Active food packaging prepared with chitosan and olive

Food Hydrocolloids 74, 139-150 DOI: 10.1016/j.foodhyd.2017.08.007

Citation Report

#	Article	IF	CITATIONS
1	Applications of Chitosan in Food Packaging. , 2017, , .		3
2	Organic/inorganic hybrid low-voltage flexible oxide transistor gated with biodegradable electrolyte. Organic Electronics, 2018, 56, 82-88.	1.4	9
3	Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydrate Polymers, 2018, 184, 214-220.	5.1	215
4	Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate Polymers, 2018, 195, 329-338.	5.1	206
5	Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 2018, 114, 547-555.	3.6	310
6	Degradable and Photocatalytic Antibacterial Au-TiO2/Sodium Alginate Nanocomposite Films for Active Food Packaging. Nanomaterials, 2018, 8, 930.	1.9	57
7	Tensile Properties and Crystallinity of Crosslinked Nanocrystalline Cellulose/Chitosan Composite. IOP Conference Series: Materials Science and Engineering, 2018, 429, 012042.	0.3	5
8	Novel techniques in food processing: bionanocomposites. Current Opinion in Food Science, 2018, 23, 49-56.	4.1	23
9	Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocolloids, 2018, 84, 238-246.	5.6	193
10	Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocolloids, 2018, 85, 158-166.	5.6	221
11	Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids, 2018, 84, 125-134.	5.6	228
12	The Potential of Vegetal and Animal Proteins to Develop More Sustainable Food Packaging. , 2018, , 25-59.		9
13	Characterization of Biodegradable Nanocomposite Films Prepared with Glutelin from <i>Jatropha curcas</i> L. by Response Surface Methodology and Infrared Spectroscopy. Analytical Letters, 2019, 52, 423-438.	1.0	3
14	Smart and Active Edible Coatings Based on Biopolymers. , 2019, , 391-416.		10
15	Facile Synthesis of Chitosan-Based Hydrogels and Microgels through Thiol–Ene Photoclick Cross-Linking. ACS Applied Bio Materials, 2019, 2, 3257-3268.	2.3	20
16	Chitin and Chitosans: Characteristics, Eco-Friendly Processes, and Applications in Cosmetic Science. Marine Drugs, 2019, 17, 369.	2.2	188
17	Bioactive mesoporous nano-silica/potato starch films against molds commonly found in post-harvest white mushrooms. Food Hydrocolloids, 2019, 95, 517-525.	5.6	54
18	Chitosan-based films with incorporated supercritical CO2 hop extract: Structural, physicochemical, and antibacterial properties. Carbohydrate Polymers, 2019, 219, 261-268.	5.1	47

ATION RED

ARTICLE IF CITATIONS Hybrid films of cellulose nanofibrils, chitosan and nanosilicaâ€"Structural, thermal, optical, and 19 5.1 26 mechanical properties. Carbohydrate Polymers, 2019, 218, 87-94. Comprehensive characterization of active chitosan-gelatin blend films enriched with different 5.6 197 essential oils. Food Hydrocolloids, 2019, 95, 33-42. Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun 21 5.6 71 nanofibers as active packaging material. Food Hydrocolloids, 2019, 95, 245-255. Comparison of protective supports and antioxidative capacity of two bio-based films with revalorised fruit pomaces extracted from blueberry and red grape skin. Food Packaging and Shelf Life, 2019, 20, 34 100315. Development and characterization of pH-indicator films based on cassava starch and blueberry 23 5.6 108 residue by thermocompression. Food Hydrocolloids, 2019, 93, 317-324. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 2019, 1.7 24, 4132. Synthesis and characteristics of konjac glucomannan films incorporated with functionalized 25 microcrystalline cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 2.3 26 563, 237-245. The innovative fabrication and applications of carvacrol nanoemulsions, carboxymethyl chitosan 2.5 26 39 microgels and their composite films. Colloids and Surfaces B: Biointerfaces, 2019, 175, 688-696. Current advancements in chitosan-based film production for food technology; A review. 27 303 3.6 International Journal of Biological Macromolecules, 2019, 121, 889-904. Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, 2019, 263, 131-194. 391 Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocolloids, 29 5.6 43 2019, 89, 802-812. Assessment of olive pomace wastes as flame retardants. Journal of Applied Polymer Science, 2020, 137, 1.3 47715. Food Waste for Sustainable Packaging Materials., 2020, , 322-330. 31 3 Bioactive potential of fruit and vegetable wastes. Advances in Food and Nutrition Research, 2020, 91, 1.5 146 157-225. Original antifouling strategy: Polypropylene films modified with chitosanâ€coated silver nanoparticles. 33 1.3 3 Journal of Applied Polymer Science, 2020, 137, 48448. Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their 5.1 súperb catalytic activity. Carbohydrate Polymers, 2020, 232, 115806. Injectable antibacterial cellulose nanofiber/chitosan aerogel with rapid shape recovery for 35 noncompressible hemorrhage. International Journal of Biological Macromolecules, 2020, 154, 3.6 41 1185-1193. Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder. International Journal of Biological Macromolecules, 2020, 145,

