Alternative binders for sustainable electrochemical ene aqueous electrode processing and bio-derived polymers

Energy and Environmental Science 11, 3096-3127 DOI: 10.1039/c8ee00640g

Citation Report

#	Article	IF	CITATIONS
1	Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019, 25, 100852.	3.9	417
2	A Comprehensive Study of Hydrolyzed Polyacrylamide as a Binder for Silicon Anodes. ACS Applied Materials & Interfaces, 2019, 11, 44090-44100.	4.0	32
3	Biomaterials for Highâ€Energy Lithiumâ€Based Batteries: Strategies, Challenges, and Perspectives. Advanced Energy Materials, 2019, 9, 1901774.	10.2	73
4	Unraveling the role of binder concentration on the electrochemical behavior of mesocarbon microbead anode in lithium–ion batteries: understanding the formation of the solid electrolyte interphase. Journal of Solid State Electrochemistry, 2019, 23, 2771-2783.	1.2	15
5	Semianalytical study of the effect of realistic boundary conditions on diffusion induced stresses in cylindrical lithium ion electrode-binder system. International Journal of Mechanical Sciences, 2019, 163, 105141.	3.6	19
6	Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithium-ion battery electrodes. Journal of Power Sources, 2019, 440, 227111.	4.0	20
7	Water-Processable P2-Na _{0.67} Ni _{0.22} Cu _{0.11} Mn _{0.56} Ti _{0.11} O _{ Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A251-A257.}	2< ‡su b≻Ca	ath xx de
8	Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Advanced Energy Materials, 2019, 9, 1900334.	10.2	151
9	Thermomechanical Polymer Binder Reactivity with Positive Active Materials for Li Metal Polymer and Li-Ion Batteries: An XPS and XPS Imaging Study. ACS Applied Materials & Interfaces, 2019, 11, 18368-18376.	4.0	40
10	CMC-citric acid Cu(II) cross-linked binder approach to improve the electrochemical performance of Si-based electrodes. Electrochimica Acta, 2019, 304, 495-504.	2.6	24
11	Confronting the Challenges of Nextâ€Generation Silicon Anodeâ€Based Lithiumâ€Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. ChemSusChem, 2019, 12, 2515-2539.	3.6	170
12	Application of a Commercially-Available Fluorine-Free Thermoplastic Elastomer as a Binder for High-Power Li-Ion Battery Electrodes. Journal of the Electrochemical Society, 2019, 166, A1140-A1146.	1.3	5
13	Peering into Alloy Anodes for Sodiumâ€lon Batteries: Current Trends, Challenges, and Opportunities. Advanced Functional Materials, 2019, 29, 1808745.	7.8	209
14	Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chemical Engineering Journal, 2020, 381, 122622.	6.6	289
15	Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by aqueous processing for high-energy Li-Ion batteries. Energy Storage Materials, 2020, 24, 188-197.	9.5	155
16	Jeffamineâ€Based Polymers for Rechargeable Batteries. Batteries and Supercaps, 2020, 3, 30-46.	2.4	27
17	Deriving Structureâ€Performance Relations of Chemically Modified Chitosan Binders for Sustainable Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. Batteries and Supercaps, 2020, 3, 155-164.	2.4	18
18	Water-processable, sprayable LiFePO4/graphene hybrid cathodes for high-power lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2020, 84, 72-81.	2.9	22

#	Article	IF	CITATIONS
19	Roomâ€Temperature Crosslinkable Natural Polymer Binder for Highâ€Rate and Stable Silicon Anodes. Advanced Functional Materials, 2020, 30, 1908433.	7.8	95
20	Natural Polymers as Green Binders for High‣oading Supercapacitor Electrodes. ChemSusChem, 2020, 13, 763-770.	3.6	37
21	Oneâ€Pot Synthesis of a Copolymer Micelle Crosslinked Binder with Multiple Lithiumâ€Ion Diffusion Pathways for Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 819-826.	3.6	14
22	Unveiling and Amplifying the Benefits of Carbon-Coated Aluminum Current Collectors for Sustainable LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. ACS Applied Energy Materials, 2020, 3, 218-230.	2.5	25
23	Electrophoretically co-deposited Li4Ti5O12/reduced graphene oxide nanolayered composites for high-performance battery application. Energy Storage Materials, 2020, 26, 560-569.	9.5	33
24	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	4.0	401
25	Polymers for Battery Applications—Active Materials, Membranes, and Binders. Advanced Energy Materials, 2021, 11, 2001984.	10.2	75
26	The importance of design in lithium ion battery recycling – a critical review. Green Chemistry, 2020, 22, 7585-7603.	4.6	190
27	A self-healable polymer binder for Si anodes based on reversible Diels–Alder chemistry. Electrochimica Acta, 2020, 364, 137311.	2.6	19
28	Towards more environmentally and socially responsible batteries. Energy and Environmental Science, 2020, 13, 4087-4097.	15.6	74
29	Electrochemical activation and capacitance enhancement of expanded mesocarbon microbeads for high-voltage, symmetric supercapacitors. Electrochimica Acta, 2020, 359, 136941.	2.6	7
30	Towards a More Sustainable Lithium″on Battery Future: Recycling LIBs from Electric Vehicles. Batteries and Supercaps, 2020, 3, 1126-1136.	2.4	29
31	Yield Stress Enhancement of a Ternary Colloidal Suspension via the Addition of Minute Amounts of Sodium Alginate to the Interparticle Capillary Bridges. Langmuir, 2020, 36, 9424-9435.	1.6	19
32	Prompt microwave-assisted synthesis of carbon coated Si nanocomposites as anode for lithium-ion batteries. Solid State Ionics, 2020, 354, 115409.	1.3	12
34	Metal-Free Carbon-Based Supercapacitors—A Comprehensive Review. Electrochem, 2020, 1, 410-438.	1.7	18
35	Sustainable Anodes for Lithium- and Sodium-Ion Batteries Based on Coffee Ground-Derived Hard Carbon and Green Binders. Energies, 2020, 13, 6216.	1.6	27
36	Through-Space Charge Modulation Overriding Substituent Effect: Rise of the Redox Potential at 3.35 V in a Lithium-Phenolate Stereoelectronic Isomer. Chemistry of Materials, 2020, 32, 9996-10006.	3.2	39
37	A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers, 2020, 12, 2812.	2.0	33

