1.3	21
284	Application of immune checkpoint targets in the anti-tumor novel drugs and traditional Chinese medicine development. Acta Pharmaceutica Sinica B, 2021, 11, 2957-2972.	5.7	34
285	Recent Advancements in Nanomedicine for â€~Cold' Tumor Immunotherapy. Nano-Micro Letters, 2021, 13, 92.	14.4	41
286	Next generation of immune checkpoint inhibitors and beyond. Journal of Hematology and Oncology, 2021, 14, 45.	6.9	293
288	Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers, 2021, 13, 1363.	1.7	24
289	Qa-1b Modulates Resistance to Anti–PD-1 Immune Checkpoint Blockade in Tumors with Defects in Antigen Processing. Molecular Cancer Research, 2021, 19, 1076-1084.	1.5	11
290	Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions. International Reviews of Immunology, 2021, 40, 217-251.	1.5	6
291	InÂvivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Immunity, 2021, 54, 571-585.e6.	6.6	50
292	Specific Patterns of Blood ILCs in Metastatic Melanoma Patients and Their Modulations in Response to Immunotherapy. Cancers, 2021, 13, 1446.	1.7	12
293	Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 633685.	2.2	4

#	Article	IF	CITATIONS
294	MHC heterogeneity and response of metastases to immunotherapy. Cancer and Metastasis Reviews, 2021, 40, 501-517.	2.7	12
295	Innate Immune Checkpoint Inhibitors: The Next Breakthrough in Medical Oncology?. Molecular Cancer Therapeutics, 2021, 20, 961-974.	1.9	58
296	Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 679117.	2.2	22
297	Natural Killer Cells: From Innate to Adaptive Features. Annual Review of Immunology, 2021, 39, 417-447.	9.5	85
298	HLA-A2.1-restricted ECM1-derived epitope LA through DC cross-activation priming CD8+ T and NK cells: a novel therapeutic tumour vaccine. Journal of Hematology and Oncology, 2021, 14, 71.	6.9	11
300	Harnessing Natural Killer Cells in Cancer Immunotherapy: A Review of Mechanisms and Novel Therapies. Cancers, 2021, 13, 1988.	1.7	14
301	Natural Killer Cells and Regulatory T Cells Cross Talk in Hepatocellular Carcinoma: Exploring Therapeutic Options for the Next Decade. Frontiers in Immunology, 2021, 12, 643310.	2.2	27
302	Proliferation of Highly Cytotoxic Human Natural Killer Cells by OX40L Armed NK-92 With Secretory Neoleukin-2/15 for Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 632540.	1.3	8
303	Role and Modulation of NK Cells in Multiple Myeloma. Hemato, 2021, 2, 167-181.	0.2	5
304	Enhancing a Natural Killer: Modification of NK Cells for Cancer Immunotherapy. Cells, 2021, 10, 1058.	1.8	17
305	Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microbial Cell Factories, 2021, 20, 88.	1.9	37
306	The "Great Debate―at Melanoma Bridge 2020: December, 5th, 2020. Journal of Translational Medicine, 2021, 19, 142.	1.8	1
307	Differences in the Expression of KIR, ILT Inhibitory Receptors, and VEGF Production in the Induced Decidual NK Cell Cultures of Fertile and RPL Women. BioMed Research International, 2021, 2021, 1-10.	0.9	6
308	Advances in drug development for hepatocellular carcinoma: clinical trials and potential therapeutic targets. Journal of Experimental and Clinical Cancer Research, 2021, 40, 172.	3.5	104
309	Natural Killer Cells and T Cells in Hepatocellular Carcinoma and Viral Hepatitis: Current Status and Perspectives for Future Immunotherapeutic Approaches. Cells, 2021, 10, 1332.	1.8	24
310	The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Molecular Cancer, 2021, 20, 76.	7.9	42
311	Phase I Trial of Prophylactic Donor-Derived IL-2-Activated NK Cell Infusion after Allogeneic Hematopoietic Stem Cell Transplantation from a Matched Sibling Donor. Cancers, 2021, 13, 2673.	1.7	12
312	Immune Responses against Disseminated Tumor Cells. Cancers, 2021, 13, 2515.	1.7	3

#	Article	IF	CITATIONS
313	Phenotypic and Functional Characteristics of a Novel Influenza Virus Hemagglutinin-Specific Memory NK Cell. Journal of Virology, 2021, 95, .	1.5	8
314	Human NK cells, their receptors and function. European Journal of Immunology, 2021, 51, 1566-1579.	1.6	75
315	The Multifaceted Effects of Breast Cancer on Tumor-Draining Lymph Nodes. American Journal of Pathology, 2021, 191, 1353-1363.	1.9	15
316	Harnessing CD16-Mediated NK Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting mAbs. Cancers, 2021, 13, 2500.	1.7	39
317	Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 670540.	2.2	10
318	MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. International Journal of Molecular Sciences, 2021, 22, 6741.	1.8	28
319	The prospects of nanotherapeutic approaches for targeting tumor-associated macrophages in oral cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102371.	1.7	6
320	Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors. Cancers, 2021, 13, 2796.	1.7	13
321	Enhancing programmed cell death protein 1 axis inhibition in head and neck squamous cell carcinoma: Combination immunotherapy. Cancer Treatment Reviews, 2021, 97, 102192.	3.4	15
322	The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice. Immunity, 2021, 54, 1231-1244.e4.	6.6	44
323	Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppressive Microenvironment. Frontiers in Immunology, 2021, 12, 683381.	2.2	16
324	ADCC-Inducing Antibody Trastuzumab and Selection of KIR-HLA Ligand Mismatched Donors Enhance the NK Cell Anti-Breast Cancer Response. Cancers, 2021, 13, 3232.	1.7	15
325	Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Letters, 2021, 507, 55-69.	3.2	53
326	Adaptive Subsets Limit the Anti-Tumoral NK-Cell Activity in Hepatocellular Carcinoma. Cells, 2021, 10, 1369.	1.8	6
327	Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers, 2021, 13, 3225.	1.7	15
328	Exploring natural killer cell immunology as a therapeutic strategy in lung cancer. Translational Lung Cancer Research, 2021, 10, 2788-2805.	1.3	3
329	HLA-G and HLA-E Immune Checkpoints Are Widely Expressed in Ewing Sarcoma but Have Limited Functional Impact on the Effector Functions of Antigen-Specific CAR T Cells. Cancers, 2021, 13, 2857.	1.7	11
330	Optimising NK cell metabolism to increase the efficacy of cancer immunotherapy. Stem Cell Research and Therapy, 2021, 12, 320.	2.4	31

