Automated Breast Ultrasound Lesions Detection Using

IEEE Journal of Biomedical and Health Informatics 22, 1218-1226

DOI: 10.1109/jbhi.2017.2731873

Citation Report

#	Article	IF	CITATIONS
1	Breast Cancer Detection From Histopathological Images Using Deep Learning., 2018,,.		41
2	Is Intensity Inhomogeneity Correction Useful for Classification of Breast Cancer in Sonograms Using Deep Neural Network?. Journal of Healthcare Engineering, 2018, 2018, 1-10.	1.1	21
3	Deep Learning based Fetal Middle Cerebral Artery Segmentation in Large-scale Ultrasound Images. , 2018, , .		4
4	Breast Cancer Diagnosis Using Deep Learning Algorithm. , 2018, , .		39
5	Optimize Transfer Learning for Lung Diseases in Bronchoscopy Using a New Concept: Sequential Fine-Tuning. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-8.	2.2	41
6	Hierarchical Convolutional Neural Networks for Segmentation of Breast Tumors in MRI With Application to Radiogenomics. IEEE Transactions on Medical Imaging, 2019, 38, 435-447.	5.4	113
7	New one-step model of breast tumor locating based on deep learning. Journal of X-Ray Science and Technology, 2019, 27, 839-856.	0.7	10
8	An RDAU-NET model for lesion segmentation in breast ultrasound images. PLoS ONE, 2019, 14, e0221535.	1.1	103
9	A Novel Focal Tversky Loss Function With Improved Attention U-Net for Lesion Segmentation. , 2019, , .		415
10	Challenges and future directions in neutrosophic set-based medical image analysis., 2019,, 313-343.		16
11	The Possibility of Deep Learning-Based, Computer-Aided Skin Tumor Classifiers. Frontiers in Medicine, 2019, 6, 191.	1.2	53
12	A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence–Powered Ultrasound for Improving Clinical Workflow. Journal of the American College of Radiology, 2019, 16, 1318-1328.	0.9	170
13	A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network. Applied Soft Computing Journal, 2019, 84, 105685.	4.1	49
14	Breast Cancer Detection Using Extreme Learning Machine Based on Feature Fusion With CNN Deep Features. IEEE Access, 2019, 7, 105146-105158.	2.6	215
15	Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images. BioMedical Engineering OnLine, 2019, 18, 8.	1.3	44
16	Convolutional Neural Networks for Radiologic Images: A Radiologist's Guide. Radiology, 2019, 290, 590-606.	3.6	339
17	Deep Learning in Medical Ultrasound Analysis: A Review. Engineering, 2019, 5, 261-275.	3.2	459
18	Artificial intelligence in breast ultrasound. World Journal of Radiology, 2019, 11, 19-26.	0.5	67

#	ARTICLE	IF	CITATIONS
19	Adaptive Augmentation of Medical Data Using Independently Conditional Variational Auto-Encoders. IEEE Transactions on Medical Imaging, 2019, 38, 2807-2820.	5.4	54
20	Computerâ€Aided Diagnosis of Solid Breast Lesions With Ultrasound: Factors Associated With Falseâ€negative and Falseâ€positive Results. Journal of Ultrasound in Medicine, 2019, 38, 3193-3202.	0.8	24
21	Machine Learning on Biomedical Images: Interactive Learning, Transfer Learning, Class Imbalance, and Beyond. , 2019, , .		9
22	An Adaptive Region Growing Based on Neutrosophic Set in Ultrasound Domain for Image Segmentation. IEEE Access, 2019, 7, 60584-60593.	2.6	9
23	A Novel Multispace Image Reconstruction Method for Pathological Image Classification Based on Structural Information. BioMed Research International, 2019, 2019, 1-9.	0.9	6
24	Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making. European Radiology, 2019, 29, 5458-5468.	2.3	87
25	Artificial intelligence in cancer imaging: Clinical challenges and applications. Ca-A Cancer Journal for Clinicians, 2019, 69, 127-157.	157.7	965
26	Capsule Neural Network based Height Classification using Low-Cost Automotive Ultrasonic Sensors. , 2019, , .		10
27	Automated Breast Lesion Segmentation from Ultrasound Images based on PPU-Net., 2019,,.		1
28	A Matlab Toolbox for Feature Importance Ranking. , 2019, , .		7
29	Breast Cancer Classification in Ultrasound Images using Transfer Learning. , 2019, , .		42
30	Determination of Breast Cancer Using Neural Networks. , 2019, , .		0
31	Computer aided diagnosis system developed for ultrasound diagnosis of liver lesions using deep learning. , 2019, , .		15
32	Classification Methods to Improve Performance in Breast Cancer Screening. , 2019, , .		1
33	Breast Ultrasound Image Classification Using a Pre-Trained Convolutional Neural Network. , 2019, , .		13
34	Evaluating the performance of convolutional neural networks with direct acyclic graph architectures in automatic segmentation of breast lesion in US images. BMC Medical Imaging, 2019, 19, 85.	1.4	20
35	Deep Learning-Based Automatic Endometrium Segmentation and Thickness Measurement for 2D Transvaginal Ultrasound., 2019, 2019, 993-997.		9
36	Boundary-aware Semi-supervised Deep Learning for Breast Ultrasound Computer-Aided Diagnosis. , 2019, 2019, 947-950.		7

#	Article	IF	Citations
37	Simultaneous segmentation and classification of breast lesions from ultrasound images using Mask R-CNN. , 2019, , .		11
38	U-Net with optimal thresholding for small blob detection in medical images. , 2019, , .		12
39	Robust Methods for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1730-1741.	3.9	119
40	Automated diagnosis of breast ultrasonography images using deep neural networks. Medical Image Analysis, 2019, 52, 185-198.	7.0	161
41	Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion. Medical Physics, 2019, 46, 746-755.	1.6	169
42	Deep learning in medical imaging and radiation therapy. Medical Physics, 2019, 46, e1-e36.	1.6	513
43	Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network. Journal of Biophotonics, 2019, 12, e201800255.	1.1	28
44	Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Transactions on Medical Imaging, 2019, 38, 762-774.	5.4	107
45	DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4, 728-739.	3.4	133
46	Computer aided detection in automated 3-D breast ultrasound images: a survey. Artificial Intelligence Review, 2020, 53, 1919-1941.	9.7	22
47	Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiology, 2020, 36, 337-343.	0.9	130
48	Survey of deep learning in breast cancer image analysis. Evolving Systems, 2020, 11, 143-163.	2.4	106
49	Deeply-Supervised Networks With Threshold Loss for Cancer Detection in Automated Breast Ultrasound. IEEE Transactions on Medical Imaging, 2020, 39, 866-876.	5.4	102
50	MR-Forest: A Deep Decision Framework for False Positive Reduction in Pulmonary Nodule Detection. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1652-1663.	3.9	9
51	Using deepâ€kearning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound in Obstetrics and Gynecology, 2020, 56, 579-587.	0.9	75
52	Automatic detection of brachytherapy seeds in 3D ultrasound images using a convolutional neural network. Physics in Medicine and Biology, 2020, 65, 035016.	1.6	9
53	Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Computer Methods and Programs in Biomedicine, 2020, 189, 105275.	2.6	59
54	An integrated approach for medical abnormality detection using deep patch convolutional neural networks. Visual Computer, 2020, 36, 1869-1882.	2.5	32