#	Article	IF	CITATIONS
38	NCA, NCM811, and the Route to Ni-Richer Lithium-Ion Batteries. Energies, 2020, 13, 6363.	1.6	68
39	Impact of Residual Lithium on the Adoption of High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9479-9489.	3.2	81
40	Norbornene-Functionalized Plant Oils for Biobased Thermoset Films and Binders of Silicon-Graphite Composite Electrodes. ACS Omega, 2020, 5, 29678-29687.	1.6	3
41	Sulfonation of alginate grafted with polyacrylamide as a potential binder for high-capacity Si/C anodes. RSC Advances, 2020, 10, 37898-37904.	1.7	10
42	Stable performance of an all-solid-state Li metal cell coupled with a high-voltage NCA cathode and ultra-high lithium content poly(ionic liquid)s-based polymer electrolyte. Journal of Solid State Electrochemistry, 2020, 24, 2479-2485.	1.2	13
43	Anodes for Li-ion batteries prepared from microcrystalline silicon and enabled by binder's chemistry and pseudo-self-healing. Scientific Reports, 2020, 10, 13193.	1.6	25
44	SILAR deposited nickel sulphide-nickel hydroxide nanocomposite for high performance asymmetric supercapacitor. Electrochimica Acta, 2020, 356, 136844.	2.6	29
45	Sequenceâ€Defined Peptoids with OH and COOH GroupsÂAs Binders to Reduce Cracks of Si Nanoparticles of Lithiumâ€Ion Batteries. Advanced Science, 2020, 7, 2000749.	5.6	38
46	Water-stable O3-type layered Na transition metal oxides enabling environment friendly â€~aqueous processing' of electrodes with long-term electrochemical stability. Journal of Materials Chemistry A, 2020, 8, 18064-18078.	5.2	18
47	Improvement of the Battery Performance of Indigo, an Organic Electrode Material, Using PEDOT/PSS with <scp>d-</scp> Sorbitol. ACS Omega, 2020, 5, 18565-18572.	1.6	13
48	Fastâ€Charging Lithium–Sulfur Batteries Enabled via Lean Binder Content. Small, 2020, 16, e2004372.	5.2	21
49	Conducting polymer composites as water-dispersible electrode matrices for Li-Ion batteries: Synthesis and characterization. Journal of Power Sources Advances, 2020, 6, 100033.	2.6	7
50	Nitroxide Radical Polymer–Solvent Interactions and Solubility Parameter Determination. Macromolecules, 2020, 53, 7997-8008.	2.2	17
51	Surface Modification of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Particles via Li ₃ PO ₄ Coating to Enable Aqueous Electrode Processing. ChemSusChem, 2020, 13, 5962-5971.	3.6	33
52	Diffusion-Dependent Graphite Electrode for All-Solid-State Batteries with Extremely High Energy Density. ACS Energy Letters, 2020, 5, 2995-3004.	8.8	53
53	Critical barriers to the large scale commercialization of silicon-containing batteries. Nanoscale Advances, 2020, 2, 4368-4389.	2.2	18
54	Environmentally Friendly Binders for Lithium‣ulfur Batteries. ChemElectroChem, 2020, 7, 4158-4176.	1.7	23
55	Electrochemical Studies of the Nickelâ€based Hydroxide Electrode for the Oxygen Evolution Reaction and Coulombic Efficiency of the Electrode. Electroanalysis, 2020, 32, 2703-2712.	1.5	3

#	Article	IF	CITATIONS
56	Probing and Resolving the Heterogeneous Degradation of Nickelâ€Rich Layered Oxide Cathodes across Multi‣ength Scales. Small Methods, 2020, 4, 2000551.	4.6	18
57	Synthesis of Fluorine-Containing Polymers by Functionalization of <i>cis</i> -1,4-Polyisoprene with Hypervalent Iodine Compounds. Macromolecules, 2020, 53, 8020-8031.	2.2	15
58	Enabling sustainable critical materials for battery storage through efficient recycling and improved design: A perspective. MRS Energy & Sustainability, 2020, 7, 1.	1.3	21
59	Nanofibrous Conductive Binders Based on DNA-Wrapped Carbon Nanotubes for Lithium Battery Electrodes. IScience, 2020, 23, 101739.	1.9	3
60	An overview of the characteristics of advanced binders for high-performance Li–S batteries. Nano Materials Science, 2020, , .	3.9	28
61	Review—Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. Journal of the Electrochemical Society, 2020, 167, 065501.	1.3	120
62	Aqueous processing of flexible, free-standing Li4Ti5O12 electrodes for Li-ion batteries. Chemical Engineering Journal, 2020, 397, 125508.	6.6	12
63	Effect of Combined Conductive Polymer Binder on the Electrochemical Performance of Electrode Materials for Lithium-Ion Batteries. Energies, 2020, 13, 2163.	1.6	17
64	The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy and Fuels, 2020, 4, 5387-5416.	2.5	608
65	Study on Different Water-Based Binders for Li4Ti5O12 Electrodes. Molecules, 2020, 25, 2443.	1.7	16
66	Improved Adhesion of Nafionâ,,¢-Coated Separator to Water-Processable LiNi0.5Mn1.5O4 Electrodes. Batteries, 2020, 6, 28.	2.1	4
68	Mechanically Robust Tapioca Starch Composite Binder with Improved Ionic Conductivity for Sustainable Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 9857-9865.	3.2	42
69	Towards 3D-lithium ion microbatteries based on silicon/graphite blend anodes using a dispenser printing technique. RSC Advances, 2020, 10, 22440-22448.	1.7	22
70	High-Throughput Processing of Nanographite–Nanocellulose-Based Electrodes for Flexible Energy Devices. Industrial & Engineering Chemistry Research, 2020, 59, 11232-11240.	1.8	11
71	Microcannular electrode/polymer electrolyte interface for high performance supercapacitor. Electrochimica Acta, 2020, 353, 136558.	2.6	10
72	Sustainable Battery Materials from Biomass. ChemSusChem, 2020, 13, 2110-2141.	3.6	111
73	Exploiting Materials to Their Full Potential, a Li-Ion Battery Electrode Formulation Optimization Study. ACS Applied Energy Materials, 2020, 3, 2935-2948.	2.5	23
74	Natural Polymers for Green Supercapacitors. Energies, 2020, 13, 3115.	1.6	10

