Suppressing defects through the synergistic effect of a highly efficient and stable perovskite solar cells

Energy and Environmental Science 11, 3480-3490 DOI: 10.1039/c8ee02252f

Citation Report

#	Article	IF	CITATIONS
1	Photovoltaic Performance Improvement in Vacuum-Assisted Meniscus Printed Triple-Cation Mixed-Halide Perovskite Films by Surfactant Engineering. ACS Applied Energy Materials, 2019, 2, 6209-6217.	2.5	11
2	Importance of Functional Groups in Cross-Linking Methoxysilane Additives for High-Efficiency and Stable Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2192-2200.	8.8	157
3	Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 30911-30918.	4.0	44
4	Rational Design of Dopantâ€Free Coplanar Dâ€Ï€â€D Holeâ€Transporting Materials for Highâ€Performance Perovskite Solar Cells with Fill Factor Exceeding 80%. Advanced Energy Materials, 2019, 9, 1901268.	10.2	77
5	A dithieno[3,2-b:2′,3′-d]pyrrole-cored four-arm hole transporting material for over 19% efficiency dopant-free perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 9455-9459.	2.7	23
6	Lead halide perovskites for photocatalytic organic synthesis. Nature Communications, 2019, 10, 2843.	5.8	263
7	Planar starburst hole-transporting materials for highly efficient perovskite solar cells. Nano Energy, 2019, 63, 103865.	8.2	34
9	Mechanism of Pbl ₂ in Situ Passivated Perovskite Films for Enhancing the Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 44101-44108.	4.0	100
10	High-Efficiency and Stable Perovskite Solar Cells Prepared Using Chlorobenzene/Acetonitrile Antisolvent. ACS Applied Materials & Interfaces, 2019, 11, 34989-34996.	4.0	38
11	Poly(vinylpyrrolidone)-doped SnO ₂ as an electron transport layer for perovskite solar cells with improved performance. Journal of Materials Chemistry C, 2019, 7, 12204-12210.	2.7	28
12	Polyethyleneimine-functionalized carbon nanotubes as an interlayer to bridge perovskite/carbon for all inorganic carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22005-22011.	5.2	47
13	Surface Defect Dynamics in Organic–Inorganic Hybrid Perovskites: From Mechanism to Interfacial Properties. ACS Nano, 2019, 13, 12127-12136.	7.3	56
14	Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1509-1518.	5.2	25
15	Capillary-written single-crystalline all-inorganic perovskite microribbon arrays for highly-sensitive and thermal-stable photodetectors. Nanoscale, 2019, 11, 2453-2459.	2.8	19
16	Enhancing electron transport <i>via</i> graphene quantum dot/SnO ₂ composites for efficient and durable flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1878-1888.	5.2	67
17	Amphiphilic Fullerenes Employed to Improve the Quality of Perovskite Films and the Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 24782-24788.	4.0	55
18	Enhanced Charge Transport by Incorporating Formamidinium and Cesium Cations into Twoâ€Dimensional Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 11737-11741.	7.2	67
19	Enhanced Charge Transport by Incorporating Formamidinium and Cesium Cations into Twoâ€Dimensional Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 11863-11867.	1.6	22