#	Article	IF	CITATIONS
331	NK Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 6665.	1.8	11
332	Peptide-based assemblies as immune checkpoint inhibitor delivery systems for enhanced immunotherapy. Applied Materials Today, 2021, 23, 101063.	2.3	2
333	Current Aspects and Future Considerations of EGFR Inhibition in Locally Advanced and Recurrent Metastatic Squamous Cell Carcinoma of the Head and Neck. Cancers, 2021, 13, 3545.	1.7	9
334	Interplay between Neutrophils, NETs and T-Cells in SARS-CoV-2 Infection—A Missing Piece of the Puzzle in the COVID-19 Pathogenesis?. Cells, 2021, 10, 1817.	1.8	8
335	Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nature Genetics, 2021, 53, 1196-1206.	9.4	47
336	Leveraging NKG2D Ligands in Immuno-Oncology. Frontiers in Immunology, 2021, 12, 713158.	2.2	56
337	Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers, 2021, 13, 3767.	1.7	10
338	Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy, 2021, 6, 263.	7.1	739
339	The Role of Natural Killer Cells in Soft Tissue Sarcoma: Prospects for Immunotherapy. Cancers, 2021, 13, 3865.	1.7	4
340	Bi-specific and Tri-specific NK Cell Engagers: The New Avenue of Targeted NK Cell Immunotherapy. Molecular Diagnosis and Therapy, 2021, 25, 577-592.	1.6	27
341	Differences in Extracellular Vesicle Protein Cargo Are Dependent on Head and Neck Squamous Cell Carcinoma Cell of Origin and Human Papillomavirus Status. Cancers, 2021, 13, 3714.	1.7	3
343	Bracing NK cell based therapy to relegate pulmonary inflammation in COVID-19. Heliyon, 2021, 7, e07635.	1.4	9
344	Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers, 2021, 13, 4263.	1.7	32
345	NK cell and ILC heterogeneity in colorectal cancer. New perspectives from high dimensional data. Molecular Aspects of Medicine, 2021, 80, 100967.	2.7	7
346	Cetuximab in locally advanced head and neck squamous cell carcinoma: Biological mechanisms involved in efficacy, toxicity and resistance. Critical Reviews in Oncology/Hematology, 2021, 164, 103424.	2.0	19
347	Prognostic value of natural killer cell activity for patients with HER2 + advanced gastric cancer treated with first-line fluoropyrimidine–platinum doublet plus trastuzumab. Cancer Immunology, Immunotherapy, 2022, 71, 829-838.	2.0	7
348	Interpretable systems biomarkers predict response to immune-checkpoint inhibitors. Patterns, 2021, 2, 100293.	3.1	47
349	The prognostic and clinicopathological roles of microsatellite instability, PD-L1 expression and tumor-infiltrating leukocytes in familial adenomatous polyposis. European Journal of Surgical Oncology, 2022, 48, 211-217.	0.5	0

	С	fation Report	
#	Article	IF	CITATIONS
350	Deregulation of HLA-I in cancer and its central importance for immunotherapy. , 2021, 9, e002899.		73
351	Peptide Adjuvant to Invigorate Cytolytic Activity of NK Cells in an Obese Mouse Cancer Model. Pharmaceutics, 2021, 13, 1279.	2.0	0
352	Epitranscriptomic Approach: To Improve the Efficacy of ICB Therapy by Co-Targeting Intracellular Checkpoint CISH. Cells, 2021, 10, 2250.	1.8	6
353	Combined Inhibition of SHP2 and CXCR1/2 Promotes Antitumor T-cell Response in NSCLC. Cancer Discovery, 2022, 12, 47-61.	7.7	58
354	Novel Insights into the Immunotherapy of Soft Tissue Sarcomas: Do We Need a Change of Perspective Biomedicines, 2021, 9, 935.	??. 1.4	5
355	Immunosuppressive microenvironment in oral cancer: implications for cancer immunotherapy. Exploration of Immunology, 0, , .	1.7	2
356	NK Cell Therapy: A Rising Star in Cancer Treatment. Cancers, 2021, 13, 4129.	1.7	34
357	Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 9044.	1.8	7
358	A Transcriptional Signature of PDGF-DD Activated Natural Killer Cells Predicts More Favorable Prognosis in Low-Grade Glioma. Frontiers in Immunology, 2021, 12, 668391.	2.2	25
359	Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today, 2021, 24, 101149.	2.3	7
360	Adaptive NK Cell Therapy Modulated by Anti-PD-1 Antibody in Gastric Cancer Model. Frontiers in Pharmacology, 2021, 12, 733075.	1.6	14
361	Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Human Immunology, 2022, 83, 86-98.	1.2	37
362	The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Frontiers in Immunology, 2021, 12, 737311.	2.2	28
363	Natural killer cellâ€ʿbased immunotherapy for lung cancer: Challenges and perspectives (Review). Oncology Reports, 2021, 46, .	1.2	14
364	Combination of tumor mutation burden and immune infiltrates for the prognosis of lung adenocarcinoma. International Immunopharmacology, 2021, 98, 107807.	1.7	13
365	FLT3L Release by Natural Killer Cells Enhances Response to Radioimmunotherapy in Preclinical Models of HNSCC. Clinical Cancer Research, 2021, 27, 6235-6249.	3.2	14
366	Targeting immune dysfunction in aging. Ageing Research Reviews, 2021, 70, 101410.	5.0	76
367	Single-Cell RNA Sequencing Reveals the Heterogeneity of Infiltrating Immune Cell Profiles in the Hepatic Cystic Echinococcosis Microenvironment. Infection and Immunity, 2021, 89, e0029721.	1.0	7

ARTICLE IF CITATIONS Natural killer (NK) cell-based immunotherapies and the many faces of NK cell memory: A look into how 368 31 6.6 nanoparticles enhance NK cell activity. Advanced Drug Delivery Reviews, 2021, 176, 113860. Cellular Immunotherapy and the Lung. Vaccines, 2021, 9, 1018. 2.1 CENPN Acts as a Novel Biomarker that Correlates With the Malignant Phenotypes of Glioma Cells. 370 1.1 12 Frontiers in Genetics, 2021, 12, 732376. PD-L1 regulation revisited: impact on immunotherapeutic strategies. Trends in Molecular Medicine, 371 2021, 27, 868-881. Human cytomegalovirus expands a CD8 ⁺ T cell population with loss of <i>BCL11B</i> 372 5.6 25 expression and gain of NK cell identity. Science Immunology, 2021, 6, eabe6968. Adoptive NK Cell Therapy: A Promising Treatment Prospect for Metastatic Melanoma. Cancers, 2021, 13, 1.7 4722. Combination strategies to maximize the benefits of cancer immunotherapy. Journal of Hematology and 374 6.9 202 Oncology, 2021, 14, 156. Immunobiology of Melanoma. Clinics in Plastic Surgery, 2021, 48, 561-576. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and 376 1.4 5 challenges. Čellular Immunology, 2021, 369, 104436. Natural Killer Cells in Cancer and Cancer Immunotherapy. Cancer Letters, 2021, 520, 233-242. 3.2 Carbon ion (12C6+) irradiation induces the expression of Klrk1 in lung cancer and optimizes the tumor 378 3.2 11 microenvironment based on the NKG2D/NKG2D-Ls pathway. Cancer Letters, 2021, 521, 178-195. Targeting ADCC: A different approach to HER2 breast cancer in the immunotherapy era. Breast, 2021, 60, 379 15-25. Targeting natural killer cells in cancer immunotherapy., 2022, , 63-82. 380 1 Exploiting the CRISPR as9 geneâ€editing system for human cancers and immunotherapy. Clinical and 1.7 Translational Immunology, 2021, 10, e1286 Employing hypoxia characterization to predict tumour immune microenvironment, treatment 382 sensitivity and prognosis in hepatocellular carcinoma. Computational and Structural Biotechnology 22 1.9 Journal, 2021, 19, 2775-2789. New therapeutic modalities in breast cancer by targeting NK cell inhibitory and activating receptors., 2021, , 38<mark>7-402.</mark> Natural killer cells in inflammatory autoimmune diseases. Clinical and Translational Immunology, 384 1.7 29 2021, 10, e1250. Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches 1.5 to harness NK cell potential for immunotherapy. Journal of Leukocyte Biology, 2021, 109, 1071-1088.