#	Article	IF	CITATIONS
55	CAD and AI for breast cancerâ€"recent development and challenges. British Journal of Radiology, 2020, 93, 20190580.	1.0	100
56	GPU acceleration of liver enhancement for tumor segmentation. Computer Methods and Programs in Biomedicine, 2020, 184, 105285.	2.6	12
57	Faster Region Convolutional Neural Networks Applied to Ultrasonic Images for Breast Lesion Detection and Classification. , 2020, , .		3
58	A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound. Computers in Biology and Medicine, 2020, 126, 104036.	3.9	50
59	Contextual Level-Set Method for Breast Tumor Segmentation. IEEE Access, 2020, 8, 189343-189353.	2.6	24
60	An attentionâ€supervised fullâ€resolution residual network for the segmentation of breast ultrasound images. Medical Physics, 2020, 47, 5702-5714.	1.6	22
61	3D Inception Uâ€net with Asymmetric Loss for Cancer Detection in Automated Breast Ultrasound. Medical Physics, 2020, 47, 5582-5591.	1.6	15
62	Identifying diagnosis evidence of cardiogenic stroke from Chinese echocardiograph reports. BMC Medical Informatics and Decision Making, 2020, 20, 126.	1.5	3
63	Collaborative framework for automatic classification of respiratory sounds. IET Signal Processing, 2020, 14, 223-228.	0.9	14
64	Deep-Learning-Based Computer-Aided Systems for Breast Cancer Imaging: A Critical Review. Applied Sciences (Switzerland), 2020, 10, 8298.	1.3	44
65	Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features. Sensors, 2020, 20, 6838.	2.1	29
66	Fine-Tuning U-Net for Ultrasound Image Segmentation: Different Layers, Different Outcomes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2510-2518.	1.7	62
67	Breast Lesion Classification in Ultrasound Images Using Deep Convolutional Neural Network. IEEE Access, 2020, 8, 133349-133359.	2.6	36
68	Attention-Enriched Deep Learning Model for Breast Tumor Segmentation in Ultrasound Images. Ultrasound in Medicine and Biology, 2020, 46, 2819-2833.	0.7	102
69	Automated Classification of Blood Loss from Transurethral Resection of the Prostate Surgery Videos Using Deep Learning Technique. Applied Sciences (Switzerland), 2020, 10, 4908.	1.3	6
70	Accelerating Chan–Vese model with cross-modality guided contrast enhancement for liver segmentation. Computers in Biology and Medicine, 2020, 124, 103930.	3.9	4
71	Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Systems With Applications, 2020, 162, 113870.	4.4	34
72	Breast Malignant Detection using Deep Learning Model. , 2020, , .		2

#	ARTICLE	IF	CITATIONS
73	Study on automatic detection and classification of breast nodule using deep convolutional neural network system. Journal of Thoracic Disease, 2020, 12, 4690-4701.	0.6	24
74	3D tumor detection in automated breast ultrasound using deep convolutional neural network. Medical Physics, 2020, 47, 5669-5680.	1.6	15
75	An End-to-End Solution for Automatic Contouring of Tumor Region in Intraoperative Images of Breast Lumpectomy., 2020, 2020, 2003-2006.		0
76	Feasibility Study of Deep Learning Tumor Segmentation for a Merged Tumor Dataset: Head & Neck and Limbs. Journal of the Korean Physical Society, 2020, 77, 1049-1054.	0.3	1
77	Automatic Detection and Segmentation of Breast Cancer on MRI Using Mask R-CNN Trained on Non–Fat-Sat Images and Tested on Fat-Sat Images. Academic Radiology, 2022, 29, S135-S144.	1.3	33
78	Deep Learning Assisted Efficient AdaBoost Algorithm for Breast Cancer Detection and Early Diagnosis. IEEE Access, 2020, 8, 96946-96954.	2.6	129
79	A Novel Computer-Aided-Diagnosis System for Breast Ultrasound Images Based on BI-RADS Categories. Applied Sciences (Switzerland), 2020, 10, 1830.	1.3	10
80	Breast ultrasound region of interest detection and lesion localisation. Artificial Intelligence in Medicine, 2020, 107, 101880.	3.8	69
81	Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks. Biocybernetics and Biomedical Engineering, 2020, 40, 977-986.	3.3	15
82	Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size. Optics and Laser Technology, 2020, 130, 106335.	2.2	14
83	A Deep Learning Approach to Resolve Aliasing Artifacts in Ultrasound Color Flow Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2615-2628.	1.7	19
84	Reducing the number of unnecessary biopsies of US-BI-RADS 4a lesions through a deep learning method for residents-in-training: a cross-sectional study. BMJ Open, 2020, 10, e035757.	0.8	21
85	Boundary Restored Network for Subpleural Pulmonary Lesion Segmentation on Ultrasound Images at Local and Global Scales. Journal of Digital Imaging, 2020, 33, 1155-1166.	1.6	6
86	Stan: Small Tumor-Aware Network for Breast Ultrasound Image Segmentation. , 2020, 2020, 1469-1473.		45
87	Breast Lesion Segmentation in Ultrasound Images Using Deep Convolutional Neural Networks. , 2020, , .		4
88	A Detailed Investigation on Reduction of False Positive Rate in Breast Cancer Detection. , 2020, , .		4
89	Breast Lesion Segmentation in Ultrasound Images with Limited Annotated Data., 2020,,.		9
90	Saliency-guided automatic detection and segmentation of tumor in breast ultrasound images. Biomedical Signal Processing and Control, 2020, 60, 101945.	3.5	15