#	Article	IF	CITATIONS
20	Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopantâ€Free Holeâ€Transporting Material of Planar Perovskite Solar Cell with Preferential Faceâ€on Orientation. Solar Rrl, 2019, 3, 1900182.	3.1	21
21	Molecular design of D-ï€-D-typed hole-transporting materials for perovskite solar cells based on the ï€-conjugated cores. Synthetic Metals, 2019, 254, 34-41.	2.1	18
22	Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability. ACS Applied Materials & Interfaces, 2019, 11, 22603-22611.	4.0	40
23	Impact of 9â€(4â€methoxyphenyl) Carbazole and Benzodithiophene Cores on Performance and Stability for Perovskite Solar Cells Based on Dopantâ€Free Holeâ€Transporting Materials. Solar Rrl, 2019, 3, 1900202.	3.1	28
24	Dopantâ€Free Holeâ€Transporting Layer Based on Isomerâ€Pure Tetraâ€Butylâ€Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900119.	3.1	12
25	A low-cost thiophene-based hole transport material for efficient and stable perovskite solar cells. Organic Electronics, 2019, 71, 194-198.	1.4	10
26	High performance and stable perovskite solar cells using vanadic oxide as a dopant for spiro-OMeTAD. Journal of Materials Chemistry A, 2019, 7, 13256-13264.	5.2	81
27	Cost-effective dopant-free star-shaped oligo-aryl amines for high performance perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14209-14221.	5.2	37
28	Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of CuSCN and carbon nanotubes. Journal of Materials Chemistry A, 2019, 7, 12236-12243.	5.2	91
29	Efficient Methylamine-Containing Antisolvent Strategy to Fabricate High-Efficiency and Stable FA _{0.85} Cs _{0.15} Pb(Br _{0.15} I _{2.85}) Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 18415-18422.	4.0	30
30	Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability. Joule, 2019, 3, 1452-1463.	11.7	120
31	Conjugated Polymer–Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1808855.	7.8	133
32	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society, 2019, 141, 5972-5979.	6.6	274
33	Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss. Journal of Materials Chemistry A, 2019, 7, 9025-9033.	5.2	71
34	Open Atmosphere-Processed Stable Perovskite Solar Cells Using Molecular Engineered, Dopant-Free, Highly Hydrophobic Polymeric Hole-Transporting Materials: Influence of Thiophene and Alkyl Chain on Power Conversion Efficiency. Journal of Physical Chemistry C, 2019, 123, 8560-8568.	1.5	18
35	Solutionâ€Processed 2D Nb ₂ O ₅ (001) Nanosheets for Inverted CsPbl ₂ Br Perovskite Solar Cells: Interfacial and Diffusion Engineering. Solar Rrl, 2019, 3, 1900091.	3.1	42
36	Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers. Solar Rrl, 2019, 3, 1900078.	3.1	40
37	Improving Charge Transport via Intermediateâ€Controlled Crystal Growth in 2D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1901652.	7.8	103

#	Article	IF	CITATIONS
38	Stability improvement under high efficiency—next stage development of perovskite solar cells. Science China Chemistry, 2019, 62, 684-707.	4.2	50
39	Kelvin probe force microscopy for perovskite solar cells. Science China Materials, 2019, 62, 776-789.	3.5	93
40	Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4977-4987.	5.2	143
41	Understanding Measurement Artifacts Causing Inherent Cation Gradients in Depth Profiles of Perovskite Photovoltaics with TOF-SIMS. , 2019, , .		2
42	Alternative electrodes for HTMs and noble-metal-free perovskite solar cells: 2D MXenes electrodes. RSC Advances, 2019, 9, 34152-34157.	1.7	39
43	Enhanced perovskite crystallization by the polyvinylpyrrolidone additive for high efficiency solar cells. Sustainable Energy and Fuels, 2019, 3, 3448-3454.	2.5	12
44	Lead-free formamidinium bismuth perovskites (FA)3Bi2I9 with low bandgap for potential photovoltaic application. Solar Energy, 2019, 177, 501-507.	2.9	36
45	Progress of Surface Science Studies on ABX ₃ â€Based Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902726.	10.2	87
46	A Review on Reducing Grain Boundaries and Morphological Improvement of Perovskite Solar Cells from Methodology and Materialâ€Based Perspectives. Small Methods, 2020, 4, 1900569.	4.6	56
47	Impaired Fracture Healing in Sarcoâ€Osteoporotic Mice Can Be Rescued by Vibration Treatment Through Myostatin Suppression. Journal of Orthopaedic Research, 2020, 38, 277-287.	1.2	16
48	Fluorinated fulleropyrrolidine as universal electron transport material for organic-inorganic and all-inorganic perovskite solar cells. Organic Electronics, 2020, 77, 105492.	1.4	7
49	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	8.2	81
50	Verringerung schÃ d licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€Solarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	1.6	16
51	Influence of Lewis base HMPA on the properties of efficient planar MAPbI3 solar cells fabricated by one-step process assisted by Lewis acid-base adduct approach. Chemical Engineering Journal, 2020, 380, 122436.	6.6	24
52	Progress in Multifunctional Molecules for Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900248.	3.1	13
53	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	7.2	334
54	Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902579.	10.2	477
55	Acetate-Based Crystallization Kinetics Modulation of CsPbI ₂ Br for Improved Photovoltaic Performance. ACS Applied Energy Materials, 2020, 3, 658-665.	2.5	21

