Deciphering the Cathode–Electrolyte Interfacial Cher Materials

Advanced Energy Materials 8, 1801975 DOI: 10.1002/aenm.201801975

Citation Report

#	Article	IF	CITATIONS
1	Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule, 2019, 3, 2550-2564.	11.7	167
2	An Ordered P2/P3 Composite Layered Oxide Cathode with Long Cycle Life in Sodium-Ion Batteries. , 2019, 1, 573-581.		33
3	Targeted Surface Doping with Reversible Local Environment Improves Oxygen Stability at the Electrochemical Interfaces of Nickel-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 37885-37891.	4.0	33
4	Water-Processable P2-Na _{0.67} Ni _{0.22} Cu _{0.11} Mn _{0.56} Ti _{0.11} 2 Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A251-A257.	2< ‡s ub≻Ca	thade
5	Understanding Challenges of Cathode Materials for Sodiumâ€lon Batteries using Synchrotronâ€Based Xâ€Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 842-851.	2.4	23
6	Electrolytes and Electrolyte/Electrode Interfaces in Sodiumâ€lon Batteries: From Scientific Research to Practical Application. Advanced Materials, 2019, 31, e1808393.	11.1	264
7	Surface Characterization of Li-Substituted Compositionally Heterogeneous NaLi _{0.045} Cu _{0.185} Fe _{0.265} Mn _{0.505} O ₂ Sodium-Ion Cathode Material. Journal of Physical Chemistry C, 2019, 123, 11428-11435.	1.5	13
8	Dual Interphase Layers In Situ Formed on a Manganese-Based Oxide Cathode Enable Stable Potassium Storage. CheM, 2019, 5, 3220-3231.	5.8	79
9	Dopant Distribution in Co-Free High-Energy Layered Cathode Materials. Chemistry of Materials, 2019, 31, 9769-9776.	3.2	110
10	Atomic layer deposition of Al2O3 on P2-Na0.5Mn0.5Co0.5O2 as interfacial layer for high power sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 564, 467-477.	5.0	25
11	Understanding the Capacity Fading Mechanisms of O3â€Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001609.	10.2	59
12	Controlling at Elevated Temperature the Sodium Intercalation Capacity and Rate Capability of P 3â€Na 2/3 Ni 1/2 Mn 1/2 O 2 through the Selective Substitution of Nickel with Magnesium. Batteries and Supercaps, 2020, 3, 1329-1340.	2.4	12
13	Advances in materials for all limate sodiumâ€ion batteries. EcoMat, 2020, 2, e12043.	6.8	32
14	Defect and structural evolution under high-energy ion irradiation informs battery materials design for extreme environments. Nature Communications, 2020, 11, 4548.	5.8	28
15	The sensitive surface chemistry of Co-free, Ni-rich layered oxides: identifying experimental conditions that influence characterization results. Journal of Materials Chemistry A, 2020, 8, 17487-17497.	5.2	41
16	Delineating the Capacity Fading Mechanisms of Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ at Higher Operating Voltages in Sodium-Ion Cells. Chemistry of Materials, 2020, 32, 7389-7396.	3.2	25
17	Highâ€Voltageâ€Driven Surface Structuring and Electrochemical Stabilization of Niâ€Rich Layered Cathode Materials for Li Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2000521.	10.2	90
18	Insights into the Enhanced Cycle and Rate Performances of the Fâ€Substituted P2â€Type Oxide Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000135.	10.2	57