#	Article	IF	CITATIONS
75	Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries. Green Chemistry, 2020, 22, 4952-4961.	4.6	23
76	Direct Thermal Pyrolysis Enabling the Use of Cobalt Oxides Nanoparticles from Commercial Acetates as High-Capacity Anodes for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 13564-13571.	1.8	7
77	Electrophoretic deposition of a supercapacitor electrode of activated carbon onto an indium-tin-oxide substrate using ethyl cellulose as a binder. Journal of Materials Science and Technology, 2020, 58, 188-196.	5.6	27
78	Recent progress on biomassâ€derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat, 2020, 2, e12019.	6.8	117
79	Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 4003-4025.	3.2	40
80	Toward More Sustainable Rechargeable Aqueous Batteries Using Plasma-Treated Cellulose-Based Li-Ion Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 4728-4733.	3.2	19
81	Molecular design principles for polymeric binders in silicon anodes. Molecular Systems Design and Engineering, 2020, 5, 709-724.	1.7	29
82	Scalable Route to Electroactive and Light Active Perylene Diimide Dye Polymer Binder for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 2271-2277.	2.5	21
83	Coâ€Crosslinked Waterâ€Soluble Biopolymers as a Binder for Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Graphite Lithiumâ€Ion Full Cells. ChemSusChem, 2020, 13, 2650-2660.	3.6	26
84	Controlled synthesis of copper reinforced nanoporous silicon microsphere with boosted electrochemical performance. Journal of Power Sources, 2020, 455, 227967.	4.0	15
85	Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries, 2020, 6, 8.	2.1	73
86	Innovative Polymers for Next eneration Batteries. Macromolecular Chemistry and Physics, 2020, 221, 1900490.	1.1	39
87	A Sustainable Tamarind Kernel Powder Based Aqueous Binder for Graphite Anode in Lithiumâ€lon Batteries. ChemistrySelect, 2020, 5, 1199-1208.	0.7	5
88	Multifunctional Chitosan–rGO Network Binder for Enhancing the Cycle Stability of Li–S Batteries. Advanced Functional Materials, 2020, 30, 1907680.	7.8	55
89	Mesoporous Gd2O3/NiS2 microspheres: a novel electrode for energy storage applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 3119-3129.	1.1	11
90	Deriving Structureâ€Performance Relations of Chemically Modified Chitosan Binders for Sustainable Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. Batteries and Supercaps, 2020, 3, 129-129.	2.4	2
91	Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device. Electrochimica Acta, 2020, 338, 135872.	2.6	24
92	Saponin-containing multifunctional binder toward superior long-term cycling stability in Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 10419-10425.	5.2	20

#	Article	IF	CITATIONS
93	Micro versus Nano: Impact of Particle Size on the Flow Characteristics of Silicon Anode Slurries. Energy Technology, 2020, 8, 2000056.	1.8	22
94	LiFePO4 spray drying scale-up and carbon-cage for improved cyclability. Journal of Power Sources, 2020, 462, 228103.	4.0	19
95	Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries. Materials Today, 2020, 39, 127-136.	8.3	37
96	Scalable Synthesis of Microsized, Nanocrystalline Zn _{0.9} Fe _{0.1} O $\hat{a}\in C$ Secondary Particles and Their Use in Zn _{0.9} Csub>0.9Fe _{0.1} O $\hat{a}\in C$ /LiNi _{0.5} Mn _{1.5} O ₄ Lithium $\hat{a}\in O$	3.6	14
97	Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021, 34, 1-11.	9.5	61
98	Effects of waterâ€based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries. , 2021, 3, 473-481.		44
99	Sb-based intermetallics and nanocomposites as stable and fast Na-ion battery anodes. Chemical Engineering Journal, 2021, 409, 127380.	6.6	14
100	Strategies for Alleviating Electrode Expansion of Graphite Electrodes in Sodiumâ€Ion Batteries Followed by In Situ Electrochemical Dilatometry. Energy Technology, 2021, 9, 2000880.	1.8	17
101	Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials, 2021, 35, 353-377.	9.5	56
102	Functionalized phosphorene/polypyrrole hybrid nanomaterial by covalent bonding and its supercapacitor application. Journal of Industrial and Engineering Chemistry, 2021, 94, 122-126.	2.9	18
103	Performance and ageing behavior of water-processed LiNi0.5Mn0.3Co0.2O2/Graphite lithium-ion cells. Journal of Power Sources, 2021, 483, 229097.	4.0	11
104	Silicon-doped carbon xerogel with poly(sodium 4-styrenesulfonate) as a novel protective coating and binder. Microporous and Mesoporous Materials, 2021, 310, 110622.	2.2	0
105	Electrochemical double-layer capacitors with lithium-ion electrolyte and electrode coatings with PEDOT:PSS binder. Journal of Applied Electrochemistry, 2021, 51, 373-385.	1.5	13
106	Highly stabilized sulfur cathode with natural fenugreek gum as binder. Chemical Engineering Journal, 2021, 421, 127769.	6.6	18
107	Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. International Journal of Production Economics, 2021, 232, 107982.	5.1	84
108	Effect of conductive polypyrrole in poly(acrylonitrile-co-butyl acrylate) water–based binder on the performance of electrochemical double-layer capacitors. Journal of Solid State Electrochemistry, 2021, 25, 963-972.	1.2	7
109	Bioâ€Đerived Materials Achieving High Performance in Alkali Metal–Chalcogen Batteries. Advanced Functional Materials, 2021, 31, 2008354.	7.8	13
110	Tragacanth Gum as Green Binder for Sustainable Waterâ€Processable Electrochemical Capacitor. ChemSusChem, 2021, 14, 356-362.	3.6	18