ARTICLE IF CITATIONS # The Intestinal Tumour Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1226, 386 0.8 10 1-22. Mechanisms Inspired Targeting Peptides. Advances in Experimental Medicine and Biology, 2020, 1248, 0.8 531-546. An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of 388 5.8 87 human pancreatic beta cells. Nature Communications, 2020, 11, 2584. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab 24 are effective against tumor cells from multiple myeloma patients. Oncolmmunology, 2021, 10, 1853314. Anti-NKG2D single domain-based antibodies for the modulation of anti-tumor immune response. 390 2.1 19 Oncolmmunology, 2021, 10, 1854529. Programmed cell death 1â€expressing CD56â€negative natural killer (NK) cell expansion is a hallmark of 1.7 chronic NK cell activation during dasatinib treatment. Cancer Science, 2021, 112, 523-536. 393 Landscape of natural killer cell activity in head and neck squamous cell carcinoma. , 2020, 8, e001523. 36 Discovery of specialized NK cell populations infiltrating human melanoma metastases. JCI Insight, 2019, 304 2.3 Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer 395 2.3 50 chemotherapy benefit. JCI Insight, 2020, 5, . Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. Journal of Clinical Investigation, 2019, 129, 2094-2106. Setting traps for NKG2A gives NK cell immunotherapy a fighting chance. Journal of Clinical 397 3.9 13 Investigation, 2019, 129, 1839-1841. Killers 2.0: NK cell therapies at the forefront of cancer control. Journal of Clinical Investigation, 398 166 2019, 129, 3499-3510. Pembrolizumab plus allogeneic NK cells in advanced nonâ€"small cell lung cancer patients. Journal of 399 3.9 77 Clinical Investigation, 2020, 130, 2560-2569. Drug Repurposing for Prevention and Treatment of COVID-19: A Clinical Landscape. Discoveries, 2020, 8, 1.5 e121 Combinations using checkpoint blockade to overcome resistance. Ecancermedicalscience, 2020, 14, 401 0.6 11 1148. Combined Anti-Cancer Strategies Based on Anti-Checkpoint Inhibitor Antibodies. Antibodies, 2020, 9, 17. 1.2 14 Design and Implementation of NK Cell-Based Immunotherapy to Overcome the Solid Tumor 403 1.7 17 Microenvironment. Cancers, 2020, 12, 3871. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: Present and future. Indian 404 Journal of Ophthalmology, 2020, 68, 693.

#	Article	IF	CITATIONS
405	PRDM1 Drives Human Primary T Cell Hyporesponsiveness by Altering the T Cell Transcriptome and Epigenome. SSRN Electronic Journal, 0, , .	0.4	0
406	Expression Regulation and Function of T-Bet in NK Cells. Frontiers in Immunology, 2021, 12, 761920.	2.2	23
407	The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. International Journal of Molecular Sciences, 2021, 22, 11385.	1.8	7
408	The Immunology of Hepatocellular Carcinoma. Vaccines, 2021, 9, 1184.	2.1	41
409	NKG2A expression identifies a subset of human Vδ2 TÂcells exerting the highest antitumor effector functions. Cell Reports, 2021, 37, 109871.	2.9	30
410	NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas. Frontiers in Oncology, 2021, 11, 751183.	1.3	10
411	A phase II study of monalizumab in patients with recurrent/metastatic squamous cell carcinoma of the head and neck: The I1 cohort of the EORTC-HNCG-1559 UPSTREAM trial. European Journal of Cancer, 2021, 158, 17-26.	1.3	33
413	COVID-19: an updated review. Russian Journal of Infection and Immunity, 2020, 10, 247-258.	0.2	2
414	Enhancement of NK Cell Antitumor Effector Functions Using a Bispecific Single Domain Antibody Targeting CD16 and the Epidermal Growth Factor Receptor. Cancers, 2021, 13, 5446.	1.7	12
415	<scp>NKG2A</scp> is a late immune checkpoint on <scp>CD8</scp> T cells and marks repeated stimulation and cell division. International Journal of Cancer, 2022, 150, 688-704.	2.3	22
416	Tumor cell lysis and synergistically enhanced antibody-dependent cell-mediated cytotoxicity by NKG2D engagement with a bispecific immunoligand targeting the HER2 antigen. Biological Chemistry, 2021, .	1.2	6
417	NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. Translational Research, 2022, 240, 64-86.	2.2	11
418	Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. ImmunoTargets and Therapy, 2021, Volume 10, 387-407.	2.7	9
420	Quoi de neuf en recherche ?. Annales De Dermatologie Et De Venereologie, 2019, 146, 12S19-12S23.	0.5	0
423	The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer. ChemistrySelect, 2022, 7, 833-866.	0.7	0
424	Crosstalk between macrophages and natural killer cells in the tumor microenvironment. International Immunopharmacology, 2021, 101, 108374.	1.7	23
425	Immunotherapy Approaches in HPV-Associated Head and Neck Cancer. Cancers, 2021, 13, 5889.	1.7	21
426	Natural killer cells and immune-checkpoint inhibitor therapy: Current knowledge and new challenges. Molecular Therapy - Oncolytics, 2022, 24, 26-42.	2.0	26