#	Article	IF	CITATIONS
19	Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Metals, 2020, 39, 989-1004.	3.6	64
20	Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chemical Engineering Journal, 2020, 402, 126181.	6.6	40
21	Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries*. Chinese Physics B, 2020, 29, 048201.	0.7	26
22	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for Highâ€Performance Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 9385-9390.	1.6	26
23	Manipulating Layered P2@P3 Integrated Spinel Structure Evolution for Highâ€Performance Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 9299-9304.	7.2	84
24	Effect of the interfacial protective layer on the NaFe _{0.5} Ni _{0.5} O ₂ cathode for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 13964-13970.	5.2	19
25	Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy and Environment, 2021, 6, 212-219.	4.7	28
26	Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. , 2021, 3, 18-41.		90
27	Mitigation of Jahn–Teller distortion and Na ⁺ /vacancy ordering in a distorted manganese oxide cathode material by Li substitution. Chemical Science, 2021, 12, 1062-1067.	3.7	64
28	Insight into effects of divalent cation substitution stabilizing P2-Type layered cathode materials for sodium-ion batteries. Electrochimica Acta, 2021, 368, 137614.	2.6	19
29	Multiprincipal Component P2-Na _{0.6} (Ti _{0.2} Mn _{0.2} Co _{0.2} Ni _{0.2} Ru _{0.2< as a High-Rate Cathode for Sodium-Ion Batteries. Jacs Au, 2021, 1, 98-107.}	:/subs.s)O<:	sub2×2
30	Direct observation of the in-plane crack formation of O3-Na _{0.8} Mg _{0.2} Fe _{0.4} Mn _{0.4} O ₂ due to oxygen gas evolution for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 14074-14084.	5.2	16
31	Synergistic Dualâ€Additive Electrolyte for Interphase Modification to Boost Cyclability of Layered Cathode for Sodium Ion Batteries. Advanced Functional Materials, 2021, 31, 2010500.	7.8	43
32	P2-Type Na _{0.67} Mn _{0.5} Fe _{0.5} O ₂ Synthesized by Solution Combustion Method as an Efficient Cathode Material for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 030512.	1.3	6
33	Enhanced Cycling Stability of O3-Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode through Sn Addition for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 6593-6600.	1.5	14
34	Degradation Mechanism of O3-Type NaNi _{1/3} Fe _{1/3} Mn _{1/3} O ₂ Cathode Materials During Ambient Storage and Their In Situ Regeneration. ACS Applied Energy Materials, 2021, 4, 2061-2067.	2.5	28
35	Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries. JPhys Materials, 2021, 4, 032004.	1.8	19
36	Heterogeneous, Defect-Rich Battery Particles and Electrodes: Why Do They Matter, and How Can One Leverage Them?. Journal of Physical Chemistry C, 2021, 125, 9618-9629.	1.5	7

#	Article	IF	CITATIONS
37	Charactering and optimizing cathode electrolytes interface for advanced rechargeable batteries: Promises and challenges. Green Energy and Environment, 2022, 7, 606-635.	4.7	13
38	Reversible Mn/Cr dual redox in cation-disordered Li-excess cathode materials for stable lithium ion batteries. Acta Materialia, 2021, 212, 116935.	3.8	16
39	The origin of impedance rise in Ni-Rich positive electrodes for lithium-ion batteries. Journal of Power Sources, 2021, 498, 229885.	4.0	12
40	Selection of Sodium Salt Electrolyte Compatible with Na _{0.67} Ni _{0.15} Fe _{0.2} Mn _{0.65} O ₂ Cathode for Sodiumâ€ion Batteries. Energy Technology, 2021, 9, 2100190.	1.8	10
41	Integrated titanium-substituted air stable O3 sodium layered oxide electrode via a complexant assisted route for high capacity sodium-ion battery. Electrochimica Acta, 2021, 388, 138561.	2.6	13
42	Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode. Cell Reports Physical Science, 2021, 2, 100547.	2.8	23
43	Structural engineering of electrode materials to boost high-performance sodium-ion batteries. Cell Reports Physical Science, 2021, 2, 100551.	2.8	19
44	Effective enhancement of the electrochemical properties for Na2FeP2O7/C cathode materials by boron doping. Chinese Journal of Chemical Engineering, 2021, 39, 277-285.	1.7	4
45	Surface-Modified Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ Cathodes with Enhanced Cycle Life and Air Stability for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11735-11742.	2.5	31
46	Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism. Energy Storage Materials, 2020, 31, 274-309.	9.5	38
47	Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. EScience, 2021, 1, 13-27.	25.0	194
48	Spatial and Temporal Analysis of Sodium-Ion Batteries. ACS Energy Letters, 2021, 6, 4023-4054.	8.8	62
49	Dynamic structural evolution and controllable redox potential for abnormal high-voltage sodium layered oxide cathodes. Cell Reports Physical Science, 2021, 2, 100631.	2.8	19
50	Interfacial Strategies for Suppression of Mn Dissolution in Rechargeable Battery Cathode Materials. ACS Applied Materials & Interfaces, 2022, 14, 23022-23032.	4.0	35
51	Surface Engineering Suppresses the Failure of Biphasic Sodium Layered Cathode for High Performance Sodiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, 2109319.	7.8	35
52	Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nature Communications, 2022, 13, 436.	5.8	29
53	Challenges of layer-structured cathodes for sodium-ion batteries. Nanoscale Horizons, 2022, 7, 338-351.	4.1	37
54	Origin of Air-Stability for Transition Metal Oxide Cathodes in Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 5338-5345.	4.0	32