#	Article	IF	CITATIONS
111	Challenges in Solvent-Free Methods for Manufacturing Electrodes and Electrolytes for Lithium-Based Batteries. Polymers, 2021, 13, 323.	2.0	48
112	The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 18701-18732.	5.2	47
113	Nanoparticles and nanofibres based on tree gums: Biosynthesis and applications. Comprehensive Analytical Chemistry, 2021, 94, 223-265.	0.7	6
114	Lithium ion battery recycling using high-intensity ultrasonication. Green Chemistry, 2021, 23, 4710-4715.	4.6	55
115	Poly(Ether Amide)-Derived, Nitrogen Self-Doped, and Interfused Carbon Nanofibers as Free-Standing Supercapacitor Electrode Materials. ACS Applied Energy Materials, 2021, 4, 1517-1526.	2.5	12
116	Current Collector Material Selection for Supercapacitors. Springer Series in Materials Science, 2021, , 271-311.	0.4	12
117	TEMPO-oxidized cellulose nanofibers as versatile additives for highly stable silicon anode in lithium-ion batteries. Electrochimica Acta, 2021, 369, 137708.	2.6	14
118	Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-Ion Rechargeable Batteries. ACS Applied Energy Materials, 2021, 4, 2231-2240.	2.5	14
119	Effect of Nanostructured and Open-Porous Particle Morphology on Electrode Processing and Electrochemical Performance of Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 1993-2003.	2.5	33
120	Electrochemical Parameters of LiMn2O4 and Li4Ti5O12 Electrodes with Different Types of Binders at Negative Temperatures. Russian Journal of Applied Chemistry, 2021, 94, 245-251.	0.1	0
121	Polymer Binders: Characterization and Development toward Aqueous Electrode Fabrication for Sustainability. Polymers, 2021, 13, 631.	2.0	52
122	Customizing Active Materials and Polymeric Binders: Stern Requirements to Realize Silicon-Graphite Anode Based Lithium-Ion Batteries Journal of Energy Storage, 2021, 35, 102098.	3.9	24
123	Advances of polymer binders for <scp>siliconâ€based</scp> anodes in high energy density <scp>lithiumâ€ion</scp> batteries. InformaÄnÃ-Materiály, 2021, 3, 460-501.	8.5	163
124	Improving the Dispersion Behavior of Organic Components in Water-Based Electrode Dispersions for Inkjet Printing Processes. Applied Sciences (Switzerland), 2021, 11, 2242.	1.3	11
125	Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review. Energies, 2021, 14, 1406.	1.6	55
126	Influence of electrolyte additive of trimethylsilylisocyanate on properties of electrode with nanosilicon for lithium-ion batteries. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 67-78.	0.2	1
127	Can Greener Cyrene Replace NMP for Electrode Preparation of NMC 811 Cathodes?. Journal of the Electrochemical Society, 2021, 168, 040536.	1.3	16
128	3beLiEVe: Towards Delivering the Next Generation of LMNO Li-Ion Battery Cells and Packs Fit for Electric Vehicle Applications of 2025 and Beyond. , 0, , .		2

	CITATION R	EPORT	
#	Article	IF	CITATIONS
129	Centimeter-Scale Porous Ta ₃ N ₅ Single Crystal Monolith Enhances Photoelectrochemical Performance. Journal of Physical Chemistry C, 2021, 125, 8098-8104.	1.5	4
130	Influence of Binder Crystallinity on the Performance of Si Electrodes with Poly(vinyl alcohol) Binders. ACS Applied Energy Materials, 2021, 4, 3008-3016.	2.5	30
131	Dopamine-assisted chemical vapour deposition of polypyrrole on graphene for flexible supercapacitor. Applied Surface Science, 2021, 547, 149141.	3.1	21
132	How Do Polymer Binders Assist Transition Metal Oxide Cathodes to Address the Challenge of High-Voltage Lithium Battery Applications?. Electrochemical Energy Reviews, 2021, 4, 545-565.	13.1	53
133	Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. Energy Storage Materials, 2021, 37, 243-273.	9.5	41
134	Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Materials, 2021, 37, 433-465.	9.5	210
135	Influence of the Polyacrylic Acid Binder Neutralization Degree on the Initial Electrochemical Behavior of a Silicon/Graphite Electrode. ACS Applied Materials & Interfaces, 2021, 13, 28304-28323.	4.0	21
136	A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon-graphite composite anodes. Journal of Power Sources Advances, 2021, 9, 100055.	2.6	33
137	Impact of Binder Functional Groups on Controlling Chemical Reactions to Improve Stability of Rechargeable Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7138-7147.	2.5	24
138	Enabling aqueous processing for LiNi0.80Co0.15Al0.05O2 (NCA)-based lithium-ion battery cathodes using polyacrylic acid. Electrochimica Acta, 2021, 380, 138203.	2.6	33
139	Long-Term Cycling Performance of Aqueous Processed Ni-Rich LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathodes. Journal of the Electrochemical Society, 2021, 168, 060511.	1.3	12
140	A comparative study on binders for the expanded mesocarbon microbeads as the positive electrodes of lithium-ion capacitors. Journal of Power Sources, 2021, 501, 230029.	4.0	8
141	Fe3O4/Graphene Composite Anode Material for Fast-Charging Li-Ion Batteries. Molecules, 2021, 26, 4316.	1.7	11
142	Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective. Energies, 2021, 14, 4223.	1.6	21
143	Polysaccharides for sustainable energy storage – A review. Carbohydrate Polymers, 2021, 265, 118063.	5.1	29
144	Automated mineralogy as a novel approach for the compositional and textural characterization of spent lithium-ion batteries. Minerals Engineering, 2021, 169, 106924.	1.8	34
145	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials, 2021, 6, 1036-1052.	23.3	201
146	Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication. Particuology, 2021, 57, 56-71.	2.0	79

#	Article	IF	CITATIONS
147	Gifts from Nature: Bioâ€Inspired Materials for Rechargeable Secondary Batteries. Advanced Materials, 2021, 33, e2006019.	11.1	30
148	Review—Electrolyte and Electrode Designs for Enhanced Ion Transport Properties to Enable High Performance Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 090501.	1.3	33
149	Technology for recycling and regenerating graphite from spent lithium-ion batteries. Chinese Journal of Chemical Engineering, 2021, 39, 37-50.	1.7	38
150	A Lignosulfonate Binder for Hard Carbon Anodes in Sodium-Ion Batteries: A Comparative Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 12708-12717.	3.2	10
151	Applying Established Water-Based Binders to Aqueous Processing of LiNi _{0.83} Co _{0.12} Mn _{0.05} O ₂ Positive Electrodes. Journal of the Electrochemical Society, 2021, 168, 100506.	1.3	7
152	Aqueous processing based novel composite electrode for Li-ion batteries using an environmentally benign binder. Ceramics International, 2021, 47, 34639-34647.	2.3	9
153	Chargeâ€Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2022, 32, 2106438.	7.8	9
154	Electronically conductive MXene clay-polymer composite binders for electrochemical double-layer capacitor electrodes. Journal of Power Sources, 2021, 506, 230138.	4.0	4
155	Biomimetic Woodâ€Inspired Batteries: Fabrication, Electrochemical Performance, and Sustainability within a Circular Perspective. Advanced Sustainable Systems, 2021, 5, 2100236.	2.7	8
156	Strategies of binder design for high-performance lithium-ion batteries: a mini review. Rare Metals, 2022, 41, 745-761.	3.6	26
157	Impact of gelation in nickel-rich ternary lithium-ion batteries. Ionics, 2021, 27, 5159-5166.	1.2	2
158	Carbon in lithium-ion and post-lithium-ion batteries: Recent features. Synthetic Metals, 2021, 280, 116864.	2.1	15
159	Enhanced supercapacitive behavior by CuO@MnO2/carboxymethyl cellulose composites. Ceramics International, 2021, 47, 26738-26747.	2.3	47
160	1-Hydroxyethylidene-1, 1-diphosphonic acid: A multifunctional interface modifier for eliminating HF in silicon anode. Energy Storage Materials, 2021, 42, 493-501.	9.5	23
161	Reactive surface coating of metallic lithium and its role in rechargeable lithium metal batteries. Electrochimica Acta, 2021, 397, 139270.	2.6	7
162	Corrosion of aluminium current collector in lithium-ion batteries: A review. Journal of Energy Storage, 2021, 43, 103226.	3.9	45
163	Fabrication of porous polyphosphate carbon composite on nickel foam as an efficient binder-less electrode for symmetric capacitive deionization. Separation and Purification Technology, 2021, 276, 119427.	3.9	6
164	A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique. Renewable Energy, 2021, 180, 980-992.	4.3	31