#	Article	IF	CITATIONS
37	Anticorrosion thin film smart coatings for aluminum alloys. , 2020, , 429-454.		6
38	From waste/residual marine biomass to active biopolymer-based packaging film materials for food industry applications – a review. Physical Sciences Reviews, 2020, 5, .	0.8	11
39	Characterization of carboxymethyl cellulose-based antimicrobial films incorporated with plant essential oils. International Journal of Biological Macromolecules, 2020, 163, 2172-2179.	3.6	25
40	Chitosanâ€based biomaterials: From discovery to food application. Polymers for Advanced Technologies, 2020, 31, 2408-2421.	1.6	40
41	Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods, 2020, 9, 857.	1.9	82
42	Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants, 2020, 9, 667.	2.2	35
43	Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. International Journal of Biological Macromolecules, 2020, 150, 480-491.	3.6	88
44	Efficient reinforcement of chitosan-based coatings for Ricotta cheese with non-toxic, active, and smart nanoparticles. Progress in Organic Coatings, 2020, 145, 105707.	1.9	9
45	Chitosan nanocomposites for food packaging applications. , 2020, , 393-435.		8
46	Purification of Arabinoxylans from Corn Fiber and Preparation of Bioactive Films for Food Packaging. Membranes, 2020, 10, 95.	1.4	12
47	Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives. Food Packaging and Shelf Life, 2020, 25, 100534.	3.3	27
48	Comparative study on the properties of crossâ€iinked cellulose nanocrystals/chitosan film composites with conventional heating and microwave curing. Journal of Applied Polymer Science, 2020, 137, 49578.	1.3	6
49	Thermoplastic biomass transparent films directly fabricated by chitosan nanospheres. Polymer, 2020, 192, 122335.	1.8	8
50	Chitosan-based melatonin bilayer coating for maintaining quality of fresh-cut products. Carbohydrate Polymers, 2020, 235, 115973.	5.1	26
51	Controlled size green synthesis of bioactive silver nanoparticles assisted by chitosan and its derivatives and their application in biofilm preparation. Carbohydrate Polymers, 2020, 236, 116063.	5.1	58
52	Chitosan-based biodegradable active food packaging film containing Chinese chive (Allium tuberosum) root extract for food application. International Journal of Biological Macromolecules, 2020, 150, 595-604.	3.6	137
53	Fabrication & Characterization of Chitosan Coated Biologically Synthesized TiO ₂ Nanoparticles against PDR <i>E. coli </i> of Veterinary Origin. Advances in Polymer Technology, 2020, 2020, 1-13.	0.8	18
54	Chitosan Film with Citrus limonia Essential Oil: Physical and Morphological Properties and Antibacterial Activity. Colloids and Interfaces, 2020, 4, 18.	0.9	38