#	ARTICLE	IF	CITATIONS
91	Self-co-attention neural network for anatomy segmentation in whole breast ultrasound. Medical Image Analysis, 2020, 64, 101753.	7.0	45
92	Lesion Segmentation in Ultrasound Using Semi-Pixel-Wise Cycle Generative Adversarial Nets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2555-2565.	1.9	24
93	On-device Training for Breast Ultrasound Image Classification. , 2020, , .		7
94	BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Physics in Medicine and Biology, 2020, 65, 125005.	1.6	38
95	Generalization error analysis for deep convolutional neural network with transfer learning in breast cancer diagnosis. Physics in Medicine and Biology, 2020, 65, 105002.	1.6	23
96	RDA-UNET-WGAN: An Accurate Breast Ultrasound Lesion Segmentation Using Wasserstein Generative Adversarial Networks. Arabian Journal for Science and Engineering, 2020, 45, 6399-6410.	1.7	45
97	TDP: Two-dimensional perceptron for image recognition. Knowledge-Based Systems, 2020, 195, 105615.	4.0	5
98	Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions. BioMed Research International, 2020, 2020, 1-10.	0.9	13
99	Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 2020, 61, 102027.	3.5	122
100	Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and Quantification of Liver Fat with Radiofrequency Ultrasound Data Using One-dimensional Convolutional Neural Networks. Radiology, 2020, 295, 342-350.	3.6	79
101	Channel Attention Module with Multi-scale Grid Average Pooling for Breast Cancer Segmentation in an Ultrasound Image. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1-1.	1.7	62
102	Improved small blob detection in 3D images using jointly constrained deep learning and Hessian analysis. Scientific Reports, 2020, 10, 326.	1.6	19
103	A deep convolutional neural network architecture for interstitial lung disease pattern classification. Medical and Biological Engineering and Computing, 2020, 58, 725-737.	1.6	46
104	Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods. IEEE Access, 2020, 8, 4171-4181.	2.6	177
105	Computer-aided tumor detection in automated breast ultrasound using a 3-D convolutional neural network. Computer Methods and Programs in Biomedicine, 2020, 190, 105360.	2.6	24
106	Computerâ€aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Computer Methods and Programs in Biomedicine, 2020, 190, 105361.	2.6	143
107	Optimal cropping for input images used in a convolutional neural network for ultrasonic diagnosis of liver tumors. Japanese Journal of Applied Physics, 2020, 59, SKKE09.	0.8	6
108	Two-stage ultrasound image segmentation using U-Net and test time augmentation. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 981-988.	1.7	69

#	Article	IF	CITATIONS
109	Ultrasound tissue classification: a review. Artificial Intelligence Review, 2021, 54, 3055-3088.	9.7	5
110	Automated seeding for ultrasound skin lesion segmentation. Ultrasonics, 2021, 110, 106268.	2.1	11
111	Medical image based breast cancer diagnosis: State of the art and future directions. Expert Systems With Applications, 2021, 167, 114095.	4.4	43
112	Simultaneous compression and speckle reduction of clinical breast and fetal ultrasound images using rate-fidelity optimized coding. Ultrasonics, 2021, 110, 106229.	2.1	1
113	3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network. Expert Systems With Applications, 2021, 168, 114410.	4.4	17
114	Using BI-RADS Stratifications as Auxiliary Information for Breast Masses Classification in Ultrasound Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2058-2070.	3.9	22
115	â€~Black Box' to â€~Conversational' Machine Learning: Ondansetron Reduces Risk of Hospital-Acquired Venous Thromboembolism. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2204-2214.	3.9	24
116	Biomedical imaging and analysis through deep learning. , 2021, , 49-74.		2
117	Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems With Applications, 2021, 167, 114161.	4.4	195
118	Tumor segmentation in automated whole breast ultrasound using bidirectional LSTM neural network and attention mechanism. Ultrasonics, 2021, 110, 106271.	2.1	28
119	Firefly optimization-based segmentation technique to analyse medical images of breast cancer. International Journal of Computer Mathematics, 2021, 98, 1293-1308.	1.0	26
120	Deep Learning for Automatic Segmentation of Hybrid Optoacoustic Ultrasound (OPUS) Images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 688-696.	1.7	32
121	Deep Learning in Medical Ultrasound Image Analysis: A Review. IEEE Access, 2021, 9, 54310-54324.	2.6	38
122	Classification of benign and malignant breast masses using entropy from nonlinear ultrasound radiofrequency signal. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 084302.	0.2	2
123	False-negative results on computer-aided detection software in preoperative automated breast ultrasonography of breast cancer patients. Ultrasonography, 2021, 40, 83-92.	1.0	6
124	Unified Analysis Specific to the Medical Field in the Interpretation of Medical Images through the Use of Deep Learning. E-health Telecommunication Systems and Networks, 2021, 10, 41-74.	0.7	5
125	Estimation of the ambit of breast cancer with a modified ResNet analysis using machine learning approach. , 2021, , .		0
126	An unsupervised style normalization method for cytopathology images. Computational and Structural Biotechnology Journal, 2021, 19, 3852-3863.	1.9	8

#	Article	IF	CITATIONS
127	A Pregnancy Prediction System based on Uterine Peristalsis from Ultrasonic Images. Intelligent Automation and Soft Computing, 2021, 29, 335-352.	1.6	1
128	Computer-aided detection of abnormality in mammography using deep object detectors., 2021,, 1-18.		0
130	Breast Lesions Detection and Classification via YOLO-Based Fusion Models. Computers, Materials and Continua, 2021, 69, 1407-1425.	1.5	18
131	Weakly-Supervised Ultrasound Video Segmentation with Minimal Annotations. Lecture Notes in Computer Science, 2021, , 648-658.	1.0	2
132	USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning. Lecture Notes in Computer Science, 2021, , 627-637.	1.0	18
133	Survey on Machine Learning and Deep Learning Applications in Breast Cancer Diagnosis. Cognitive Computation, 2021, 13, 1451-1470.	3.6	46
134	SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation in Ultrasound Image. IEEE Transactions on Medical Imaging, 2022, 41, 476-490.	5.4	47
135	Semantic Segmentation of Breast Ultrasound Image with Pyramid Fuzzy Uncertainty Reduction and Direction Connectedness Feature. , 2021, , .		2
136	A Prior-mask-guided Few-shot Learning for Skin Lesion Segmentation. Computing (Vienna/New York), 2023, 105, 717-739.	3.2	15
137	MSU-Net: Multi-Scale U-Net for 2D Medical Image Segmentation. Frontiers in Genetics, 2021, 12, 639930.	1.1	54
138	Design of hybrid neural networks of the ensemble structure. Eastern-European Journal of Enterprise Technologies, 2021, 1, 31-45.	0.3	0
139	Multiscale fused network with additive channel–spatial attention for image segmentation. Knowledge-Based Systems, 2021, 214, 106754.	4.0	35
140	Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging. Cancers, 2021, 13, 738.	1.7	79
141	Early Breast Cancer Detection Utilizing Artificial Neural Network. WSEAS Transactions on Biology and Biomedicine, 2021, 18, 32-42.	0.3	16
142	Disease prediction based retinal segmentation using bi-directional ConvLSTMU-Net. Journal of Ambient Intelligence and Humanized Computing, 0 , , 1 .	3.3	14
143	A survey on incorporating domain knowledge into deep learning for medical image analysis. Medical Image Analysis, 2021, 69, 101985.	7.0	128
144	Combining Bayesian And Deep Learning Methods For The Delineation Of The Fan In Ultrasound Images. , 2021, , .		1
145	Automated ultrasound assessment of amniotic fluid index using deep learning. Medical Image Analysis, 2021, 69, 101951.	7.0	22