#	Article	IF	CITATIONS
165	Coordinatively-intertwined dual anionic polysaccharides as binder with 3D network conducive for stable SEI formation in advanced silicon-based anodes. Chemical Engineering Journal, 2022, 429, 132235.	6.6	12
166	Silicon anode systems for lithium-ion batteries. , 2022, , 3-46.		2
167	Comparative study of waterâ€processable polymeric binders in LiMn ₂ O ₄ cathode for aqueous electrolyte batteries. Nano Select, 2021, 2, 939-947.	1.9	9
168	Chapter 5. 2D Nanomaterial-based Polymer Composite Electrolytes for Lithium-based Batteries. Inorganic Materials Series, 2021, , 204-274.	0.5	2
169	Influence of polymers on carbon-based composites in energy storage applications. , 2021, , 249-264.		0
170	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
171	Sustainable bio-derived materials for addressing critical problems of next-generation high-capacity lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 5932-5953.	3.2	9
172	Highly Efficient Multicomponent Gel Biopolymer Binder Enables Ultrafast Cycling and Applicability in Diverse Battery Formats. ACS Applied Materials & Interfaces, 2020, 12, 53827-53840.	4.0	5
173	Implications of Aqueous Processing for High Energy Density Cathode Materials: Part I. Ni-Rich Layered Oxides. Journal of the Electrochemical Society, 2020, 167, 140512.	1.3	22
174	Implications of Aqueous Processing for High Energy Density Cathode Materials: Part II. Water-Induced Surface Species on LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ . Journal of the Electrochemical Society, 2020, 167, 140535.	1.3	20
175	Emerging 2D-Nanostructured materials for electrochemical and sensing Application-A review. International Journal of Hydrogen Energy, 2022, 47, 1371-1389.	3.8	34
176	Effect of Polymer Binders with Single-Walled Carbon Nanotubes on the Electrochemical and Physicochemical Properties of the LiFePO ₄ Cathode. ACS Applied Energy Materials, 2021, 4, 12310-12318.	2.5	7
177	From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chemical Reviews, 2022, 122, 903-956.	23.0	343
178	A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging. ACS Applied Materials & Interfaces, 2021, 13, 52998-53008.	4.0	19
179	Mechanochemical synthesis of sodium carboxylates as anode materials in sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 27361-27369.	5.2	7
180	Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Science Advances, 2021, 7, eabi7633.	4.7	94
181	Strategies for the Analysis of Graphite Electrode Function. Advanced Energy Materials, 2021, 11, 2102693.	10.2	47
182	Microstructure evolutions in lithium ion battery electrode manufacturing. Chinese Science Bulletin, 2022, 67, 1088-1102.	0.4	2

#	Article	IF	CITATIONS
183	Rapid Microwaveâ€Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodiumâ€lon Batteries. Small Methods, 2021, 5, e2101016.	4.6	7
184	Constructing durable ultra-high loading and areal capacity lithium/sodium-selenium batteries via a robust aqueous network binder. Chemical Engineering Journal, 2022, 431, 133703.	6.6	5
185	Tannin-Based Nanoscale Carbon Spherogels as Electrodes for Electrochemical Applications. ACS Applied Nano Materials, 2021, 4, 14115-14125.	2.4	5
186	Surface coating of a LiNi _{<i>x</i>} Co _{<i>y</i>} Al _{1â^'<i>x</i>â^'<i>y</i>} O ₂ (<i>x</i> > 0.85) cathode with Li ₃ PO ₄ for applying a water-based hybrid polymer binder during Li-ion battery preparation. RSC Advances. 2021. 11. 37150-37161.	1.7	3
187	Recycling of Lithiumâ€lon Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Advanced Energy Materials, 2022, 12, .	10.2	268
188	Durable Activated Carbon Electrodes with a Green Binder. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	0
190	Enhanced Electrochemical Properties of Na0.67MnO2 Cathode for Na-Ion Batteries Prepared with Novel Tetrabutylammonium Alginate Binder. Batteries, 2022, 8, 6.	2.1	7
191	Improving Separation Efficiency in End-of-Life Lithium-Ion Batteries Flotation Using Attrition Pre-Treatment. Minerals (Basel, Switzerland), 2022, 12, 72.	0.8	37
192	High performance polyurethane–polyacrylic acid polymer binders for silicon microparticle anodes in lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 1301-1311.	2.5	6
193	Technological innovation <i>vs.</i> tightening raw material markets: falling battery costs put at risk. Energy Advances, 2022, 1, 136-145.	1.4	21
194	Crosslinked Chitosan Binder for Sustainable Aqueous Batteries. Nanomaterials, 2022, 12, 254.	1.9	10
195	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
196	Processâ€ S tructureâ€Formulation Interactions for Enhanced Sodium Ion Battery Development: A Review. ChemPhysChem, 2022, 23, .	1.0	4
197	Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Materials, 2022, 46, 233-242.	9.5	53
198	Diagnosis tools for humidity-born surface contaminants on Li[Ni0.8Mn0.1Co0.1]O2 cathode materials for lithium batteries. Journal of Power Sources, 2022, 525, 231111.	4.0	7
199	Superior performances of supercapacitors and lithium-ion batteries with carboxymethyl cellulose bearing zwitterions as binders. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104263.	2.7	9
200	Mixed Ionic-Electronic Conductors Based on Polymer Composites. Engineering Materials, 2022, , 493-532.	0.3	4
201	Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. Journal of Materials Chemistry A, 2022, 10, 8047-8058.	5.2	5