#	Article	IF	CITATIONS
55	Functional compounds from olive pomace to obtain highâ€added value foods – a review. Journal of the Science of Food and Agriculture, 2021, 101, 15-26.	1.7	60
56	Biodegradable films based on chitosan and defatted Chlorella biomass: Functional and physical characterization. Food Chemistry, 2021, 337, 127777.	4.2	45
57	Barrier Properties of PVA/TiO2/MMT Mixed-Matrix Membranes for Food Packaging. Journal of Polymers and the Environment, 2021, 29, 1396-1411.	2.4	20
58	Novel biopolymer-based nanocomposite food coatings that exhibit active and smart properties due to a single type of nanoparticles. Food Chemistry, 2021, 343, 128676.	4.2	16
59	A sustainable solution for enhanced food packaging via a scienceâ€based composite blend of naturalâ€sourced chitosan and microbial extracellular polymeric substances. Journal of Food Processing and Preservation, 2021, 45, .	0.9	12
60	Applications of compounds recovered from olive mill waste. , 2021, , 327-353.		3
61	A review of immobilization techniques to improve the stability and bioactivity of lysozyme. Green Chemistry Letters and Reviews, 2021, 14, 302-338.	2.1	27
62	Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. International Journal of Biological Macromolecules, 2021, 176, 530-539.	3.6	62
63	Antioxidant packaging development and optimization using agroindustrial wastes. Journal of Applied Polymer Science, 2021, 138, 50887.	1.3	6
66	Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: a review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 1237-1248.	1.1	10
67	Influence of replacing oregano essential oil by ground oregano leaves on chitosan/alginate-based dressings properties. International Journal of Biological Macromolecules, 2021, 181, 51-59.	3.6	14
68	Functional polysaccharide-based film prepared from chitosan and β-acids: Structural, physicochemical, and bioactive properties. International Journal of Biological Macromolecules, 2021, 181, 966-977.	3.6	22
69	Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control, 2021, 124, 107877.	2.8	95
70	Biodegradable film production from agroforestry and fishery residues with active compounds. Food Packaging and Shelf Life, 2021, 28, 100661.	3.3	8
71	Water resistance and biodegradation properties of conventionally-heated and microwave-cured cross-linked cellulose nanocrystal/chitosan composite films. Polymer Degradation and Stability, 2021, 188, 109563.	2.7	25
72	Citrus Limon L. Peel Powder Incorporated Polyvinyl Alcohol/Corn Starch Antioxidant Active Films. Journal of the Institute of Science and Technology, 2021, 11, 1311-1320.	0.3	3
73	Innovation in the Seafood Sector through the Valorization of By-Products. , 0, , .		1
74	Design of Chitosan and Alginate Emulsion-Based Formulations for the Production of Monolayer Crosslinked Edible Films and Coatings. Foods, 2021, 10, 1654.	1.9	18