#	Article	IF	CITATIONS
56	Photovoltaic Effect Related to Methylammonium Cation Orientation and Carrier Transport Properties in High-Performance Perovskite Solar Cells. ACS Applied Materials & (Interfaces, 2020, 12, 3563-3571).	4.0	9
57	Probing impacts of π-conjugation and multiarm on the performance of two-dimensionally expanded small molecule hole-transporting materials: A theoretical investigation. Synthetic Metals, 2020, 259, 116219.	2.1	13
58	How Interplay between Photo and Thermal Activation Dictates Halide Ion Segregation in Mixed Halide Perovskites. ACS Energy Letters, 2020, 5, 56-63.	8.8	123
59	Efficient Bifacial Passivation with Crosslinked Thioctic Acid for Highâ€Performance Methylammonium Lead Iodide Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905661.	11.1	127
60	Individual Electron and Hole Mobilities in Lead-Halide Perovskites Revealed by Noncontact Methods. ACS Energy Letters, 2020, 5, 47-55.	8.8	37
61	Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer. Organic Electronics, 2020, 78, 105573.	1.4	13
62	Additives in metal halide perovskite films and their applications in solar cells. Journal of Energy Chemistry, 2020, 46, 215-228.	7.1	64
63	Defect passivation through electrostatic interaction for high performance flexible perovskite solar cells. Journal of Energy Chemistry, 2020, 46, 173-177.	7.1	45
64	Hole transport layers based on metal Schiff base complexes in perovskite solar cells. Synthetic Metals, 2020, 259, 116248.	2.1	9
65	Radical Molecular Modulator for High-Performance Perovskite Solar Cells. Frontiers in Chemistry, 2020, 8, 825.	1.8	9
66	Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5068-5079.	15.6	121
67	Molecularly engineered thienyl-triphenylamine substituted zinc phthalocyanine as dopant free hole transporting materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 6188-6195.	2.5	12
68	Suppressing Defectsâ€Induced Nonradiative Recombination for Efficient Perovskite Solar Cells through Green Antisolvent Engineering. Advanced Materials, 2020, 32, e2003965.	11.1	123
69	Graded heterojunction of perovskite/dopant-free polymeric hole-transport layer for efficient and stable metal halide perovskite devices. Nano Energy, 2020, 78, 105159.	8.2	36
70	Efficient hole transport material formed by atmospheric pressure plasma functionalization of Spiro-OMeTAD. Materials Today Chemistry, 2020, 17, 100321.	1.7	6
71	Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2742-2786.	8.8	307
72	Defects and Their Passivation in Hybrid Halide Perovskites toward Solar Cell Applications. Solar Rrl, 2020, 4, 2000505.	3.1	47
73	Interface engineering for gain perovskite photodetectors with extremely high external quantum efficiency. RSC Advances, 2020, 10, 32976-32983.	1.7	9