		CITATION REPORT		
#	Article		IF	CITATIONS
427	HLA AND CANCER. Physical and Rehabilitation Medicine Medical Rehabilitation, 0, , .		0.1	0
428	Immunesenescence and Compromised Removal of Senescent Cells: Implications for Healt Healthy Ageing and Longevity, 2022, , 23-52.	th in Old Age.	0.2	0
429	An NK-like CAR TÂcell transition in CAR TÂcell dysfunction. Cell, 2021, 184, 6081-6100.e2	26.	13.5	160
430	Selinexor Enhances NK Cell Activation Against Malignant B Cells via Downregulation of H Frontiers in Oncology, 2021, 11, 785635.	LA-E.	1.3	9
431	Identification of HIV-Reservoir Cells With Reduced Susceptibility to Antibody-Dependent Response. SSRN Electronic Journal, 0, , .	Immune	0.4	0
432	Accounting for B-cell Behavior and Sampling Bias Predicts Anti–PD-L1 Response in Blad Cancer Immunology Research, 2022, 10, 343-353.	der Cancer.	1.6	9
433	The importance of immune checkpoints in immune monitoring: A future paradigm shift ir treatment of cancer. Biomedicine and Pharmacotherapy, 2022, 146, 112516.	ı the	2.5	38
435	Monoclonal Antibodies and their Target Specificity Against SARS-CoV-2 Infections: Perspe Challenges. Recent Patents on Biotechnology, 2022, 16, 64-78.	ectives and	0.4	3
436	A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. International Journal of Mole Sciences, 2022, 23, 797.	cular	1.8	6
437	Downregulated cytotoxic CD8+ T-cell identifies with the NKG2A-soluble HLA-E axis as a probiomarker and potential therapeutic target in keloids. Cellular and Molecular Immunology 527-539.	edictive v, 2022, 19,	4.8	16
438	Cancer immunotherapy using artificial adjuvant vector cells to deliver NYâ€ESOâ€1 antig cells in situ. Cancer Science, 2022, 113, 864-874.	en to dendritic	1.7	8
440	Differential expression of inhibitory receptor NKG2A distinguishes diseaseâ€specific exha cells. MedComm, 2022, 3, e111.	usted CD8 + T	3.1	2
441	Autologous NK cells as consolidation therapy following stem cell transplantation in multi myeloma. Cell Reports Medicine, 2022, 3, 100508.	ple	3.3	20
442	iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting. Frontiers in Immunol 841107.	ogy, 2022, 13,	2.2	42
443	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Review 2022, 22, 195-207.	vs Cancer,	12.8	101
444	Identifying and antagonizing the interactions between layilin and glycosylated collagens. Chemical Biology, 2022, 29, 597-604.e7.	Cell	2.5	1
445	The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Biomedicines, 2022, 10, 400.	Battle?.	1.4	5
446	LLT1-CD161 Interaction in Cancer: Promises and Challenges. Frontiers in Immunology, 20	22, 13, 847576.	2.2	15

#	Article	IF	CITATIONS
447	Selenopeptide Nanomedicine Activates Natural Killer Cells for Enhanced Tumor Chemoimmunotherapy. Advanced Materials, 2022, 34, e2108167.	11.1	32
448	Natural Killer Cell-Mediated Immunotherapy for Leukemia. Cancers, 2022, 14, 843.	1.7	16
449	Senescence and the tumor-immune landscape: Implications for cancer immunotherapy. Seminars in Cancer Biology, 2022, 86, 827-845.	4.3	33
450	Perspective of HLA-G Induced Immunosuppression in SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 788769.	2.2	18
451	Natural killer cell-based strategies for immunotherapy of cancer. Advances in Protein Chemistry and Structural Biology, 2022, 129, 91-133.	1.0	6
452	Noncoding RNAs as novel immunotherapeutic tools against cancer. Advances in Protein Chemistry and Structural Biology, 2022, 129, 135-161.	1.0	3
453	Natural Killer Cells: the Missing Link in Effective Treatment for High-Grade Serous Ovarian Carcinoma. Current Treatment Options in Oncology, 2022, 23, 210-226.	1.3	7
454	Revealing the transcriptional heterogeneity of organâ€specific metastasis in human gastric cancer using singleâ€cell RNA Sequencing. Clinical and Translational Medicine, 2022, 12, e730.	1.7	59
456	Innate lymphoid cells and cancer. Nature Immunology, 2022, 23, 371-379.	7.0	75
458	Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Frontiers in Immunology, 2022, 13, 835686.	2.2	2
459	Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity. Journal of Experimental and Clinical Cancer Research, 2022, 41, 62.	3.5	44
460	Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers, 2022, 14, 1013.	1.7	17
461	Genomic Instability Is Defined by Specific Tumor Microenvironment in Ovarian Cancer: A Subgroup Analysis of AGO OVAR 12 Trial. Cancers, 2022, 14, 1189.	1.7	3
462	Innovative Strategies to Improve the Clinical Application of NK Cell-Based Immunotherapy. Frontiers in Immunology, 2022, 13, 859177.	2.2	18
463	Immunostimulatory Cancer-Associated Fibroblast Subpopulations Can Predict Immunotherapy Response in Head and Neck Cancer. Clinical Cancer Research, 2022, 28, 2094-2109.	3.2	60
464	Natural killer cells: Innate immune system as a part of adaptive immunotherapy in hematological malignancies. American Journal of Hematology, 2022, , .	2.0	2
465	Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity. Communications Biology, 2022, 5, 271.	2.0	14
466	Dissecting the cellular components of <i>ex vivo</i> γδT cell expansions to optimize selection of potent cell therapy donors for neuroblastoma immunotherapy trials. Oncolmmunology, 2022, 11, 2057012.	2.1	9

#	Article	IF	CITATIONS
467	Liver Immunology, Immunotherapy, and Liver Cancers: Time for a Rethink?. Seminars in Liver Disease, 2022, , .	1.8	3
468	The evolutionary legacy of immune checkpoint inhibitors. Seminars in Cancer Biology, 2022, 86, 491-498.	4.3	37
470	Recent advances in nanoscale targeted therapy of HER2-positive breast cancer. Journal of Drug Targeting, 2022, 30, 687-708.	2.1	5
471	The changing role of natural killer cells in cancer metastasis. Journal of Clinical Investigation, 2022, 132, .	3.9	36
472	Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. Oncolmmunology, 2022, 11, 2046931.	2.1	19
473	Antigen presentation by MHC-E: a putative target for vaccination?. Trends in Immunology, 2022, 43, 355-365.	2.9	12
475	Deep phenotyping of surface stimulatory and inhibitory co-receptors on cancer-resident T and NK cells reveals cell subsets within the tumor-reactive CTL population that are uniquely defined by NKG2A expression. SLAS Discovery, 2022, 27, 95-106.	1.4	0
476	Combinatorial Expression of NK Cell Receptors Governs Cell Subset Reactivity and Effector Functions but Not Tumor Specificity. Journal of Immunology, 2022, 208, 1802-1812.	0.4	1
477	COVID-19 and Lung Cancer: A Comprehensive Overview from Outbreak to Recovery. Biomedicines, 2022, 10, 776.	1.4	8
478	Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Molecular Immunology, 2022, 144, 58-70.	1.0	23
479	SNAP25 is a potential prognostic biomarker for prostate cancer. Cancer Cell International, 2022, 22, 144.	1.8	9
480	Stemness Subtypes and Scoring System Predict Prognosis and Efficacy of Immunotherapy in Soft Tissue Sarcoma. Frontiers in Immunology, 2022, 13, 796606.	2.2	3
481	Natural killer cell therapy: A new frontier for obesity-associated cancer. Cancer Letters, 2022, 535, 215620.	3.2	17
482	Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. International Journal of Molecular Sciences, 2021, 22, 13311.	1.8	54
483	Challenges of cancer immunotherapy and chemotherapy during the COVID-19 pandemic. Tumori, 2021, , 030089162110639.	0.6	4
484	Central Role of the Antigen-Presentation and Interferon-Î ³ Pathways in Resistance to Immune Checkpoint Blockade. Annual Review of Cancer Biology, 2022, 6, 85-102.	2.3	15
485	Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nature Biomedical Engineering, 2021, 5, 1411-1425.	11.6	96
486	Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers, 2021, 13, 6231.	1.7	13