#	Article	IF	CITATIONS
75	Properties of chitosan–papain biopolymers reinforced with cellulose nanofibers. Journal of Food Processing and Preservation, 2021, 45, e15740.	0.9	4
76	Valorization and Application of Fruit and Vegetable Wastes and By-Products for Food Packaging Materials. Molecules, 2021, 26, 4031.	1.7	41
77	Effect of ethanol extract of black soybean coat on physicochemical properties and biological activities of chitosan packaging film. Food Science and Biotechnology, 2021, 30, 1369-1381.	1.2	7
78	Characterization and release kinetics study of potato starch nanocomposite films containing mesoporous nano-silica incorporated with Thyme essential oil. International Journal of Biological Macromolecules, 2021, 184, 566-573.	3.6	36
79	Influence of the incorporation form of waste from the production of orange juice in the properties of cassava starch-based films. Food Hydrocolloids, 2021, 117, 106730.	5.6	16
80	Physicochemical properties of chitosan/ graphene oxide composite films and their effects on storage stability of palm-oil based margarine. Food Hydrocolloids, 2021, 117, 106707.	5.6	23
81	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
82	Bioactive packaging based on gelatin incorporated with rapeseed meal for prolonging shelf life of rapeseed. Food Packaging and Shelf Life, 2021, 29, 100728.	3.3	1
83	New Active Packaging Based on Biopolymeric Mixture Added with Bacteriocin as Active Compound. International Journal of Molecular Sciences, 2021, 22, 10628.	1.8	12
84	Biodegradable packaging reinforced with plant-based food waste and by-products. Current Opinion in Food Science, 2021, 42, 61-68.	4.1	30
85	Active packaging films containing antioxidant extracts from green coffee oil by-products to prevent lipid oxidation. Journal of Food Engineering, 2022, 312, 110744.	2.7	30
86	Environmental and Socio-Economic Sustainability of Packaging from Agricultural By-Products. Springer Briefs in Molecular Science, 2021, , 15-30.	0.1	0
87	Valorization of Agri-Food Wastes. Environmental and Microbial Biotechnology, 2021, , 111-132.	0.4	3
89	Flexible thermoplastic starch films functionalized with copper particles for packaging of food products. Functional Composite Materials, 2020, 1, .	0.9	8
90	Antimicrobial and Antioxidant Active Food Packaging: Technological and Scientific Prospection. Recent Patents on Biotechnology, 2020, 14, 99-111.	0.4	6
91	Glycerolâ€plasticized chitosan film for the preservation of orange. Journal of Food Safety, 2022, 42, e12943.	1.1	16
92	Development of Chitosan Films from Edible Crickets and Their Performance as a Bio-Based Food Packaging Material. Polysaccharides, 2021, 2, 744-758.	2.1	8
93	Preparation and characterization of chitosan-based antioxidant composite films containing onion skin ethanolic extracts. Journal of Food Measurement and Characterization, 2022, 16, 598-609.	1.6	11

#	Article	IF	CITATIONS
94	Effect of carvacrol on properties and release behavior of gelatinâ€egg white protein/polyethylene bilayer film. Journal of Food Process Engineering, 2021, 44, .	1.5	0
95	Fabrication and characterization of an economical active packaging film based on chitosan incorporated with pomegranate peel. International Journal of Biological Macromolecules, 2021, 192, 1160-1168.	3.6	41
96	Development of multifunctional films based on chitosan, nano silica and hops extracts. European Polymer Journal, 2021, 161, 110816.	2.6	9
97	Preparation and Characterization of Bioactive Chitosan-Based Films Incorporated with Olive Leaves Extract for Food Packaging Applications. Coatings, 2021, 11, 1339.	1.2	7
98	Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydrate Polymers, 2022, 277, 118876.	5.1	104
99	Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocolloids, 2022, 124, 107328.	5.6	200
100	Applications of bioactive compounds extracted from olive industry wastes: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 453-476.	5.9	17
101	Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. Food Bioscience, 2022, 46, 101542.	2.0	25
102	Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1218-1253.	5.9	23
103	Bioactive chitosan/extract peppermint films to food packing in brisee dough: mechanic properties, antioxidant activity and shelf life. Research, Society and Development, 2022, 11, e59211125436.	0.0	0
104	Food waste and by-product valorization as an integrated approach with zero waste: Future challenges. , 2022, , 569-596.		8
105	Chitosan-based antioxidant films incorporated with root extract of <i>Aralia continentalis</i> Kitagawa for active food packaging applications. E-Polymers, 2022, 22, 125-135.	1.3	8
106	Olive Oil Phenolic Compounds as Antioxidants in Functional Foods: Description, Sources and Stability. , 2022, , 427-453.		1
107	Effects of Pine Needle Essential Oil Combined with Chitosan Shellac on Physical and Antibacterial Properties of Emulsions for Egg Preservation. Food Biophysics, 2022, 17, 260-272.	1.4	12
108	Extracted Pomace Olive Oil Use for the Preparation of Starch Graft Copolymer. International Journal of Renewable Energy Development, 2022, 11, 559-567.	1.2	0
109	Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei. Biomolecules, 2021, 11, 1869.	1.8	12
110	Natural plant fibers obtained from agricultural residue used as an ingredient in food matrixes or packaging materials: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 371-415.	5.9	15
111	Chitosan-based bionanocomposites for food packaging applications. , 2022, , 181-200.		2