#	Article	IF	Citations
74	Passivation of defects in perovskite solar cell: From a chemistry point of view. Nano Energy, 2020, 77, 105237.	8.2	92
75	Interface passivation strategy improves the efficiency and stability of organic–inorganic hybrid metal halide perovskite solar cells. Journal of Materials Research, 2020, 35, 2166-2189.	1.2	4
76	Synergistic Effect of Additive and Solvent Vapor Annealing on the Enhancement of MAPbI ₃ Perovskite Solar Cells Fabricated in Ambient Air. ACS Applied Materials & Interfaces, 2020, 12, 46837-46845.	4.0	23
77	Enhanced Device Performances of MAFACsPb(I _{<i>x</i>} Br _{1–<i>x</i>}) Perovskite Solar Cells with Dual-Functional 2-Chloroethyl Acrylate Additives. ACS Applied Materials & Interfaces, 2020, 12, 46846-46853.	4.0	17
78	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	15.6	235
79	Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45045-45055.	4.0	24
80	Perovskite quantum dot solar cells: Mapping interfacial energetics for improving charge separation. Nano Energy, 2020, 78, 105319.	8.2	31
81	Crown Ether Modulation Enables over 23% Efficient Formamidinium-Based Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 19980-19991.	6.6	145
82	Efficient Trap Passivation of MAPbI ₃ via Multifunctional Anchoring for Highâ€Performance and Stable Perovskite Solar Cells. Advanced Sustainable Systems, 2020, 4, 2000078.	2.7	42
83	Comparison of Physical Isolation on Large Active Area Perovskite Solar Cells. Chemical Research in Chinese Universities, 2020, 36, 1279-1283.	1.3	4
84	Progress in Materials Development for the Rapid Efficiency Advancement of Perovskite Solar Cells. Small, 2020, 16, e1907531.	5.2	23
85	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
86	Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 12201-12225.	5.2	149
87	Synergistic morphology control and non-radiative defect passivation using a crown ether for efficient perovskite light-emitting devices. Journal of Materials Chemistry C, 2020, 8, 9986-9992.	2.7	9
88	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	6.4	35
89	Micro―and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. Advanced Materials, 2020, 32, e2000597.	11.1	62
90	Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells. Coordination Chemistry Reviews, 2020, 420, 213408.	9.5	51
91	Phenothiazine-Based Hole Transport Materials for Perovskite Solar Cells. ACS Omega, 2020, 5, 5608-5619.	1.6	36

#	Article	IF	CITATIONS
92	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2000082.	3.1	79
93	Multi-component engineering to enable long-term operational stability of perovskite solar cells. JPhys Energy, 2020, 2, 024008.	2.3	13
94	Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells. Nano Energy, 2020, 72, 104673.	8.2	78
95	Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells. Journal of Materials Science and Technology, 2020, 59, 195-202.	5.6	28
96	Comparison of interfacial bridging carbon materials for effective carbon-based perovskite solar cells. Journal of Colloid and Interface Science, 2020, 579, 425-430.	5.0	13
97	Additive-free, Cost-Effective Hole-Transporting Materials for Perovskite Solar Cells Based on Vinyl Triarylamines. ACS Applied Materials & Interfaces, 2020, 12, 32994-33003.	4.0	17
98	Passivation effect of halogenated benzylammonium as a second spacer cation for improved photovoltaic performance of quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5900-5906.	5.2	26
99	Intrinsic and environmental stability issues of perovskite photovoltaics. Progress in Energy, 2020, 2, 022002.	4.6	33
100	Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science, 2020, 13, 1154-1186.	15.6	420
101	Multifunctional Phosphorusâ€Containing Lewis Acid and Base Passivation Enabling Efficient and Moistureâ€Stable Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910710.	7.8	143
102	Impact of peripheral groups on novel asymmetric phthalocyanine-based hole-transporting materials for perovskite solar cells. Dyes and Pigments, 2020, 177, 108301.	2.0	8
103	Semi-transparent perovskite solar cells with a cross-linked hole transport layer. Nano Energy, 2020, 71, 104635.	8.2	49
104	Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factors of over 82%. Journal of Materials Chemistry C, 2020, 8, 5467-5475.	2.7	25
105	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials, 2020, 10, 1904054.	10.2	256
106	Triphenylamine-based hole transporting materials with thiophene-derived bridges for perovskite solar cells. Synthetic Metals, 2020, 261, 116323.	2.1	10
107	Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10588-10596.	4.0	27
108	Vapor-Phase Formation of a Hole-Transporting Thiophene Polymer Layer for Evaporated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 6496-6502.	4.0	12
109	Lead Acetate Assisted Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 7186-7197.	4.0	20