#	Article	IF	CITATIONS
146	Mssa-Net: Multi-Scale Self-Attention Network For Breast Ultrasound Image Segmentation. , 2021, , .		16
147	Artificial intelligence in breast ultrasonography. Ultrasonography, 2021, 40, 183-190.	1.0	29
148	Machine Learning Models to Improve the Differentiation Between Benign and Malignant Breast Lesions on Ultrasound: A Multicenter External Validation Study. Cancer Management and Research, 2021, Volume 13, 3367-3379.	0.9	8
149	Convolutional neural network and transfer learning for dose volume histogram prediction for prostate cancer radiotherapy. Medical Dosimetry, 2021, 46, 335-341.	0.4	3
150	Effective diagnostic model construction based on discriminative breast ultrasound image regions using deep feature extraction. Medical Physics, 2021, 48, 2920-2928.	1.6	3
151	Application of ultrasonic dual-mode artificially intelligent architecture in assisting radiologists with different diagnostic levels on breast masses classification. Diagnostic and Interventional Radiology, 2021, 27, 315-322.	0.7	11
152	Review of Quantitative Imaging for Objective Assessment of Fat Grafting Outcomes in Breast Surgery. Aesthetic Surgery Journal, 2021, 41, S39-S49.	0.9	5
153	Automatic semantic segmentation of breast tumors in ultrasound images based on combining fuzzy logic and deep learningâ€"A feasibility study. PLoS ONE, 2021, 16, e0251899.	1.1	41
154	A generative adversarial network-based abnormality detection using only normal images for model training with application to digital breast tomosynthesis. Scientific Reports, 2021, 11, 10276.	1.6	14
155	Global guidance network for breast lesion segmentation in ultrasound images. Medical Image Analysis, 2021, 70, 101989.	7.0	92
156	Generative Adversarial Networks in Medical Image Processing. Current Pharmaceutical Design, 2021, 27, 1856-1868.	0.9	26
157	Breast intervention surgery robot under image navigation: A review. Advances in Mechanical Engineering, 2021, 13, 168781402110281.	0.8	0
158	Combination Ultrasound and Mammography for Breast Cancer Classification using Deep Learning. , 2021, , .		0
159	Automated Recognition of Ultrasound Cardiac Views Based on Deep Learning with Graph Constraint. Diagnostics, 2021, 11, 1177.	1.3	3
160	Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines, 2021, 9, 720.	1.4	43
161	Detection and recognition of ultrasound breast nodules based on semi-supervised deep learning: a powerful alternative strategy. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2265-2278.	1.1	15
162	Detection of Sleep Apnea from Single-Lead ECG: Comparison of Deep Learning Algorithms. , 2021, , .		18
164	Lesion segmentation in breast ultrasound images using the optimized marked watershed method. BioMedical Engineering OnLine, 2021, 20, 57.	1.3	8

#	Article	IF	Citations
165	Artificial intelligence in ultrasound. European Journal of Radiology, 2021, 139, 109717.	1.2	75
166	Variation-Aware Federated Learning With Multi-Source Decentralized Medical Image Data. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2615-2628.	3.9	59
167	A Performance Based Study on Deep Learning Algorithms in the Effective Prediction of Breast Cancer. , 2021, , .		28
168	BGM-Net: Boundary-Guided Multiscale Network for Breast Lesion Segmentation in Ultrasound. Frontiers in Molecular Biosciences, 2021, 8, 698334.	1.6	5
169	Deep Learning Application for Analyzing of Constituents and Their Correlations in the Interpretations of Medical Images. Diagnostics, $2021,11,1373.$	1.3	7
170	Breast ultrasound image segmentation: A coarseâ€toâ€fine fusion convolutional neural network. Medical Physics, 2021, 48, 4262-4278.	1.6	21
171	Shape-Adaptive Convolutional Operator for Breast Ultrasound Image Segmentation., 2021,,.		8
172	Improved U-net MALF model for lesion segmentation in breast ultrasound images. Biomedical Signal Processing and Control, 2021, 68, 102721.	3.5	25
173	Semantic segmentation of breast ultrasound image with fuzzy deep learning network and breast anatomy constraints. Neurocomputing, 2021, 450, 319-335.	3.5	26
174	Tolerating Data Missing in Breast Cancer Diagnosis from Clinical Ultrasound Reports via Knowledge Graph Inference. , 2021, , .		13
175	An efficient deep neural network based abnormality detection and multi-class breast tumor classification. Multimedia Tools and Applications, 2022, 81, 13691-13711.	2.6	18
176	Saliency-guided deep learning network for automatic tumor bed volume delineation in post-operative breast irradiation. Physics in Medicine and Biology, 2021, 66, 175019.	1.6	5
177	Segmentation and classification using image processing and supervising learning framework for mitosis detection in breast cancer mammographic images. Journal of Physics: Conference Series, 2021, 1979, 012059.	0.3	0
178	AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound. Medical Image Analysis, 2021, 72, 102137.	7.0	15
179	Tumor Segmentation in Breast Ultrasound Image by Means of Res Path Combined with Dense Connection Neural Network. Diagnostics, 2021, 11, 1565.	1.3	14
180	Deep Learning Assisted Detection of Abdominal Free Fluid in Morison's Pouch During Focused Assessment With Sonography in Trauma. Frontiers in Medicine, 2021, 8, 707437.	1.2	14
181	Tumor saliency estimation for breast ultrasound images via breast anatomy modeling. Artificial Intelligence in Medicine, 2021, 119, 102155.	3.8	2
182	A Deep Neural Network Combined with Radial Basis Function for Abnormality Classification. Mobile Networks and Applications, 2021, 26, 2318-2328.	2.2	2

#	Article	IF	CITATIONS
183	Automatic detection of ultrasound breast lesions: a novel saliency detection model based on multiple priors. Signal, Image and Video Processing, 2022, 16, 723-734.	1.7	2
184	Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion. Computer Methods and Programs in Biomedicine, 2021, 208, 106221.	2.6	50
185	Ultrasound Image Features under Deep Learning in Breast Conservation Surgery for Breast Cancer. Journal of Healthcare Engineering, 2021, 2021, 1-9.	1.1	1
186	A Study of Gene Expression, Structure, and Contractility of iPSC-Derived Cardiac Myocytes from a Family with Heart Disease due to LMNA Mutation. Annals of Biomedical Engineering, 2021, 49, 3524-3539.	1.3	5
187	A Review of Cancer Detection and Prediction Based on Supervised and Unsupervised Learning Techniques. Intelligent Systems Reference Library, 2022, , 21-30.	1.0	2
188	FS-UNet: Mass segmentation in mammograms using an encoder-decoder architecture with feature strengthening. Computers in Biology and Medicine, 2021, 137, 104800.	3.9	13
189	An efficient deep Convolutional Neural Network based detection and classification of Acute Lymphoblastic Leukemia. Expert Systems With Applications, 2021, 183, 115311.	4.4	77
190	Breast Cancer Detection Through Feature Clustering and Deep Learning. Intelligent Automation and Soft Computing, 2022, 31, 1273-1286.	1.6	3
191	ARF-Net: An Adaptive Receptive Field Network for breast mass segmentation in whole mammograms and ultrasound images. Biomedical Signal Processing and Control, 2022, 71, 103178.	3.5	27
192	Ultrasound and artificial intelligence. , 2021, , 177-210.		0
193	Feature Pyramid Nonlocal Network With Transform Modal Ensemble Learning for Breast Tumor Segmentation in Ultrasound Images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3549-3559.	1.7	15
194	Breast Ultrasound Image Processing. Advances in Computational Intelligence and Robotics Book Series, 2021, , 44-69.	0.4	1
195	Cross-Tissue/Organ Transfer Learning for the Segmentation of Ultrasound Images Using Deep Residual U-Net. Journal of Medical and Biological Engineering, 2021, 41, 137-145.	1.0	6
196	Residual Feedback Network for Breast Lesion Segmentation in Ultrasound Image. Lecture Notes in Computer Science, 2021, , 471-481.	1.0	12
197	Technology trends and applications of deep learning in ultrasonography: image quality enhancement, diagnostic support, and improving workflow efficiency. Ultrasonography, 2021, 40, 7-22.	1.0	23
198	Impact of Ultrasound Image Reconstruction Method on Breast Lesion Classification with Deep Learning. Lecture Notes in Computer Science, 2019, , 41-52.	1.0	14
199	Fine Tuning U-Net for Ultrasound Image Segmentation: Which Layers?. Lecture Notes in Computer Science, 2019, , 235-242.	1.0	12
200	A Second-Order Subregion Pooling Network for Breast Lesion Segmentation in Ultrasound. Lecture Notes in Computer Science, 2020, , 160-170.	1.0	11