#	Article	IF	CITATIONS
202	Multicoated composites of nano silicon and graphene nanoplatelets as anodes in Li-ion batteries. Materials Advances, 0, , .	2.6	1
203	Cross-linked Î ² -CD-CMC as an effective aqueous binder for silicon-based anodes in rechargeable lithium-ion batteries. RSC Advances, 2022, 12, 5997-6006.	1.7	11
206	Encapsulating a Responsive Hydrogel Core for Void Space Modulation in High-Stability Graphene-Wrapped Silicon Anodes. ACS Applied Materials & Interfaces, 2022, 14, 10363-10372.	4.0	11
207	Artificial Synapses Based on Bovine Milk Biopolymer Electric-Double-Layer Transistors. Polymers, 2022, 14, 1372.	2.0	6
208	Sustainable processing of electrodes for membrane capacitive deionization (MCDI). Journal of Cleaner Production, 2022, 342, 130922.	4.6	13
209	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	11.1	58
210	"One-pot―synthesis of activated carbon – Graphene oxide polyethyleneimine-functionalized supported copper nanoparticles electrode for carbon dioxide reduction reaction. Materials Today: Proceedings, 2022, 57, 913-921.	0.9	1
211	Three-Dimensional Cross-Linked Binder Based on Ionic Bonding for a High-Performance SiO _{<i>x</i>} Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4788-4795.	2.5	7
212	Mn ²⁺ Ions Capture and Uniform Composite Electrodes with PEI Aqueous Binder for Advanced LiMn ₂ O ₄ -Based Battery. ACS Applied Materials & Interfaces, 2022, 14, 14226-14234.	4.0	5
213	Vegetal-Extracted Polyphenols as a Natural Hard Carbon Anode Source for Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4774-4787.	2.5	6
214	Performance Comparison of LMNO Cathodes Produced with Pullulan or PEDOT:PSS Water-Processable Binders. Energies, 2022, 15, 2608.	1.6	6
216	Graphene oxide and starch gel as a hybrid binder for environmentally friendly high-performance supercapacitors. Communications Chemistry, 2021, 4, .	2.0	16
217	Recent Advancements on Biopolymer―Based Flexible Electrolytes for Nextâ€Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect, 2021, 6, 13647-13663.	0.7	7
218	Fabrication and Characterization of Environmentally Friendly Biochar Anode. Energies, 2022, 15, 112.	1.6	3
219	A Comparative Evaluation of Sustainable Binders for Environmentally Friendly Carbon-Based Supercapacitors. Nanomaterials, 2022, 12, 46.	1.9	20
220	Performance of Different Water-Based Binder Formulations for Ni-Rich Cathodes Evaluated in LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ //Graphite Pouch Cells. Journal of the Electrochemical Society, 2022, 169, 040567.	1.3	8
221	Easy recovery of Li-ion cathode powders by the use of water-processable binders. Electrochimica Acta, 2022, 418, 140376.	2.6	11
222	Periodically aligned channels in Li[Ni0.5Co0.2Mn0.3]O2 cathodes designed by laser ablation for high power Li ion batteries. Journal of Energy Storage, 2022, 50, 104551.	3.9	2

#	Article	IF	CITATIONS
223	Fabrication of Naâ€lon Fullâ€Cells using Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₂ O ₂ F Cathode with Conversion Type CuO Nanoparticles from Spent Liâ€lon Batteries. Small Methods, 2022, 6, e2200257.	4.6	14
224	Aqueous Quaternary Polymer Binder Enabling Long-Life Lithium–Sulfur Batteries by Multifunctional Physicochemical Properties. ACS Applied Materials & Interfaces, 2022, 14, 19353-19364.	4.0	7
225	Sustainable lithium-ion batteries based on metal-free tannery waste biochar. Green Chemistry, 2022, 24, 4119-4129.	4.6	16
226	Heavy-Duty Performance from Silicon Anodes Using Poly(BIAN)/Poly(acrylic acid)-Based Self-Healing Composite Binder in Lithium-Ion Secondary Batteries. ACS Applied Energy Materials, 2022, 5, 7977-7987.	2.5	15
227	Gelatin and Alginate Binders for Simplified Battery Recycling. Journal of Physical Chemistry C, 2022, 126, 8489-8498.	1.5	11
228	An Aqueous Alginateâ€based Binder Modified with Zn ²⁺ Ions and Prussian Blue Analogues for Enhanced Silicon Anodes. ChemNanoMat, 0, , .	1.5	0
229	Quantification of charge compensation in lithium- and manganese-rich Li-ion cathode materials by x-ray spectroscopies. Materials Today Physics, 2022, 24, 100687.	2.9	2
230	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41
231	Multiscale Polymeric Materials for Advanced Lithium Battery Applications. Advanced Materials, 2023, 35, .	11.1	18
232	Design of experiments applied to lithium-ion batteries: A literature review. Applied Energy, 2022, 320, 119305.	5.1	52
233	A single atom Ir doped heterophase of a NiMoP-NiMoP _{<i>x</i>} O _{<i>y</i>} ultrathin layer assembled on CNTs-graphene for high-performance water splitting. Journal of Materials Chemistry A, 2022, 10, 14604-14612.	5.2	12
234	Phosphorus-based nanomaterials for lithium-ion battery anode. , 2023, , 533-549.		5
235	Deciphering the Interplay between Binders and Electrolytes on the Performance of Li4Ti5O12 Electrodes for Li-Ion Batteries. Energies, 2022, 15, 4182.	1.6	2
236	Sustainable supercapacitor electrodes based on preagglomerated carbon onions and a green binder. Carbon, 2022, 197, 555-562.	5.4	16
237	Eco-friendly aerosol multicoated silicon anodes in lithium-ion batteries. Materials Letters, 2022, 324, 132677.	1.3	2
238	A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochimica Acta, 2022, 426, 140790.	2.6	5
239	Thickness change and jelly roll deformation and its impact on the aging and lifetime of commercial 18650 cylindrical Li-ion cells with silicon containing anodes and nickel-rich cathodes. Journal of Energy Storage, 2022, 53, 105101.	3.9	8
240	In situ mineralized Ca3(PO4)2 inorganic coating modified polyethylene separator for high-performance lithium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 920, 116570.	1.9	8