#	Article	IF	CITATIONS
487	The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nature Reviews Drug Discovery, 2022, 21, 509-528.	21.5	201
488	CAR-NK Cells: From Natural Basis to Design for Kill. Frontiers in Immunology, 2021, 12, 707542.	2.2	50
490	Challenges and Recent Advances in NK Cell-Targeted Immunotherapies in Solid Tumors. International Journal of Molecular Sciences, 2022, 23, 164.	1.8	14
491	Challenges to the broad application of allogeneic natural killer cell immunotherapy of cancer. Stem Cell Research and Therapy, 2022, 13, 165.	2.4	11
492	SARS-CoV-2 Infection: A Possible Risk Factor for Incidence and Recurrence of Cancers. International Journal of Hematology-Oncology and Stem Cell Research, 0, , .	0.3	4
493	A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Frontiers in Immunology, 2022, 13, 803995.	2.2	3
494	A Single-Domain TCR-like Antibody Selective for the Qa-1b/Qdm Peptide Complex Enhances Tumoricidal Activity of NK Cells via Blocking the NKG2A Immune Checkpoint. Journal of Immunology, 2022, 208, 2246-2255.	0.4	1
495	Evaluation of HLA-E Expression Combined with Natural Killer Cell Status as a Prognostic Factor for Advanced Gastric Cancer. Annals of Surgical Oncology, 2022, 29, 4951-4960.	0.7	10
496	The tricks for fighting against cancer using CAR NK cells: A review. Molecular and Cellular Probes, 2022, 63, 101817.	0.9	5
512	COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination With Oleclumab or Monalizumab in Patients With Unresectable, Stage III Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2022, 40, 3383-3393.	0.8	120
513	NKG2A and PD-L1 expression panel predicts clinical benefits from adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer. , 2022, 10, e004569.		5
514	Systematic analysis of prognostic significance, functional enrichment and immune implication of STK10 in acute myeloid leukemia. BMC Medical Genomics, 2022, 15, 101.	0.7	3
515	Burgeoning Exploration of the Role of Natural Killer Cells in Anti-PD-1/PD-L1 Therapy. Frontiers in Immunology, 2022, 13, .	2.2	5
516	NK Cells Equipped With a Chimeric Antigen Receptor That Overcomes Inhibition by HLA Class I for Adoptive Transfer of CAR-NK Cells. Frontiers in Immunology, 2022, 13, 840844.	2.2	5
517	Immunological microenvironment at the maternal-fetal interface. Journal of Reproductive Immunology, 2022, 151, 103632.	0.8	2
518	PRDM1 Drives Human Primary T Cell Hyporesponsiveness by Altering the T Cell Transcriptome and Epigenome. Frontiers in Immunology, 2022, 13, 879501.	2.2	4
519	Gene knockout in cellular immunotherapy: Application and limitations. Cancer Letters, 2022, 540, 215736.	3.2	10
520	Natural killer cells: unlocking new treatments for bladder cancer. Trends in Cancer, 2022, 8, 698-710.	3.8	5

#	Article	IF	CITATIONS
521	Tumor-Derived Lactate Creates a Favorable Niche for Tumor via Supplying Energy Source for Tumor and Modulating the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	14
523	Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. International Review of Cell and Molecular Biology, 2022, , 65-122.	1.6	4
524	The Promises of Natural Killer Cell Therapy in Endometriosis. International Journal of Molecular Sciences, 2022, 23, 5539.	1.8	8
527	Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nature Reviews Immunology, 2023, 23, 90-105.	10.6	110
528	Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends in Immunology, 2022, 43, 523-545.	2.9	176
529	<scp>NKG2A</scp> â€checkpoint inhibition and its blockade critically depends on peptides presented by its ligand <scp>HLAâ€E</scp> . Immunology, 2022, 166, 507-521.	2.0	15
530	CRISPR-Cas9 based gene editing of the immune checkpoint NKG2A enhances NK cell mediated cytotoxicity against multiple myeloma. OncoImmunology, 2022, 11, .	2.1	24
531	Tissue-Resident Innate Immune Cell-Based Therapy: A Cornerstone of Immunotherapy Strategies for Cancer Treatment. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	5
532	Identification of HIV-reservoir cells with reduced susceptibility to antibody-dependent immune response. ELife, 0, 11, .	2.8	10
533	Overcoming Resistance to Checkpoint Inhibitors: Natural Killer Cells in Non-Small Cell Lung Cancer. Frontiers in Oncology, 0, 12, .	1.3	12
534	Beyond Checkpoint Inhibitors: Enhancing Antitumor Immune Response in Lung Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, , 673-686.	1.8	3
535	Mechanism of COVID-19 Causing ARDS: Exploring the Possibility of Preventing and Treating SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	19
536	Elevated BCAA Suppresses the Development and Metastasis of Breast Cancer. Frontiers in Oncology, 0, 12, .	1.3	10
537	Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion. JCI Insight, 2022, 7, .	2.3	17
538	Genomic Characteristics, Metabolic Signature and Immune Microenvironment of <i>Clonorchis Sinensis</i> -Related Intrahepatic Cholangiocarcinoma. SSRN Electronic Journal, 0, , .	0.4	0
539	NKC2A Expression among CD8 Cells Is Associated with COVID-19 Progression in Hypertensive Patients: Insights from the BRACE CORONA Randomized Trial. Journal of Clinical Medicine, 2022, 11, 3713.	1.0	7
540	NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines, 2022, 10, 1033.	2.1	10
541	Charting roadmaps towards novel and safe synergistic immunotherapy combinations. Nature Cancer, 2022, 3, 665-680.	5.7	18