#	Article	IF	CITATIONS
110	Secondary lateral growth of MAPbI ₃ grains for the fabrication of efficient perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 3217-3225.	2.7	24
111	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
112	Synergistic effect of additives on 2D perovskite film towards efficient and stable solar cell. Chemical Engineering Journal, 2020, 389, 124266.	6.6	50
113	Emerging Conductive Atomic Force Microscopy for Metal Halide Perovskite Materials and Solar Cells. Advanced Energy Materials, 2020, 10, 1903922.	10.2	63
114	Recent progress in morphology optimization in perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 21356-21386.	5.2	159
115	Role of PCBM in the Suppression of Hysteresis in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908920.	7.8	110
116	Carbazole-Based Hole-Transport Materials for High-Efficiency and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 4492-4498.	2.5	47
117	Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 2020, 74, 104846.	8.2	54
118	Phosphorous tetrabenzocorrolazine from its metal-free phthalocyanine precursor: Its facile synthesis, high fluorescence emission, efficient singlet oxygen formation, and promising hole transporting material. Dyes and Pigments, 2020, 179, 108421.	2.0	7
119	Amphoteric imidazole doping induced large-grained perovskite with reduced defect density for high performance inverted solar cells. Solar Energy Materials and Solar Cells, 2020, 212, 110553.	3.0	25
120	Modulating MAPbI3 perovskite solar cells by amide molecules: Crystallographic regulation and surface passivation. Journal of Energy Chemistry, 2021, 56, 179-185.	7.1	31
121	Hot Debate on Perovskite Solar Cells: Stability, Toxicity, High-Efficiency and Low Cost. Journal of Energy Chemistry, 2021, 53, 407-411.	7.1	9
122	Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures, 2021, 2, 2000050.	6.9	43
123	Tailoring multifunctional passivation molecules with halogen functional groups for efficient and stable perovskite photovoltaics. Chemical Engineering Journal, 2021, 407, 127204.	6.6	36
124	Donor–π–Acceptor Type Porphyrin Derivatives Assisted Defect Passivation for Efficient Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2007762.	7.8	106
125	Reducing Openâ€Circuit Voltage Deficit in Perovskite Solar Cells via Surface Passivation with Phenylhydroxylammonium Halide Salts. Small Methods, 2021, 5, e2000441.	4.6	15
126	Influence of Nanostructures in Perovskite Solar Cells. , 2022, , 646-660.		1
127	Rapid hybrid perovskite film crystallization from solution. Chemical Society Reviews, 2021, 50, 7108-7131.	18.7	77

#	Article	IF	CITATIONS
128	Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 028402.	0.2	1
129	Manipulation of Perovskite Crystallization Kinetics via Lewis Base Additives. Advanced Functional Materials, 2021, 31, 2009425.	7.8	61
130	Advances in SnO ₂ -based perovskite solar cells: from preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9, 19554-19588.	5.2	88
131	Zwitterions: promising interfacial/doping materials for organic/perovskite solar cells. New Journal of Chemistry, 2021, 45, 15118-15130.	1.4	15
132	Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today, 2021, 49, 123-144.	8.3	57
133	The effect of dimensionality on the charge carrier mobility of halide perovskites. Journal of Materials Chemistry A, 2021, 9, 21551-21575.	5.2	49
134	Grain Boundary Defect Passivation in Quadruple Cation Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000740.	3.1	19
135	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
136	Controlled Crystallization of CsRbâ€Based Multiâ€Cation Perovskite Using a Blended Sequential Process for Highâ€Performance Solar Cells. Solar Rrl, 2021, 5, 2100050.	3.1	10
137	Photostable and Uniform CH3NH3PbI3 Perovskite Film Prepared via Stoichiometric Modification and Solvent Engineering. Nanomaterials, 2021, 11, 405.	1.9	5
138	Controllable Transient Photocurrent in Photodetectors Based on Perovskite Nanocrystals via Doping and Interfacial Engineering. Journal of Physical Chemistry C, 2021, 125, 5475-5484.	1.5	15
139	Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. CheM, 2021, 7, 774-785.	5.8	37
140	Duallyâ€Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Angewandte Chemie, 2021, 133, 8384-8393.	1.6	66
141	Duallyâ€Passivated Perovskite Solar Cells with Reduced Voltage Loss and Increased Super Oxide Resistance. Angewandte Chemie - International Edition, 2021, 60, 8303-8312.	7.2	90
142	Solution-Grown Formamidinium Hybrid Perovskite (FAPbBr ₃) Single Crystals for α-Particle and γ-Ray Detection at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13, 15383-15390.	4.0	41
143	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495.	5.2	61
144	cPCN-Regulated SnO2 Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%. Nano-Micro Letters, 2021, 13, 101.	14.4	31
145	Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 4882-4901.	2.1	21