#	Article	IF	CITATIONS
241	Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries. Electrochimica Acta, 2022, 428, 140908.	2.6	28
242	Qualifying water-based electrode dispersions for the inkjet printing process: a requirements analysis. Rapid Prototyping Journal, 2022, 28, 33-50.	1.6	3
243	Toward the Integration of a Silicon/Graphite Anode-Based Lithium-Ion Battery in Photovoltaic Charging Battery Systems. ACS Omega, 2022, 7, 27532-27541.	1.6	2
244	Greener nanomaterials and their diverse applications in the energy sector. Clean Technologies and Environmental Policy, 2022, 24, 3237-3252.	2.1	6
245	The second life of coffee can be even more energizing: Circularity of materials for bio-based electrochemical energy storage devices. MRS Energy & Sustainability, 2022, 9, 443-460.	1.3	1
246	Toward Li-ion Graphite Anodes with Enhanced Mechanical and Electrochemical Properties Using Binders from Chemically Modified Cellulose Fibers. ACS Applied Energy Materials, 2022, 5, 9333-9342.	2.5	2
247	Rheology and Structure of Lithiumâ€lon Battery Electrode Slurries. Energy Technology, 2022, 10, .	1.8	18
248	Sustainability and Technical Performance of An Allâ€Organic Aqueous Sodiumâ€ion Hybrid Supercapacitor. Batteries and Supercaps, 2022, 5, .	2.4	5
249	Effect of phosphoric acid as slurry additive on Li4Ti5O12 lithium-ion anodes. Electrochimica Acta, 2022, 429, 140970.	2.6	2
250	Electrochemical performance of high voltage LiNi0.5Mn1.5O4 based on environmentally friendly binders. Solid State Ionics, 2022, 383, 115989.	1.3	4
251	Study of commercial binders on the lithium storage performance of SiOx/G@C anode. Materials Chemistry and Physics, 2022, 292, 126797.	2.0	5
252	The formulation of a CMC binder/silicon composite anode for Li-ion batteries: from molecular effects of ball milling on polymer chains to consequences on electrochemical performances. Materials Advances, 2022, 3, 8522-8533.	2.6	6
253	Milk–Ta2O5 Hybrid Memristors with Crossbar Array Structure for Bio-Organic Neuromorphic Chip Applications. Nanomaterials, 2022, 12, 2978.	1.9	3
254	Roadmap on Li-ion battery manufacturing research. JPhys Energy, 2022, 4, 042006.	2.3	17
255	Enabling High‣tability of Aqueousâ€Processed Nickelâ€Rich Positive Electrodes in Lithium Metal Batteries. Small, 2022, 18, .	5.2	5
256	Lithium-Ion Battery Recycling─Influence of Recycling Processes on Component Liberation and Flotation Separation Efficiency. ACS ES&T Engineering, 2022, 2, 2130-2141.	3.7	25
257	Rigid-Rod Sulfonated Polyamide as an Aqueous-Processable Binder for Li-Ion Battery Electrodes. ACS Applied Energy Materials, 2022, 5, 12531-12537.	2.5	4
258	Important Impact of the Slurry Mixing Speed on Water-Processed Li ₄ Ti ₅ O ₁₂ Lithium-Ion Anodes in the Presence of H ₃ PO ₄ as the Processing Additive. ACS Applied Materials & amp; Interfaces, 2022.14.43237-43245.	4.0	1

#	Article	IF	CITATIONS
259	Understanding the Capacity Fade in Polyacrylonitrile Binderâ€based LiNi _{0.5} Mn _{1.5} O ₄ Cells**. Batteries and Supercaps, 2022, 5, .	2.4	3
260	Long-life silicon anodes by conformal molecular-deposited polyurea interface for lithium ion batteries. Nano Energy, 2022, 103, 107829.	8.2	30
261	Enabling both ultrahigh initial coulombic efficiency and superior stability of Na ₂ Ti ₃ O ₇ anodes by optimizing binders. Journal of Materials Chemistry A, 2022, 10, 24178-24189.	5.2	6
262	Biomass-Derived Materials for Lithium Secondary Batteries. , 2022, , 1-7.		Ο
263	Lignin for energy applications – state of the art, life cycle, technoeconomic analysis and future trends. Green Chemistry, 2022, 24, 8193-8226.	4.6	85
264	Essential data for industrially relevant development of bifunctional cathodes and biopolymer electrolytes in solid-state zinc–air secondary batteries. Energy and Environmental Science, 2022, 15, 5039-5058.	15.6	12
265	Beneficial combination of formic acid as processing additive and fluoroethylene carbonate as electrolyte additive for Li4Ti5O12 lithium-ion anodes. Materials Advances, 0, , .	2.6	0
266	Biopolymer Based Materials as Alternative Greener Binders for Sustainable Electrochemical Energy Storage Applications. ChemistrySelect, 2022, 7, .	0.7	6
267	Electrochemical Performance of Biopolymer-Based Hydrogel Electrolyte for Supercapacitors with Eco-Friendly Binders. Polymers, 2022, 14, 4445.	2.0	11
268	Is There a Ready Recipe for Hard Carbon Electrode Engineering to Enhance Na-Ion Battery Performance?. ACS Applied Energy Materials, 2022, 5, 12373-12387.	2.5	4
269	Intrinsically Conducting Polymer Binders for Battery Electrodes. Encyclopedia, 2022, 2, 1753-1762.	2.4	1
270	How to Promote the Industrial Application of SiO <i>_x</i> Anode Prelithiation: Capability, Accuracy, Stability, Uniformity, Cost, and Safety. Advanced Energy Materials, 2022, 12, .	10.2	22
271	Fluorine-free water-based Ni-rich positive electrodes and their performance in pouch- and 21700-type cells. Journal of Power Sources, 2023, 553, 232253.	4.0	2
272	Introducing lignin as a binder material for the aqueous production of NMC111 cathodes for Li-ion batteries. Materials Advances, 2023, 4, 523-541.	2.6	6
273	Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 51808-51818.	4.0	7
274	High-performance pyrrolidinium-based poly(ionic liquid) binders for Li-ion and Li-air batteries. Materials Today Chemistry, 2023, 27, 101293.	1.7	6
275	Challenges and opportunities in free-standing supercapacitors research. APL Materials, 2022, 10, .	2.2	4
276	Development and Application of a Poly(acrylic acid)-Grafted Styrene–Butadiene Rubber as a Binder System for Silicon-Graphite Anodes in Li-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 496-507.	2.5	7