#	Article	IF	CITATIONS
201	Proactive Preventive and Evidence-Based Artificial Intelligene Models: Future Healthcare. Algorithms for Intelligent Systems, 2020, , 463-472.	0.5	3
202	A survey of deep learning models in medical therapeutic areas. Artificial Intelligence in Medicine, 2021, 112, 102020.	3.8	29
203	Breast ultrasound lesions recognition: end-to-end deep learning approaches. Journal of Medical Imaging, $2018, 6, 1$.	0.8	35
204	Characterization of indeterminate breast lesions on B-mode ultrasound using automated machine learning models. Journal of Medical Imaging, 2020, 7, .	0.8	2
205	End-to-end breast ultrasound lesions recognition with a deep learning approach. , 2018, , .		6
206	Deep learning-based quantitative analysis of dental caries using optical coherence tomography: an ex vivo study. , 2019, , .		7
207	Target depth-regularized reconstruction in diffuse optical tomography using ultrasound segmentation as prior information. Biomedical Optics Express, 2020, 11, 3331.	1.5	6
208	Age of heart disease presentation and dysmorphic nuclei in patients with LMNA mutations. PLoS ONE, 2017, 12, e0188256.	1.1	9
209	Comparison of Type-2 Fuzzy Inference Method and Deep Neural Networks for Mass Detection from Breast Ultrasonography Images. Cumhuriyet Science Journal, 2020, 41, 968-975.	0.1	2
210	Breast Infrared Thermography Segmentation Based on Adaptive Tuning of a Fully Convolutional Network. Current Medical Imaging, 2020, 16, 611-621.	0.4	9
211	DenseNet for Breast Tumor Classification in Mammographic Images. Lecture Notes in Computer Science, 2021, , 166-176.	1.0	3
212	Multi-Scale Fusion U-Net for the Segmentation of Breast Lesions. IEEE Access, 2021, 9, 137125-137139.	2.6	10
213	Bi-Modal Transfer Learning for Classifying Breast Cancers via Combined B-Mode and Ultrasound Strain Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 222-232.	1.7	22
214	Uterine Movement Analysis Based on Velocity Information by Convolutional Neural Networks. , 2021, , .		0
215	Ultrasound Anomaly Detection Based on Variational Autoencoders. , 2021, , .		5
216	A Deep Learning-Based Transfer Learning Framework for the Early Detection and Classification of Dermoscopic Images of Melanoma. Biomedical and Pharmacology Journal, 2021, 14, 1231-1247.	0.2	3
217	Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nature Communications, 2021, 12, 5645.	5.8	94
218	MDA-Net: Multiscale dual attention-based network for breast lesion segmentation using ultrasound images. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 7283-7299.	2.7	12

#	Article	IF	CITATIONS
219	Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks. Diagnostics, 2021, 11, 1859.	1.3	21
220	Combination of Aggregated Channel Features (ACF) Detector and Faster R-CNN to Improve Object Detection Performance in Fetal Ultrasound Images. International Journal of Intelligent Engineering and Systems, 2018, 11, 65-74.	0.8	9
221	A novel region growing approach using similarity set score and homogeneity based on neutrosophic set for ultrasound image segmentation. , 2019 , , .		0
222	Multi-scale Gradational-Order Fusion Framework for Breast Lesions Classification Using Ultrasound Images. Lecture Notes in Computer Science, 2020, , 171-180.	1.0	8
224	Optimization methods for deep neural networks classifying OCT images to detect dental caries. , 2020, , .		4
227	Gaussian Dropout Based Stacked Ensemble CNN for Classification of Breast Tumor in Ultrasound Images. Irbm, 2022, 43, 715-733.	3.7	16
228	Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-28.	0.7	55
229	Embedding Weighted Feature Aggregation Network with Domain Knowledge Integration for Breast Ultrasound Image Segmentation. Lecture Notes in Computer Science, 2020, , 66-74.	1.0	O
230	Parametric Image-based Breast Tumor Classification Using Convolutional Neural Network in the Contourlet Transform Domain. , 2020, , .		4
231	A novel approach with dual-sampling convolutional neural network for ultrasound image classification of breast tumors. Physics in Medicine and Biology, 2020, 65, 245001.	1.6	8
232	Knowledge tensor embedding framework with association enhancement for breast ultrasound diagnosis of limited labeled samples. Neurocomputing, 2022, 468, 60-70.	3. 5	19
233	Accurate segmentation of breast tumors using AE U-net with HDC model in ultrasound images. Biomedical Signal Processing and Control, 2022, 72, 103299.	3.5	28
235	MCRNet: Multi-level context refinement network for semantic segmentation in breast ultrasound imaging. Neurocomputing, 2022, 470, 154-169.	3.5	20
236	Ultrasound deep learning for monitoring of flow–vessel dynamics in murine carotid artery. Ultrasonics, 2022, 120, 106636.	2.1	16
237	A novel method for image segmentation: two-stage decoding network with boundary attention. International Journal of Machine Learning and Cybernetics, 2022, 13, 1461-1473.	2.3	5
238	Deep Learning Algorithms in Medical Image Processing for Cancer Diagnosis: Overview, Challenges and Future. Studies in Computational Intelligence, 2021, , 37-66.	0.7	9
239	Explainable AI and susceptibility to adversarial attacks: a case study in classification of breast ultrasound images., 2021,,.		3
240	Shift-Invariant Segmentation in Breast Ultrasound Images. , 2021, , .		4