#	Article	IF	CITATIONS
542	Immunotherapy in unresectable stage III non-small-cell lung cancer: state of the art and novel therapeutic approaches. Annals of Oncology, 2022, 33, 893-908.	0.6	29
544	NK cell dysfunction is linked with disease severity in SARSâ€CoVâ€2 patients. Cell Biochemistry and Function, 2022, 40, 559-568.	1.4	5
545	Innate immunity as a target for novel therapeutics in triple negative breast cancer. Expert Opinion on Investigational Drugs, 2022, 31, 781-794.	1.9	2
546	Neoantigens and NK Cells: "Trick or Treat―the Cancers?. Frontiers in Immunology, 0, 13, .	2.2	4
547	γδT Cells in the Tumor Microenvironment—Interactions With Other Immune Cells. Frontiers in Immunology, 0, 13, .	2.2	30
548	NK Cells and Other Cytotoxic Innate Lymphocytes in Colorectal Cancer Progression and Metastasis. International Journal of Molecular Sciences, 2022, 23, 7859.	1.8	10
549	Chip-DSF: A rapid screening strategy for drug protein targets. Pharmacological Research, 2022, 182, 106346.	3.1	3
550	Roles of immune cells in the concurrence of Echinococcus granulosus sensu lato infection and hepatocellular carcinoma. Experimental Parasitology, 2022, 240, 108321.	0.5	0
551	Natural killer cells in antitumour adoptive cell immunotherapy. Nature Reviews Cancer, 2022, 22, 557-575.	12.8	208
552	Immune Checkpoint Inhibitors in Cancer Therapy—How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575.	1.7	18
552 553	Immune Checkpoint Inhibitors in Cancer Therapy—How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575. Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, .	1.7 2.2	18 4
552 553 554	Immune Checkpoint Inhibitors in Cancer Therapyâ€"How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575. Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, . Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, .	1.7 2.2 2.2	18 4 15
552 553 554 555	Immune Checkpoint Inhibitors in Cancer Therapyâ€"How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575. Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, . Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, . DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Frontiers in Immunology, 0, 13, .	1.7 2.2 2.2 2.2	18 4 15 8
552 553 554 555	Immune Checkpoint Inhibitors in Cancer Therapyâ€"How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575. Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, . Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, . DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Frontiers in Immunology, 0, 13, . Implications of NKG2A in immunity and immune-mediated diseases. Frontiers in Immunology, 0, 13, .	1.7 2.2 2.2 2.2 2.2	18 4 15 8 20
552 553 554 555 556	Immune Checkpoint Inhibitors in Cancer Therapyâ€"How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575. Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, . Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, . DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Frontiers in Immunology, 0, 13, . Implications of NKG2A in immunity and immune-mediated diseases. Frontiers in Immunology, 0, 13, . Shaping the "hotâ€-immunogenic tumor microenvironment by nanoparticles coâ€delivering oncolytic peptide and <scp>TGF</scp> ã€P1 <scp>siRNA</scp> for boosting checkpoint blockade therapy. Bioengineering and Translational Medicine, 2023, 8, .	1.7 2.2 2.2 2.2 2.2 2.2 3.9	18 4 15 8 20 5
 552 553 554 555 557 558 	Immune Checkpoint Inhibitors in Cancer Therapyâ€"How to Overcome Drug Resistance?. Cancers, 2022, 14, 3575. Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, . Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, . DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Frontiers in Immunology, 0, 13, . Implications of NKC2A in immunity and immune-mediated diseases. Frontiers in Immunology, 0, 13, . Shaping the "hotâ€-immunogenic tumor microenvironment by nanoparticles coâ€delivering oncolytic peptide and <scp>TGF Shaping tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 0, 13, .</scp>	1.7 2.2 2.2 2.2 2.2 3.9 2.2	 18 4 15 8 20 5 22
 552 553 554 555 557 558 559 	Immune Checkpoint Inhibitors in Cancer TherapyနHow to Overcome Drug Resistance?. Cancers, 2022, 14, 3575. Natural killer cells: the next wave in cancer immunotherapy. Frontiers in Immunology, 0, 13, . Immunosuppressive landscape in hepatocellular carcinoma revealed by single-cell sequencing. Frontiers in Immunology, 0, 13, . DNAM-1-chimeric receptor-engineered NK cells, combined with Nutlin-3a, more effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Frontiers in Immunology, 0, 13, . Implications of NKG2A in immunity and immune-mediated diseases. Frontiers in Immunology, 0, 13, . Shaping the "hotâ€-immunogenic tumor microenvironment by nanoparticles coâ€delivering oncolytic peptide and <scp>TGF</scp> à€P1 <scp>siRNA</scp> for boosting checkpoint blockade therapy. Bioengineering and Translational Medicine, 2023, 8, . Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 0, 13, . XBP1 impacts lung adenocarcinoma progression by promoting plasma cell adaptation to the tumor microenvironment. Frontiers in Genetics, 0, 13, .	1.7 2.2 2.2 2.2 2.2 3.9 2.2 1.1	 18 4 15 8 20 5 22 2

#	Article	IF	CITATIONS
561	CAR-NK Cells: A Chimeric Hope or a Promising Therapy?. Cancers, 2022, 14, 3839.	1.7	15
562	Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes and Diseases, 2023, 10, 990-1004.	1.5	4
564	Unleashing Anti-Tumor Activity of Natural Killer Cells Via Modulation of Immune Checkpoints Receptors and Molecules. , 0, 8, 463-471.		1
565	New Immuno-oncology Targets and Resistance Mechanisms. Current Treatment Options in Oncology, 2022, 23, 1201-1218.	1.3	10
566	Immune cellular components and signaling pathways in the tumor microenvironment. Seminars in Cancer Biology, 2022, 86, 187-201.	4.3	18
567	Checkpoint molecules on infiltrating immune cells in colorectal tumor microenvironment. Frontiers in Medicine, 0, 9, .	1.2	5
568	The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology, 2023, 77, 1773-1796.	3.6	101
569	Underlying mechanisms of evasion from NK cells as rationale for improvement of NK cell-based immunotherapies. Frontiers in Immunology, 0, 13, .	2.2	12
570	Minus Times Minus Equals Plus. Journal of Clinical Oncology, 2022, 40, 3453-3455.	0.8	2
571	Integrated single-cell transcriptomic analyses reveal that CPNMB-high macrophages promote PN-MES transition and impede T cell activation in CBM. EBioMedicine, 2022, 83, 104239.	2.7	11
572	Targeting Epidermal Growth Factor Receptor in Head and Neck Cancer. Cancer Journal (Sudbury, Mass) Tj ETQq0	0.0 rgBT	Overlock 10
573	A novel cuproptosis-related IncRNA prognostic signature for predicting treatment and immune environment of head and neck squamous cell carcinoma. Mathematical Biosciences and Engineering, 2022, 19, 12127-12145.	1.0	0
575	NKG2A and HLA-E define an alternative immune checkpoint axis in bladder cancer. Cancer Cell, 2022, 40, 1027-1043.e9.	7.7	34
576	Induced CD45 Proximity Potentiates Natural Killer Cell Receptor Antagonism. ACS Synthetic Biology, 2022, 11, 3426-3439.	1.9	2
577	KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape. Nature Medicine, 2022, 28, 2133-2144.	15.2	50
578	Machine learning identifies exosome features related to hepatocellular carcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
579	Bringing natural killer cells to the clinic. Journal of Experimental Medicine, 2022, 219, .	4.2	7
580	Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Frontiers in Immunology, 0, 13, .	2.2	12