		CITATION REPORT		
#	Article	I	F	CITATIONS
113	Chitosan@4,6-Dihydroxyisophthalaldehyde Microgels with Hydrazine-Induced Fluorescence Imaging Applications. ACS Applied Polymer Materials, 2022, 4, 4208-4218.	for Cell	2.0	3
114	Development and characterization of chitosan/guar gum active packaging containing walnu husk extract and its application on fresh-cut apple preservation. International Journal of Biol Macromolecules, 2022, 209, 1307-1318.	ıt green ogical :	3.6	37
115	A second life for fruit and vegetable waste: a review on bioplastic films and coatings for pot food protection applications. Green Chemistry, 2022, 24, 4703-4727.	ential	4.6	35
116	Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Marine Drugs, 20.	22, 20, 335.	2.2	40
118	Green composites for food packaging. , 2022, , 237-259.			2
120	Application of Immobilized Lactase in Flexible and Biodegradable Films to Obtain Milk with I Lactose Concentration. Journal of Packaging Technology and Research, 2022, 6, 199-212.	LOW	0.6	1
121	Characterization and release kinetics model of thymol from starchâ€based nanocomposite food simulator. Journal of Food Biochemistry, 2022, 46, .	film into	1.2	1
122	Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabb anthocyanins for visually monitoring shrimp freshness. International Journal of Biological Macromolecules, 2022, 218, 900-908.	age	3.6	36
123	Simultaneously realizing intelligent color change and high haze of κ-carrageenan film by incorporating black corn seed powder for visually monitoring pork freshness. Food Chemist 402, 134257.	ry, 2023,	4.2	12
124	Characterization and antioxidant properties of chitosan/ethyl-vanillin edible films produced Schiff-base reaction. Food Science and Biotechnology, 2023, 32, 157-167.	via	1.2	2
125	The Green Era of Food Packaging: General Considerations and New Trends. Polymers, 2022,	14, 4257.	2.0	12
126	Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food ap A comprehensive review. Frontiers in Nutrition, 0, 9, .	blications:	1.6	17
127	Green Carbon Dots as Additives of Biopolymer Films for Preserving from Oxidation of Oil-Ba Products. Antioxidants, 2022, 11, 2193.	sed	2.2	3
128	Composites of Thermoplastic Starch and Lignin-Rich Agricultural Waste for the Packaging o Foods. ACS Sustainable Chemistry and Engineering, 2022, 10, 15402-15413.	f Fatty :	3.2	14
129	Multifunctional nanocomposite based on polyvinyl alcohol, cellulose nanocrystals, titanium and apple peel extract for food packaging. International Journal of Biological Macromolecule 227, 551-563.	dioxide, es, 2023, s	3.6	7
130	Biodegradability of bioplastic film using different regions of Pennisetum purpureum incorpo with gelatine and chitosan. International Journal of Environmental Science and Technology, 10313-10324.	rated 2023, 20,	1.8	2
131	Engineering chitosan into fully bio-sourced, water-soluble and enhanced antibacterial poly(aprotic/protic ionic liquid)s packaging membrane. International Journal of Biological Macromolecules, 2023, 230, 123182.	:	3.6	3
132	Chitosan-based nanocomposites as coatings and packaging materials for the postharvest in of agricultural product: A review. Carbohydrate Polymers, 2023, 309, 120666.	nprovement	5.1	34

#	Article	IF	CITATIONS
133	Impact of the ripening process and extraction method on the properties of starch from achachairu seeds. Journal of Thermal Analysis and Calorimetry, 0, , .	2.0	0
143	By-Products as Sustainable Source of Bioactive Compounds for Potential Application in the Field of Food and New Materials for Packaging Development. Food and Bioprocess Technology, 2024, 17, 606-627.	2.6	6
152	Polymer–nano-chitin and polymer–nano-chitosan composites for food packaging. , 2024, , 137-156.		0
154	A comprehensive review on chitosan based bionanocomposites: Enormous potential for biodegradable food packaging applications of future. AIP Conference Proceedings, 2024, , .	0.3	0