#	Article	IF	CITATIONS
241	Ultrasound Domain Adaptation Using Frequency Domain Analysis. , 2021, , .		6
242	An Ultra-Fast Method for Simulation of Realistic Ultrasound Images. , 2021, , .		4
243	Evaluation of Complexity Measures for Deep Learning Generalization in Medical Image Analysis. , 2021, 2021, .		2
244	Literature Review on Breast Cancer Diagnosis using 3D Images: Methods and Performance Analysis. , 2021, , .		2
245	Methodology for Exploring Patterns of Epigenetic Information in Cancer Cells Using Data Mining Technique. Healthcare (Switzerland), 2021, 9, 1652.	1.0	2
246	Estimation of the Ambit of Breast Cancer with a Modified Resnet Analysis Using Machine Learning Approach. WSEAS Transactions on Biology and Biomedicine, 2021, 18, 183-190.	0.3	1
247	Faster RCNN Hyperparameter Selection for Breast Lesion Detection in 2D Ultrasound Images. Advances in Intelligent Systems and Computing, 2022, , 179-190.	0.5	1
248	Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images. BioMedical Engineering OnLine, 2021, 20, 112.	1.3	13
249	Medical image processing and COVID-19: A literature review and bibliometric analysis. Journal of Infection and Public Health, 2022, 15, 75-93.	1.9	28
250	FMRNet: A fused network of multiple tumoral regions for breast tumor classification with ultrasound images. Medical Physics, 2022, 49, 144-157.	1.6	12
251	The lesion detection efficacy of deep learning on automatic breast ultrasound and factors affecting its efficacy: a pilot study. British Journal of Radiology, 2022, 95, 20210438.	1.0	0
252	Deep-AVPpred: Artificial Intelligence Driven Discovery of Peptide Drugs for Viral Infections. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 5067-5074.	3.9	15
253	Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized Medical Imaging and Graphics, 2022, 95, 102026.	3.5	186
254	Artificial intelligence for breast cancer analysis: Trends & Samp; directions. Computers in Biology and Medicine, 2022, 142, 105221.	3.9	47
255	Segmentation of Breast Ultrasound Images using Densely Connected Deep Convolutional Neural Network and Attention Gates., 2021,,.		4
256	NGMMs: Neutrosophic Gaussian Mixture Models for Breast Ultrasound Image Classification., 2021, 2021, 3943-3947.		2
257	Breast lesion segmentation and characterization using the Small Tumor-Aware Network (STAN) and $2D/3D$ shape descriptors in ultrasound images., 2021 ,,.		0
258	A new automated segmentation and classification of mammogram images. Multimedia Tools and Applications, 2022, 81, 7783-7816.	2.6	6

#	Article	IF	Citations
259	Influence of the Computer-Aided Decision Support System Design on Ultrasound-Based Breast Cancer Classification. Cancers, 2022, 14, 277.	1.7	7
260	Early breast cancer diagnosis using cogent activation functionâ€based deep learning implementation on screened mammograms. International Journal of Imaging Systems and Technology, 2022, 32, 1101-1118.	2.7	3
261	Hybrid deep learning and genetic algorithms approach (HMB-DLGAHA) for the early ultrasound diagnoses of breast cancer. Neural Computing and Applications, 2022, 34, 8671-8695.	3.2	32
262	Deep learning applied to breast imaging classification and segmentation with human expert intervention. Journal of Ultrasound, 2022, 25, 659-666.	0.7	3
263	Fusion Siamese network with drift correction for target tracking in ultrasound sequences. Physics in Medicine and Biology, 2022, 67, 045018.	1.6	8
264	RCA-IUnet: a residual cross-spatial attention-guided inception U-Net model for tumor segmentation in breast ultrasound imaging. Machine Vision and Applications, 2022, 33, 1.	1.7	29
265	Two-Stage Hybrid Approach of Deep Learning Networks for Interstitial Lung Disease Classification. BioMed Research International, 2022, 2022, 1-10.	0.9	11
266	Saliency map-guided hierarchical dense feature aggregation framework for breast lesion classification using ultrasound image. Computer Methods and Programs in Biomedicine, 2022, 215, 106612.	2.6	8
267	A Novel Convolutional Neural Networks-Fused Shallow Classifier for Breast Cancer Detection. Intelligent Automation and Soft Computing, 2022, 33, 1321-1334.	1.6	1
268	<scp>Realâ€time</scp> automated segmentation of breast lesions using <scp>CNNâ€based</scp> deep learning paradigm: Investigation on mammogram and ultrasound. International Journal of Imaging Systems and Technology, 2022, 32, 1084-1100.	2.7	6
269	A Progressive and Cross-Domain Deep Transfer Learning Framework for Wrist Fracture Detection. Journal of Artificial Intelligence and Soft Computing Research, 2021, 12, 101-120.	3.5	7
270	Taxonomy on Breast Cancer Analysis Using Neural Networks. Lecture Notes in Electrical Engineering, 2022, , 383-391.	0.3	0
271	Breast Imaging by Convolutional Neural Networks From Joint Microwave and Ultrasonic Data. IEEE Transactions on Antennas and Propagation, 2022, 70, 6265-6276.	3.1	10
272	Cancer Detection in Automated 3-D Breast Ultrasound Using a Patch Bi-Convlstm Network. SSRN Electronic Journal, 0, , .	0.4	0
273	Deep Learning in Mammography Breast Cancer Detection. , 2022, , 1287-1300.		0
275	Impact of quality, type and volume of data used by deep learning models in the analysis of medical images. Informatics in Medicine Unlocked, 2022, 29, 100911.	1.9	15
276	Investigating Shift Variance of Convolutional Neural Networks in Ultrasound Image Segmentation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1703-1713.	1.7	10
277	Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare (Switzerland), 2022, 10, 541.	1.0	103