#	Article	IF	CITATIONS
581	Dynamic Alteration in HLA-E Expression and Soluble HLA-E via Interaction with Natural Killer Cells in Gastric Cancer. Annals of Surgical Oncology, 2023, 30, 1240-1252.	0.7	3
582	Neoadjuvant atezolizumab for resectable non-small cell lung cancer: an open-label, single-arm phase II trial. Nature Medicine, 2022, 28, 2155-2161.	15.2	93
583	The soldiers needed to be awakened: Tumor-infiltrating immune cells. Frontiers in Genetics, 0, 13, .	1.1	4
584	Strategies for Potentiating NK-Mediated Neuroblastoma Surveillance in Autologous or HLA-Haploidentical Hematopoietic Stem Cell Transplants. Cancers, 2022, 14, 4548.	1.7	2
585	Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More Than a Promise?. Cancers, 2022, 14, 4439.	1.7	6
586	Harnessing the immune system by targeting immune checkpoints: Providing new hope for Oncotherapy. Frontiers in Immunology, 0, 13, .	2.2	6
587	The new progress in cancer immunotherapy. Clinical and Experimental Medicine, 2023, 23, 553-567.	1.9	6
588	In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nature Immunology, 2022, 23, 1495-1506.	7.0	57
589	Polymeric Dendrimers as Nanocarrier Vectors for Neurotheranostics. Small, 2022, 18, .	5.2	13
590	Immunotherapy in Head and Neck Cancer When, How, and Why?. Biomedicines, 2022, 10, 2151.	1.4	6
591	Human natural killer cells: Form, function, and development. Journal of Allergy and Clinical Immunology, 2023, 151, 371-385.	1.5	14
592	The prognostic impact of the immune signature in head and neck squamous cell carcinoma. Frontiers in Immunology, 0, 13, .	2.2	5
593	Combination of NKG2A and PD-1 Blockade Improves Radiotherapy Response in Radioresistant Tumors. Journal of Immunology, 2022, 209, 629-640.	0.4	8
594	Beyond PD-1/PD-L1 Immune Checkpoint Inhibitors: Other Targets and Approaches for Head and Neck Cancer. , 2022, , .		0
595	Identification of a novel necroptosis-associated miRNA signature for predicting the prognosis in head and neck squamous cell carcinoma. Open Medicine (Poland), 2022, 17, 1682-1698.	0.6	2
596	Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. International Journal of Molecular Sciences, 2022, 23, 11789.	1.8	11
597	Characterization of the SARS-CoV-2 co-receptor NRP1 expression profiles in healthy people and cancer patients: Implication for susceptibility to COVID-19 disease and potential therapeutic strategy. Frontiers in Genetics, 0, 13, .	1.1	4
598	Inhibitory receptors for HLA class I as immune checkpoints for natural killer cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Cancer Immunology, Immunotherapy, 2023, 72, 797-804.	2.0	4

\sim -						
	AΤ	101	νк	ΈP	OI	5 T

#	Article	IF	CITATIONS
599	Immune Checkpoint Blockade: A Strategy to Unleash the Potential of Natural Killer Cells in the Anti-Cancer Therapy. Cancers, 2022, 14, 5046.	1.7	8
600	Impaired intratumoral natural killer cell function in head and neck carcinoma. Frontiers in Immunology, 0, 13, .	2.2	6
601	Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells, 2022, 11, 3147.	1.8	3
602	Uterine NK Cells Ace an "A―in Education: NKG2A Sets Up Crucial Functions at the Maternal–Fetal Interface. Journal of Immunology, 2022, 209, 1421-1425.	0.4	2
603	Natural killer cell immunotherapy in glioblastoma. Discover Oncology, 2022, 13, .	0.8	8
604	Construction and Validation of a Prognostic Model Based on mRNAsi-Related Genes in Breast Cancer. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-21.	0.7	2
605	NK cells and solid tumors: therapeutic potential and persisting obstacles. Molecular Cancer, 2022, 21, .	7.9	42
606	Immunotherapy targeting inhibitory checkpoints: The role of NK and other innate lymphoid cells. Seminars in Immunology, 2022, 61-64, 101660.	2.7	4
607	The treatment in patients with unresectable locally advanced non-small cell lung cancer: Explorations on hot issues. Cancer Letters, 2022, 551, 215947.	3.2	1
608	Weaponizing natural killer cells for solid cancer immunotherapy. Trends in Cancer, 2023, 9, 111-121.	3.8	5
609	Generation of NK cells with chimeric-switch receptors to overcome PD1-mediated inhibition in cancer immunotherapy. Cancer Immunology, Immunotherapy, 2023, 72, 1153-1167.	2.0	4
613	Gene modified NK cell line as a powerful tool for evaluation of cloned TCRs for TCR-T cell therapy. Cellular Immunology, 2023, 383, 104656.	1.4	1
614	Designing Cancer Immunotherapies That Engage T Cells and NK Cells. Annual Review of Immunology, 2023, 41, 17-38.	9.5	30
615	Detailed phenotypic and functional characterization of CMV-associated adaptive NK cells in rhesus macaques. Frontiers in Immunology, 0, 13, .	2.2	2
616	Disruption of the NKG2A:HLA-E Immune Checkpoint Axis to Enhance NK Cell Activation against Cancer. Vaccines, 2022, 10, 1993.	2.1	8
617	Aberrant metabolic processes promote the immunosuppressive microenvironment in multiple myeloma. Frontiers in Immunology, 0, 13, .	2.2	11
618	Allogeneic natural killer cell therapy. Blood, 2023, 141, 856-868.	0.6	33
619	Modern Advances in CARs Therapy and Creating a New Approach to Future Treatment. International Journal of Molecular Sciences, 2022, 23, 15006.	1.8	4

#	Article	IF	CITATIONS
620	Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Frontiers in Immunology, 0, 13, .	2.2	8
621	The Latest Breakthroughs in Immunotherapy for Acute Myeloid Leukemia, with a Special Focus on NKG2D Ligands. International Journal of Molecular Sciences, 2022, 23, 15907.	1.8	1
622	Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncolmmunology, 2023, 12, .	2.1	7
623	EGFR is a master switch between immunosuppressive and immunoactive tumor microenvironment in inflammatory breast cancer. Science Advances, 2022, 8, .	4.7	14
624	Monalizumab efficacy correlates with HLA-E surface expression and NK cell activity in head and neck squamous carcinoma cell lines. Journal of Cancer Research and Clinical Oncology, 2023, 149, 5705-5715.	1.2	1
625	Chasing Uterine Cancer with NK Cell-Based Immunotherapies. Future Pharmacology, 2022, 2, 642-659.	0.6	3
626	Prospects for NK-based immunotherapy of chronic HBV infection. Frontiers in Immunology, 0, 13, .	2.2	1
627	Releasing the restraints of Vγ9VÎ′2 T-cells in cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	1
628	Contribution of natural killer cells in innate immunity against colorectal cancer. Frontiers in Oncology, 0, 12, .	1.3	5
629	Tumor-Infiltrating T Cells in EBV-Associated Gastric Carcinomas Exhibit High Levels of Multiple Markers of Activation, Effector Gene Expression, and Exhaustion. Viruses, 2023, 15, 176.	1.5	4
630	Reactivation of natural killer cells with monoclonal antibodies in the microenvironment of malignant neoplasms. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	1
631	Mapping the interplay between NK cells and HIV: therapeutic implications. Journal of Leukocyte Biology, 2023, 113, 109-138.	1.5	1
632	Vascular injury is associated with repetitive head impacts and tau pathology in chronic traumatic encephalopathy. Journal of Neuropathology and Experimental Neurology, 2023, , .	0.9	7
633	The imbalance betweenÂNKC2A and NKG2D expression is involved in NK cell immunosuppression and tumor progression of patients with hepatitis B virusâ€related hepatocellular carcinoma. Hepatology Research, 2023, 53, 417-431.	1.8	3
634	Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver?. Cells, 2023, 12, 132.	1.8	5
635	Insights into the tumor microenvironment of B cell lymphoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	8
636	Targeting immune checkpoints: how to use natural killer cells for fighting against solid tumors. Cancer Communications, 2023, 43, 177-213.	3.7	8
637	Natural Killer Cell-Based Cancer Immunotherapy: From Bench to Bedside. , 0, , .		0