#	Article	IF	CITATIONS
277	Enabling Aqueous Processing of Niâ€Rich Layered Oxide Cathode Materials by Addition of Lithium Sulfate. ChemSusChem, 2023, 16, .	3.6	2
279	Construction of three-dimensional carbon materials-based conductive bonding network in flexible supercapacitor electrodes. Electrochimica Acta, 2023, 440, 141751.	2.6	1
280	Structural batteries: Advances, challenges and perspectives. Materials Today, 2023, 62, 151-167.	8.3	19
281	Sustainable Modification of Chitosan Binder for Capacitive Electrodes Operating in Aqueous Electrolytes. ChemElectroChem, 2023, 10, .	1.7	3
282	Unraveling the Influence of Li ⁺ â€cation and TFSI ^{â^'} â€anion in Poly(ionic liquid) Binders for Lithiumâ€Metal Batteries. Batteries and Supercaps, 2023, 6, .	2.4	4
283	The Role of Polymer-Based Materials in Sustainable, Safe, and Efficient Metal Batteries. Engineering Materials, 2023, , 415-441.	0.3	0
284	In-operando GC-MS: A new tool for the understanding of degradation processes occurring in electrochemical capacitors. Energy Storage Materials, 2023, 56, 192-204.	9.5	6
285	Alternative solvents for Lithium-Nickel-Cobalt-Manganese-Oxide electrode fabrication for lithium-ion-cells. Journal of Power Sources, 2023, 558, 232546.	4.0	2
286	Binder-controlled pore size distribution of carbon electrodes to mitigate self-discharge of supercapacitors. Carbon, 2023, 204, 555-565.	5.4	6
287	Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy, 2023, 108, 108168.	8.2	16
288	Chitosan as Enabling Polymeric Binder Material for Siliconâ€Graphiteâ€Based Anodes in Lithiumâ€ion Batteries. Energy Technology, 2023, 11, .	1.8	1
289	From Lab to Manufacturing Line: Guidelines for the Development and Upscaling of Aqueous Processed NMC622 Electrodes. Journal of the Electrochemical Society, 2023, 170, 010527.	1.3	2
290	Effect of applied potential polarity on electrochemical properties of electrophoretically deposited activated carbon on an indium tin oxide substrate. Surfaces and Interfaces, 2023, 37, 102660.	1.5	0
291	Self-template activated carbons for aqueous supercapacitors. Sustainable Materials and Technologies, 2023, 36, e00582.	1.7	6
292	Carboxymethyl cellulose-based materials as an alternative source for sustainable electrochemical devices: a review. RSC Advances, 2023, 13, 5723-5743.	1.7	11
293	Mechanical properties vs. interaction strength: Comprehensive understanding of aqueous binders' formulation on Si-based anodes for lithium-ion batteries. Journal of Power Sources, 2023, 563, 232800.	4.0	5
294	Multifunctional separators for lithium secondary batteries via in-situ surface modification of hydrophobic separator using aqueous binders. Surfaces and Interfaces, 2023, 38, 102828.	1.5	3
295	Binders for Si based electrodes: Current status, modification strategies and perspective. Energy Storage Materials, 2023, 59, 102776.	9.5	3

#	Article	IF	CITATIONS
296	Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics. Accounts of Chemical Research, 2023, 56, 284-296.	7.6	70
297	Review—Supercapacitor Active Material from Recycling. ECS Journal of Solid State Science and Technology, 2023, 12, 024001.	0.9	2
298	Experimental Analysis of Drying Kinetics and Quality Aspects of Convection-Dried Cathodes at Laboratory Scale. Batteries, 2023, 9, 96.	2.1	2
299	Improvement of capacitor performance by pitch-based binder for a new alternative to polymer binders. Surfaces and Interfaces, 2023, 37, 102726.	1.5	0
300	Layering Charged Polymers Enable Highly Integrated High apacity Battery Anodes. Advanced Functional Materials, 2023, 33, .	7.8	11
301	Effect of different molding pressures on the properties of glass fiber / molybdenum disulfide / Polytetrafluoroethylene composites. High Performance Polymers, 0, , 095400832211493.	0.8	0
302	Electron and Ion Transport in Lithium and Lithium-Ion Battery Negative and Positive Composite Electrodes. Chemical Reviews, 2023, 123, 1327-1363.	23.0	62
303	Dual-effect-assisted cross-linkable poly(N-allyl-vinylimidazolium) ·TFSIâ^' as alternative electrode binder of lithium-ion battery. Korean Journal of Chemical Engineering, 2023, 40, 504-511.	1.2	1
304	Ball mill–assisted synthesis of carbon-free SnSe nanoparticles for sodium-ion battery anodes. Journal of Solid State Electrochemistry, 2023, 27, 1075-1084.	1.2	3
305	Interphase formation with carboxylic acids as slurry additives for Si electrodes in Li-ion batteries. Part 1: performance and gas evolution. JPhys Energy, 2023, 5, 025003.	2.3	2
306	New insights into orthophosphoric acid assisted rapid aqueous processing of NMC622 cathodes. , 2023, 1, 378-387.		0
307	Recent Advances in the Structural Design of Silicon/Carbon Anodes for Lithium Ion Batteries: A Review. Coatings, 2023, 13, 436.	1.2	5
308	Effect of Lithium Substitution Ratio of Polymeric Binders on Interfacial Conduction within All-Solid-State Battery Anodes. ACS Applied Materials & Interfaces, 2023, 15, 13131-13143.	4.0	3
309	Electrochemical Characterization of Charge Storage at Anodes for Sodiumâ€lon Batteries Based on Corncob Wasteâ€Derived Hard Carbon and Binder. ChemElectroChem, 2023, 10, .	1.7	3
310	Structured aqueous processed lignin-based NMC cathodes for energy-dense LIBs with improved rate capability. Journal of Materials Chemistry A, 2023, 11, 6483-6502.	5.2	3
311	Application of Biomass Materials in Zinc-Ion Batteries. Molecules, 2023, 28, 2436.	1.7	5
312	Biomassâ€Derived Carbon Electrodes for Highâ€Performance Supercapacitors. ChemSusChem, 2023, 16, .	3.6	2
313	Aqueous Processing of LiCoO ₂ –Li _{6.6} La ₃ Zr _{1.6} Ta _{0.4} O ₁₂ Composite Cathode for High-Capacity Solid-State Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 5184-5194.	3.2	3

#	Article	IF	CITATIONS
314	Tragacanth, an Exudate Gum as Suitable Aqueous Binder for High Voltage Cathode Material. Batteries, 2023, 9, 199.	2.1	3
315	High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries, 2023, 9, 202.	2.1	34
339	Sustainable stretchable batteries for next-generation wearables. Journal of Materials Chemistry A, 0, ,	5.2	0
341	Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. , 0, , .		2
343	Tuning the electrochemical performance of covalent organic framework cathodes for Li- and Mg-based batteries: the influence of electrolyte and binder. Journal of Materials Chemistry A, 2023, 11, 21553-21560.	5.2	2
353	Exploring More Functions in Binders for Lithium Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	3
359	Electrochemical Properties of Sustainable Nanomaterial-Based Supercapacitors. , 2023, , .		0
372	Construction of electrodeionization. , 2024, , 79-101.		0 _