#	Article	IF	CITATIONS
278	A Fast Hybrid Classification Algorithm with Feature Reduction for Medical Images. Applied Bionics and Biomechanics, 2022, 2022, 1-11.	0.5	4
279	Application of Deep Learning in Breast Cancer Imaging. Seminars in Nuclear Medicine, 2022, 52, 584-596.	2.5	46
280	Use of realâ€time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound in Obstetrics and Gynecology, 2022, 59, 304-316.	0.9	23
281	The Role of Generative Adversarial Network in Medical Image Analysis: An In-depth Survey. ACM Computing Surveys, 2023, 55, 1-36.	16.1	22
282	ASS-GAN: Asymmetric semi-supervised GAN for breast ultrasound image segmentation. Neurocomputing, 2022, 493, 204-216.	3.5	23
283	Generative adversarial U-Net for domain-free few-shot medical diagnosis. Pattern Recognition Letters, 2022, 157, 112-118.	2.6	14
284	Automated diagnosis of breast cancer from ultrasound images using diverse ML techniques. Multimedia Tools and Applications, 2022, 81, 30169-30193.	2.6	4
285	Optimized generative adversarial network based breast cancer diagnosis with wavelet and texture features. Multimedia Systems, 0, , $1.$	3.0	2
286	Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1326-1336.	1.7	13
287	Pixel-wise triplet learning for enhancing boundary discrimination in medical image segmentation. Knowledge-Based Systems, 2022, 243, 108424.	4.0	7
288	Transfer learning for medical images analyses: A survey. Neurocomputing, 2022, 489, 230-254.	3.5	60
289	MSF-GAN: Multi-Scale Fuzzy Generative Adversarial Network for Breast Ultrasound Image Segmentation., 2021, 2021, 3193-3196.		3
290	RilG Modeled WCP Image-Based CNN Architecture and Feature-Based Approach in Breast Tumor Classification from B-Mode Ultrasound. Applied Sciences (Switzerland), 2021, 11, 12138.	1.3	5
291	<scp>CRâ€SSL</scp> : A closely related selfâ€supervised learning based approach for improving breast ultrasound tumor segmentation. International Journal of Imaging Systems and Technology, 0, , .	2.7	3
292	BGRA-Net: Boundary-Guided and Region-Aware Convolutional Neural Network for the Segmentation of Breast Ultrasound Images. , 2021, , .		5
293	A Comprehensive Survey on Deep-Learning-Based Breast Cancer Diagnosis. Cancers, 2021, 13, 6116.	1.7	34
294	Optimizing the transferâ€learning with pretrained deep convolutional neural networks for first stage breast tumor diagnosis using breast ultrasound visual images. Microscopy Research and Technique, 2022, 85, 1444-1453.	1.2	11
295	An Early Breast Cancer Detection System Using Recurrent Neural Network (RNN) with Animal Migration Optimization (AMO) Based Classification Method. Journal of Medical Imaging and Health Informatics, 2021, 11, 2950-2965.	0.2	4

#	ARTICLE	IF	Citations
296	Weakly-supervised deep learning for ultrasound diagnosis of breast cancer. Scientific Reports, 2021, 11, 24382.	1.6	19
297	A feasible method to determine the depth of myometrial invasion of endometrial carcinoma based on improved thinning algorithm. , 2021, , .		0
298	Improving the classification performance of breast ultrasound image using deep learning and optimization algorithm. , 2021, , .		4
300	Breast Cancer Detection in Saudi Arabian Women Using Hybrid Machine Learning on Mammographic Images. Computers, Materials and Continua, 2022, 72, 4833-4851.	1.5	3
301	BUSnet: A Deep Learning Model of Breast Tumor Lesion Detection for Ultrasound Images. Frontiers in Oncology, 2022, 12, 848271.	1.3	7
302	BUSIS: A Benchmark for Breast Ultrasound Image Segmentation. Healthcare (Switzerland), 2022, 10, 729.	1.0	22
303	Super-Resolution Ultrasound Imaging Scheme Based on a Symmetric Series Convolutional Neural Network. Sensors, 2022, 22, 3076.	2.1	3
304	A gated convolutional neural network for classification of breast lesions in ultrasound images. Soft Computing, 2022, 26, 5241-5250.	2.1	4
305	A Systematic Literature Review of Breast Cancer Diagnosis Using Machine Intelligence Techniques. Archives of Computational Methods in Engineering, 2022, 29, 4401-4430.	6.0	17
306	Extended Speckle Reduction Anisotropic Diffusion Filter to Despeckle Ultrasound Images. Intelligent Automation and Soft Computing, 2022, 34, 1187-1196.	1.6	3
307	DG-CNN: Introducing Margin Information into Convolutional Neural Networks for Breast Cancer Diagnosis in Ultrasound Images. Journal of Computer Science and Technology, 2022, 37, 277-294.	0.9	8
308	Multi-Task Learning with Context-Oriented Self-Attention for Breast Ultrasound Image Classification and Segmentation. , 2022, , .		9
309	EMT-NET: Efficient Multitask Network for Computer-Aided Diagnosis of Breast Cancer., 2022, 2022, .		7
310	A Systematic Review on Breast Cancer Detection Using Deep Learning Techniques. Archives of Computational Methods in Engineering, 2022, 29, 4599-4629.	6.0	21
311	External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiology: Artificial Intelligence, 2022, 4, .	3.0	87
312	Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head. Diagnostics, 2022, 12, 1152.	1.3	20
313	Deep learning in breast imaging. BJR Open, 2022, 4, .	0.4	5
314	Contrast-Enhanced Spectral Mammography-Based Prediction of Non-Sentinel Lymph Node Metastasis and Axillary Tumor Burden in Patients With Breast Cancer. Frontiers in Oncology, 2022, 12, .	1.3	1

#	Article	IF	CITATIONS
315	A deep fuzzy model for diagnosis of COVID-19 from CT images. Applied Soft Computing Journal, 2022, 122, 108883.	4.1	20
316	Unsupervised learning method via triple reconstruction for the classification of ultrasound breast lesions. Biomedical Signal Processing and Control, 2022, 77, 103782.	3.5	5
317	Breast cancer invasive carcinoma detection using deep convolution neural networks. AIP Conference Proceedings, 2022, , .	0.3	3
318	A Breast Ultrasound Tumor Detection Framework Using Convolutional Neural Networks. , 2022, , .		2
320	Using an Improved Residual Network to Identify PIK3CA Mutation Status in Breast Cancer on Ultrasound Image. Frontiers in Oncology, 0, 12, .	1.3	2
321	Boundary-rendering network for breast lesion segmentation in ultrasound images. Medical Image Analysis, 2022, 80, 102478.	7.0	22
322	PSOU-Net: A Neural Network Based on Improved Particle Swarm Optimization for Breast Ultrasound Image Segmentation. , 2021, , .		0
323	Intelligent breast cancer diagnostic system empowered by deep extreme gradient descent optimization. Mathematical Biosciences and Engineering, 2022, 19, 7978-8002.	1.0	6
325	Joint Localization and Classification of Breast Cancer in B-Mode Ultrasound Imaging via Collaborative Learning With Elastography. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4474-4485.	3.9	8
327	An Efficient Retinal Segmentation-Based Deep Learning Framework for Disease Prediction. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	0.8	5
328	An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm. Neural Computing and Applications, 2022, 34, 18015-18033.	3.2	43
329	Application of Artificial Intelligence to Ultrasonography. Science Insights, 2022, 41, 577-581.	0.1	0
330	Identification of women with high grade histopathology results after conisation by artificial neural networks. Radiology and Oncology, 2022, 56, 355-364.	0.6	0
331	Deep learning in ultrasound elastography imaging: A review. Medical Physics, 2022, 49, 5993-6018.	1.6	8
332	A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images. Frontiers in Oncology, 0, 12, .	1.3	3
333	Diagnostic Strategies for Breast Cancer Detection: From Image Generation to Classification Strategies Using Artificial Intelligence Algorithms. Cancers, 2022, 14, 3442.	1.7	13
334	Breast Cancer Detection and Classification Empowered With Transfer Learning. Frontiers in Public Health, 0, 10, .	1.3	22
335	Dynamic adversarial domain adaptation based on multikernel maximum mean discrepancy for breast ultrasound image classification. Expert Systems With Applications, 2022, 207, 117978.	4.4	11