~			<u>_</u>
CIT	ΑΤΙ	ON I	REPORT
\sim			

#	Article	IF	CITATIONS
638	Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technology in Cancer Research and Treatment, 2023, 22, 153303382211505.	0.8	7
639	Multifaceted nature of natural killer cells: Potential mode of interaction and shaping of stem cells. , 2023, , 3-25.		1
640	Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	4
641	Natural killer cells in the treatment of glioblastoma: Diverse antitumor functions and potential clinical applications. , 2023, , 335-367.		1
642	Reversing the NK inhibitory tumor microenvironment by targeting suppressive immune effectors. , 2023, , 27-63.		1
643	Natural killer cells as immunotherapeutic effectors for solid tumors. , 2023, , 65-81.		0
644	Antitumor Immunity Exerted by Natural Killer and Natural Killer T Cells in the Liver. Journal of Clinical Medicine, 2023, 12, 866.	1.0	2
645	Combining radiotherapy and NK cell-based therapies: The time has come. International Review of Cell and Molecular Biology, 2023, , .	1.6	1
646	HLA-E*01:01Â+ÂHLA-E*01:01 genotype confers less susceptibility to COVID-19, while HLA-E*01:03Â+ÂHLA-E*01:0 genotype is associated with more severe disease. Human Immunology, 2023, 84, 263-271.)3 1.2	1
647	Immunotherapy-based combinations in metastatic NSCLC. Cancer Treatment Reviews, 2023, 116, 102545.	3.4	6
648	Natural Killer Cell-Based Immunotherapy against Glioblastoma. International Journal of Molecular Sciences, 2023, 24, 2111.	1.8	4
649	Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. Biology, 2023, 12, 218.	1.3	27
650	A vector-encoded bispecific killer engager to harness virus-activated NK cells as anti-tumor effectors. Cell Death and Disease, 2023, 14, .	2.7	3
651	Five years after PACIFIC: update on multimodal treatment efficacy based on real-world reports. Expert Opinion on Investigational Drugs, 2023, 32, 187-200.	1.9	1
652	NKG2A blocks the anti-metastatic functions of natural killer cells. Cancer Cell, 2023, 41, 232-234.	7.7	5
653	Graphdiyne Oxide-Mediated Photodynamic Therapy Boosts Enhancive T-Cell Immune Responses by Increasing Cellular Stiffness. International Journal of Nanomedicine, 0, Volume 18, 797-812.	3.3	4
654	Advances in NK cell therapy for brain tumors. Npj Precision Oncology, 2023, 7, .	2.3	8
655	OX40 agonism enhances PD-L1 checkpoint blockade by shifting the cytotoxic TÂcell differentiation spectrum. Cell Reports Medicine, 2023, 4, 100939.	3.3	6

#	Article	IF	CITATIONS
656	NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers, 2023, 15, 1264.	1.7	3
657	NK cells are never alone: crosstalk and communication in tumour microenvironments. Molecular Cancer, 2023, 22, .	7.9	19
658	Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	81
659	Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Molecular Cancer, 2023, 22, .	7.9	22
660	Killer to cure: Expression and production costs calculation of tobacco plantâ€made cancerâ€immune checkpoint inhibitors. Plant Biotechnology Journal, 2023, 21, 1254-1269.	4.1	4
661	Increased NKG2A+CD8+ T-cell exhaustion in patients with adenomyosis. Mucosal Immunology, 2023, 16, 121-134.	2.7	1
663	Population Pharmacokinetics of Monalizumab in Patients With Advanced Solid Tumors. Journal of Clinical Pharmacology, 0, , .	1.0	0
664	Human CD8 ⁺ T-Cell Populations That Express Natural Killer Receptors. Immune Network, 2023, 23, .	1.6	10
665	Diversity of immune checkpoints in cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	11
666	A knowledge empowered explainable gene ontology fingerprint approach to improve gene functional explication and prediction. IScience, 2023, 26, 106356.	1.9	2
667	Delivering mRNA to a human NK cell line, NK-92 cells, by lipid nanoparticles. International Journal of Pharmaceutics, 2023, 636, 122810.	2.6	2
668	The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer—Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers, 2023, 15, 1642.	1.7	4
669	Novel Arginase Inhibitor, AZD0011, Demonstrates Immune Cell Stimulation and Antitumor Efficacy with Diverse Combination Partners. Molecular Cancer Therapeutics, 2023, 22, 630-645.	1.9	1
670	A Nanotherapeutic Strategy to Reverse NK Cell Exhaustion. Advanced Materials, 2023, 35, .	11.1	7
671	Immune checkpoint inhibitors in metastatic NSCLC: challenges and future directions (CME article). International Journal of Cancer Care and Delivery, 2023, 3, .	0.0	0
672	An updated review of the immunological mechanisms of keloid scars. Frontiers in Immunology, 0, 14, .	2.2	3
673	Tumors evade immune cytotoxicity by altering the surface topology of NK cells. Nature Immunology, 2023, 24, 802-813.	7.0	17
674	Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers, 2023, 15, 1987.	1.7	18

#	Article	IF	CITATIONS
675	Assessing the Impact of Persistent HIV Infection on Innate Lymphoid Cells Using InÂVitro Models. ImmunoHorizons, 2023, 7, 243-255.	0.8	0
676	Optimizing Drug Therapies in the Maintenance Setting After Radiochemotherapy in Non-small Cell Lung Cancer. Medical Radiology, 2023, , .	0.0	0
677	Preventing the tumor metastasis by blocking the immune checkpoint HLA-E:CD94-NKG2A of circulating tumor cells. Chinese Science Bulletin, 2023, , .	0.4	0
678	COVID-19 immunotherapy: a mathematical model. Mathematical Medicine and Biology, 2023, 40, 199-221.	0.8	1
679	Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Reports, 2023, 6, .	0.6	4
680	The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers, 2023, 15, 2323.	1.7	14
681	Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes?. Nature Reviews Endocrinology, 2023, 19, 425-434.	4.3	10
682	Innate lymphoid cells and innate-like T cells in cancer— at the crossroads of innate and adaptive immunity. Nature Reviews Cancer, 2023, 23, 351-371.	12.8	15
730	Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clinical and Experimental Medicine, 2023, 23, 4297-4322.	1.9	2
738	Systemic Oncosphere: Host Innate Immune System. , 2023, , 419-442.		0
744	Current status and frontier tracking of clinical trials on Metformin for cancer treatment. Journal of Cancer Research and Clinical Oncology, 2023, 149, 16931-16946.	1.2	1
753	Unleashing the Potential of Natural Killer Cells in Immunotherapy for Glioblastoma and Brain Tumors. , 2023, , .		0