#	Article	IF	CITATIONS
146	An Effective Strategy of Combining Surface Passivation and Secondary Grain Growth for Highly Efficient and Stable Perovskite Solar Cells. Small, 2021, 17, e2100678.	5.2	23
147	Device Architecture Engineering: Progress toward Next Generation Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2103121.	7.8	41
148	Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566-1586.	11.7	119
149	Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nature Communications, 2021, 12, 3383.	5.8	72
150	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	5.8	59
151	Long-term stable and hysteresis-free planar perovskite solar cells using green antisolvent strategy. Journal of Materials Science, 2021, 56, 15205-15214.	1.7	44
152	Marked Passivation Effect of Naphthaleneâ€1,8â€Dicarboximides in Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2008405.	11.1	116
153	Perovskite Solar Cells with Polyaniline Hole Transport Layers Surpassing a 20% Power Conversion Efficiency. Chemistry of Materials, 2021, 33, 4679-4687.	3.2	34
154	Antisolvent-assisted one-step solution synthesis of defect-less 1D MAPbI3 nanowire networks with improved charge transport dynamics. Journal of Materials Research and Technology, 2021, 13, 162-172.	2.6	4
155	Selenium-containing Dâ^'Aâ^'D-type dopant-free hole transport materials for perovskite solar cells. Dyes and Pigments, 2021, 191, 109339.	2.0	17
156	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	2.0	75
157	Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692.	3.6	14
158	Fluorinated Black Phosphorene Nanosheets with Robust Ambient Stability for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2106779.	7.8	20
159	New Carbon Nitride C ₃ N ₃ Additive for Improving Cationic Defects of Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	12
160	Additive engineering for stable halide perovskite solar cells. Journal of Energy Chemistry, 2021, 60, 599-634.	7.1	59
161	Atomic-scale understanding on the physics and control of intrinsic point defects in lead halide perovskites. Applied Physics Reviews, 2021, 8, .	5.5	36
162	Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem, 2021, 14, 4354-4376.	3.6	43
163	Selfâ€Polymerization of Monomer and Induced Interactions with Perovskite for Highly Performed and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2105290.	7.8	14

#	Article	IF	CITATIONS
164	Chromium trioxide modified spiro-OMeTAD for highly efficient and stable planar perovskite solar cells. Journal of Energy Chemistry, 2021, 61, 386-394.	7.1	17
165	Advances in surface passivation of perovskites using organic halide salts for efficient and stable solar cells. Surfaces and Interfaces, 2021, 26, 101420.	1.5	10
166	Novel Intense-pulsed-light synthesis of amorphous SnO2 electron-selective layers for efficient planar MAPbI3 perovskite solar cells. Journal of Materials Science and Technology, 2021, 92, 171-177.	5.6	7
167	C N-based carbazole-arylamine hole transporting materials for perovskite solar cells: Substitution position matters. Journal of Energy Chemistry, 2021, 62, 563-571.	7.1	25
168	Lewis bases: promising additives for enhanced performance of perovskite solar cells. Materials Today Energy, 2021, 22, 100847.	2.5	24
169	Simultaneous bulk defect passivation and enhanced electron extraction in inverted perovskite solar cells via nonfullerene Y6 anti-solvent assisted gradient heterostructure. Journal of Power Sources, 2021, 514, 230534.	4.0	4
170	A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology. Journal of Materials Chemistry A, 2021, 9, 26650-26668.	5.2	6
171	A penetrated 2D/3D hybrid heterojunction for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 23019-23027.	5.2	23
172	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 5552-5562.	15.6	69
173	Controllable Two-dimensional Perovskite Crystallization via Water Additive for High-performance Solar Cells. Nanoscale Research Letters, 2020, 15, 108.	3.1	9
174	Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chemical Society Reviews, 2021, 50, 13090-13128.	18.7	91
175	Peculiarities of perovskite photovoltaics degradation and how to account for them in stability studies. , 2020, , .		2
176	The Promise of Perovskite Solar Cells. , 2022, , 388-404.		3
178	Using commercially available cost-effective Zn(II) phthalocyanine as hole-transporting material for inverted type perovskite solar cells and investigation of dopant effect. Synthetic Metals, 2021, 282, 116961.	2.1	1
179	Multifunctional anionic metal-organic frameworks enhancing stability of perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133587.	6.6	11
180	Radiation-processed perovskite solar cells with fullerene-enhanced performance and stability. Cell Reports Physical Science, 2021, 2, 100646.	2.8	10
181	Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: a brief review. Materials Today Sustainability, 2022, 17, 100090.	1.9	20
182	Unveiling the effect of amino acids on the crystallization pathways of methylammonium lead iodide perovskites. Journal of Energy Chemistry, 2022, 69, 253-260.	7.1	10