CITATION REPORT

#	Article	IF	CITATIONS
55	Bifunctional nitrile-borate based electrolyte additive enables excellent electrochemical stability of lithium metal batteries with single-crystal Ni-rich cathode at 4.7ÂV. Chemical Engineering Journal, 2022, 434, 134745.	6.6	24
56	Moltenâ€Salt Synthesis of O3â€Type Layered Oxide Single Crystal Cathodes with Controlled Morphology towards Longâ€Life Sodiumâ€Ion Batteries. Small, 2022, 18, e2106927.	5.2	24
57	Mg ²⁺ -Doping Constructed a Continuous and Homogeneous Cathode-Electrolyte Interphase Film on Na _{3.12} Fe _{2.44} (P ₂ O ₇) ₂ with Superior and Stable High-Temperature Performance for Sodium-Ion Storage. ACS Applied Materials & amp; Interfaces, 2022, 14, 14253-14263.	4.0	11
58	Ultrathin-ZrO2-coated LiNi0.4Co0.2Mn0.4O2 cathode material for Li-ion batteries: Synthesis and electrochemical performance. Journal of Materials Research, 2022, 37, 1019-1029.	1.2	3
59	Effect of Electrolytes on the Cathode-Electrolyte Interfacial Stability of Fe-Based Layered Cathodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 030536.	1.3	10
60	Influence of the Current Density on the Interfacial Reactivity of Layered Oxide Cathodes for Sodiumâ€lon Batteries. Energy Technology, 2022, 10, .	1.8	3
62	Yeast Template-Derived Multielectron Reaction NASICON Structure Na ₃ MnTi(PO ₄) ₃ for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58585-58595.	4.0	23
63	Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability. Journal of the American Chemical Society, 2022, 144, 8286-8295.	6.6	112
64	High-Voltage Stabilization of O3-Type Layered Oxide for Sodium-Ion Batteries by Simultaneous Tin Dual Modification. Chemistry of Materials, 2022, 34, 4153-4165.	3.2	47
65	å±,çŠ¶æ°§åŒ–ç‰©åŠæ™®é²å£«è"类似物在é'离å电æ±çš"ç"ç©¶èį›å±•. Scientia Sinica Chimica, 2	0222, .	0
66	Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Reports Physical Science, 2022, 3, 100868.	2.8	35
67	Layered Oxide Cathodeâ€Electrolyte Interface towards Naâ€ion Batteries: Advances and Perspectives. Chemistry - an Asian Journal, 2022, 17, e202200213.	1.7	7
68	Cathode materials of metal-ion batteries for low-temperature applications. Journal of Alloys and Compounds, 2022, 912, 165142.	2.8	14
69	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41
70	Formulating Highâ€Rate and Longâ€Cycle Heterostructured Layered Oxide Cathodes by Local Chemistry and Orbital Hybridization Modulation for Sodiumâ€lon Batteries. Advanced Materials, 2022, 34, .	11.1	48
71	Stable Sodium-Based Batteries with Advanced Electrolytes and Layered-Oxide Cathodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 28865-28872.	4.0	11
72	Rational design of Li off-stoichiometric Ni-rich layered cathode materials for Li-ion batteries. Chemical Engineering Journal, 2022, 448, 137685.	6.6	10
73	Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodiumâ€ion batteries. , 2022, 1, 68-92.		25

CITATION REPORT

#	Article	IF	CITATIONS
74	Understanding the Cathode–Electrolyte Interphase in Lithiumâ€lon Batteries. Energy Technology, 2022, 10, .	1.8	34
75	Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery. EScience, 2022, 2, 529-536.	25.0	62
76	Electrochemically induced cleavage cracking at twin boundary of sodium layered oxide cathodes. Acta Materialia, 2022, 238, 118212.	3.8	1
77	Impurity-vibrational entropy enables quasi-zero-strain layered oxide cathodes for high-voltage sodium-ion batteries. Nano Energy, 2022, 103, 107765.	8.2	33
78	A fluorinated O3-type layered cathode for long-life sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 23639-23648.	5.2	12
79	Enhanced structural and cycling stability of O3-type NaNi1/3Mn1/3Fe1/3O2 cathode by Al replacement of Mn studied in half cell/full sodium-ion batteries. Journal of Alloys and Compounds, 2023, 933, 167714.	2.8	9
81	Surface Latticeâ€Matched Engineering Based on In Situ Spinel Interfacial Reconstruction for Stable Heterostructured Sodium Layered Oxide Cathodes. Advanced Functional Materials, 2023, 33, .	7.8	23
82	Mastering the synergy between Na3V2(PO4)2F3 electrode and electrolyte: A must for Na-ion cells. Energy Storage Materials, 2023, 57, 102-117.	9.5	19
98	Interfacial engineering of the layered oxide cathode materials for sodium-ion battery. Nano Research, 2024, 17, 1441-1464.	5.8	3