#	Article	IF	CITATIONS
183	A review on two-dimensional (2D) perovskite material-based solar cells to enhance the power conversion efficiency. Dalton Transactions, 2022, 51, 797-816.	1.6	20
184	In Situ Synthesized 2D Covalent Organic Framework Nanosheets Induce Growth of Highâ€Quality Perovskite Film for Efficient and Stable Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	29
185	Hot-Air Treatment-Regulated Diffusion of LiTFSI to Accelerate the Aging-Induced Efficiency Rising of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 4378-4388.	4.0	9
186	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
187	Symmetrical Acceptor–Donor–Acceptor Molecule as a Versatile Defect Passivation Agent toward Efficient FA _{0.85} MA _{0.15} PbI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	47
188	Selection of the ultimate perovskite solar cell materials and fabrication processes towards its industrialization: A review. Energy Science and Engineering, 2022, 10, 1478-1525.	1.9	9
189	Exploring the Effects of Ionic Defects on the Stability of CsPbI ₃ with a Deep Learning Potential. ChemPhysChem, 2022, 23, e202100841.	1.0	8
190	Multifunctional Two-Dimensional Polymers for Perovskite Solar Cells with Efficiency Exceeding 24%. ACS Energy Letters, 2022, 7, 1128-1136.	8.8	60
191	Targeted Molecular Design of Functionalized Fullerenes for Highâ€Performance and Stable Perovskite Solar Cells. Small Structures, 2022, 3, .	6.9	17
192	Progress on the stability and encapsulation techniques of perovskite solar cells. Organic Electronics, 2022, 106, 106515.	1.4	22
193	Introducing Postmetalation Metal–Organic Framework to Control Perovskite Crystal Growth for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 60125-60134.	4.0	11
194	Can perovskites be efficient photocatalysts in organic transformations?. Journal of Materials Chemistry A, 2022, 10, 12317-12333.	5.2	9
196	Progress of defect and defect passivation in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 166801.	0.2	1
197	An ammonium-pseudohalide ion pair for synergistic passivating surfaces in FAPbI3 perovskite solar cells. Matter, 2022, 5, 2209-2224.	5.0	26
198	Hydrogen Bonds in Precursor Solution: The Origin of the Anomalous J–V Curves in Perovskite Solar Cells. Crystals, 2022, 12, 610.	1.0	1
199	Analytical Review of Spiroâ€OMeTAD Hole Transport Materials: Paths Toward Stable and Efficient Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	53
200	Lewis base governing superfacial proton behavior of hybrid perovskite: Basicity dependent passivation strategy. Chemical Engineering Journal, 2022, 446, 137033.	6.6	26
201	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	8.2	39

#	Article	IF	CITATIONS
202	Defect Control Based on Interfacial Passivation Via Post-Treatment of 1-Ethylpyridine Hydrobromide for Achieving Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
203	Appropriate third monovalent Aâ€site cation incorporation in formamidinium cesium lead iodide for defect passivation and efficiency improvement in perovskite solar cells. International Journal of Energy Research, 2022, 46, 15571-15588.	2.2	5
204	Mixed Solvents Assisted Postâ€Treatment Enables Highâ€Efficiency Singleâ€Junction Perovskite and 4T Perovskite/CIGS Tandem Solar Cells. Advanced Science, 2022, 9, .	5.6	10
205	Active Functional Groups and Adjacent Dual-Interaction Strategies Enable Perovskite Solar Cells to Prosper: Including Unique Morphology and Enhanced Optoelectronic Performance. ACS Sustainable Chemistry and Engineering, 2022, 10, 9946-9955.	3.2	6
206	Enhanced efficiency and stability of Dion–Jacobson quasi-two-dimensional perovskite solar cells by additive. Journal Physics D: Applied Physics, 2022, 55, 414002.	1.3	2
207	Organic Molecules in Allâ€Inorganic CsPbl _{<i>x</i>} Br _{3â^'<i>x</i>} Perovskite Solar Cells: Interface Modifiers or Precursor Additives. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
208	CsPbBr3 seeds improve crystallization and energy level alignment for highly efficient CsPbI3 perovskite solar cells. Chemical Engineering Journal, 2023, 452, 139292.	6.6	18
209	How the ionic liquid BMIMBF ₄ influences the formation and optoelectronic properties of MAPbI ₃ thin films. Journal of Materials Chemistry A, 2022, 10, 18038-18049.	5.2	4
210	Potassium Salt Coordination Induced Ion Migration Inhibition and Defect Passivation for High-Efficiency Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 8573-8579.	2.1	7
211	Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Science Advances, 2022, 8, .	4.7	34
212	Dual‣ite Synergistic Passivation for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	20
213	Surface Characterization of the Solutionâ€Processed Organic–Inorganic Hybrid Perovskite Thin Films. Small, 0, , 2204271.	5.2	1
214	Hybrid Block Copolymer/Perovskite Heterointerfaces for Efficient Solar Cells. Advanced Materials, 2023, 35, .	11.1	14
215	Defect control based on interfacial passivation via post-treatment of 1-ethylpyridine hydrobromide for achieving efficient and stable perovskite solar cells. Applied Surface Science, 2023, 608, 155042.	3.1	2
216	Carbon nanofibers fabricated via electrospinning to guide crystalline orientation for stable perovskite solar cells with efficiency over 24%. Chemical Engineering Journal, 2023, 453, 139961.	6.6	10
217	Porphyrinic Metal–Organic Framework Quantum Dots for Stable n–i–p Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	10
218	Multifunctional Ionic Liquid as an Interfacial Modifier for High-Performance and Stable NiO _{<i>x</i>} -Based Inverted Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 10597-10602.	2.1	7
220	Rationalization of passivation strategies toward high-performance perovskite solar cells. Chemical Society Reviews, 2023, 52, 163-195.	18.7	81

#	Article	IF	CITATIONS
221	Enhanced Perovskite Solar Cell Stability and Efficiency via Multiâ€Functional Quaternary Ammonium Bromide Passivation. Advanced Materials Interfaces, 2023, 10, .	1.9	8
222	Perovskite precursor concentration for enhanced recombination suppression in perovskite solar cells. , 2022, 1, 100006.		6
223	Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nature Reviews Materials, 2023, 8, 261-281.	23.3	77
224	Dual functional lead tetraacetate oxidant in Spiro-OMeTAD toward efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2023, 939, 168809.	2.8	2
225	Experimental investigation of additive free-low-cost vinyl triarylamines based hole transport material for FAPbl ₃ -based perovskite solar cells to enhance efficiency and stability. Materials Research Express, 2023, 10, 044003.	0.8	2
226	Surface Passivation of Organic-Inorganic Hybrid Perovskites with Methylhydrazine Iodide for Enhanced Photovoltaic Device Performance. Inorganics, 2023, 11, 168.	1.2	6
227	Phthalocyanine in perovskite solar cells: a review. Materials Chemistry Frontiers, 2023, 7, 1704-1736.	3.2	6
228	Concurrent Top and Buried Surface Optimization for Flexible Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 2023, 33, .	7.8	11
229	Stable Electron-Transport-Layer-Free Perovskite Solar Cells with over 22% Power Conversion Efficiency. Nano Letters, 2023, 23, 2195-2202.	4.5	9
230	Dual Functions of Defect Passivation and Hole Transport Dopant Enabled by Piperidyl Ionic Liquid for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	0
231	Dimensional Tuning of Perylene Diimideâ€Based Polymers for Perovskite Solar Cells with Over 24% Efficiency. Small, 2023, 19, .	5.2	7
232	Foldable Holeâ€Transporting Materials for Merging Electronic States between Defective and Perfect Perovskite Sites. Advanced Materials, 2023, 35, .	11.1	12