#	Article	IF	CITATIONS
336	Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures. Intelligent Automation and Soft Computing, 2023, 35, 63-78.	1.6	2
337	Classification of Ultrasound Breast Images Using Fused Ensemble of Deep Learning Classifiers. , 2022, , .		0
338	Deep learning based on ultrasound images assists breast lesion diagnosis in China: a multicenter diagnostic study. Insights Into Imaging, 2022, 13 , .	1.6	14
339	A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images. Medical Physics, 2022, 49, 5787-5798.	1.6	18
340	BAGNet: Bidirectional Aware Guidance Network for Malignant Breast lesions Segmentation., 2022,,.		4
341	C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation. Computer Methods and Programs in Biomedicine, 2022, 225, 107086.	2.6	23
342	A Deep Learning Model Incorporating Knowledge Representation Vectors and Its Application in Diabetes Prediction. Disease Markers, 2022, 2022, 1-17.	0.6	5
343	MfdcModel: A Novel Classification Model for Classification of Benign and Malignant Breast Tumors in Ultrasound Images. Electronics (Switzerland), 2022, 11, 2583.	1.8	2
344	CTG-Net: Cross-task guided network for breast ultrasound diagnosis. PLoS ONE, 2022, 17, e0271106.	1.1	7
345	Transformers in medical image analysis. Intelligent Medicine, 2023, 3, 59-78.	1.6	76
346	Speckle Reduction via Deep Content-Aware Image Prior for Precise Breast Tumor Segmentation in an Ultrasound Image. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2638-2650.	1.7	5
347	Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Computers in Biology and Medicine, 2022, 149, 106073.	3.9	57
348	Hybrid UNET Model Segmentation forÂanÂEarly Breast Cancer Detection Using Ultrasound Images. Lecture Notes in Computer Science, 2022, , 464-476.	1.0	1
349	A New Dataset andÂaÂBaseline Model forÂBreast Lesion Detection inÂUltrasound Videos. Lecture Notes in Computer Science, 2022, , 614-623.	1.0	10
350	Detection of Breast Tumor in Mammograms Using Single Shot Detector Algorithm. Communications in Computer and Information Science, 2022, , 370-380.	0.4	0
351	Intelligent Internet of Things in Mammography Screening Using Multicenter Transformation Between Unified Capsules. IEEE Internet of Things Journal, 2023, 10, 1536-1545.	5.5	2
352	A Novel Deep Learning System for Breast Lesion Risk Stratification in Ultrasound Images. Lecture Notes in Computer Science, 2022, , 472-481.	1.0	0
353	Vision Transformers for Classification of Breast Ultrasound Images. , 2022, , .		64

#	Article	IF	CITATIONS
354	Breast Lesions Segmentation using Dual-level UNet (DL-UNet). , 2022, , .		0
355	Breast Ultrasound Image Processing. , 2022, , 586-609.		0
356	Focal U-Net: A Focal Self-attention based U-Net for Breast Lesion Segmentation in Ultrasound Images. , 2022, , .		5
357	Comparative Analysis of Current Deep Learning Networks for Breast Lesion Segmentation in Ultrasound Images., 2022,,.		4
358	Ultrason RF Sinyallerinden Göğýs Kanserinin Derin Öğrenme Tabanlı Yaklaşımlarla Tespit Edilmesi. FÆ Üniversitesi Mühendislik Bilimleri Dergisi, 0, , .	i±rat 0.2	0
359	Breast lesion detection using an anchor-free network from ultrasound images with segmentation-based enhancement. Scientific Reports, 2022, 12, .	1.6	7
360	Critical Analysis of the Current Medical Image-Based Processing Techniques for Automatic Disease Evaluation: Systematic Literature Review. Sensors, 2022, 22, 7065.	2.1	5
361	Evolution of research trends in artificial intelligence for breast cancer diagnosis and prognosis over the past two decades: A bibliometric analysis. Frontiers in Oncology, 0, 12, .	1.3	0
362	Research progress and hotspot of the artificial intelligence application in the ultrasound during 2011–2021: A bibliometric analysis. Frontiers in Public Health, 0, 10, .	1.3	6
363	DGANet: A Dual Global Attention Neural Network for Breast Lesion Detection in Ultrasound Images. Ultrasound in Medicine and Biology, 2023, 49, 31-44.	0.7	3
364	Objective assessment of segmentation models for thyroid ultrasound images. Journal of Ultrasound, 2023, 26, 673-685.	0.7	6
365	Automated Breast Ultrasound. Medical Radiology, 2022, , 127-141.	0.0	0
366	Artificial Intelligence in Breast Imaging. Medical Radiology, 2022, , 435-453.	0.0	2
367	Deep Learning-based Multi-stage segmentation method using ultrasound images for breast cancer diagnosis. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 10273-10292.	2.7	7
368	Breast cancer image analysis using deep learning techniques – a survey. Health and Technology, 2022, 12, 1133-1155.	2.1	1
369	Gabor-based U-Net crevasse detection with ground penetrating radar data. , 2022, , .		0
370	Automatic Breast Tumor Classification in Ultrasound Images Using Morphological Features and New Texture Analysis Based on Image Visibility Graph and Gabor Filters. SN Computer Science, 2023, 4, .	2.3	0
371	Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning. Machine Learning: Science and Technology, 0, , .	2.4	1

#	Article	IF	CITATIONS
372	The Role of Deep Learning in Advancing Breast Cancer Detection Using Different Imaging Modalities: A Systematic Review. Cancers, 2022, 14, 5334.	1.7	19
373	Artificial Intelligence Predicted Overall Survival and Classified Mature B-Cell Neoplasms Based on Immuno-Oncology and Immune Checkpoint Panels. Cancers, 2022, 14, 5318.	1.7	10
374	BUViTNet: Breast Ultrasound Detection via Vision Transformers. Diagnostics, 2022, 12, 2654.	1.3	16
375	CSwin-PNet: A CNN-Swin Transformer combined pyramid network for breast lesion segmentation in ultrasound images. Expert Systems With Applications, 2023, 213, 119024.	4.4	36
377	Implementation of pretrained CNNs on cancer detection., 2022,,.		0
378	Medical ultrasound image speckle reduction and resolution enhancement using texture compensated multi-resolution convolution neural network. Frontiers in Physiology, 0, 13 , .	1.3	2
379	ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image Segmentation. Healthcare (Switzerland), 2022, 10, 2262.	1.0	11
380	Applying Deep Learning for Breast Cancer Detection in Radiology. Current Oncology, 2022, 29, 8767-8793.	0.9	16
381	Evaluation of Hepatic Fibrosis Using Ultrasound Backscattered Radiofrequency Signals and One-Dimensional Convolutional Neural Networks. Diagnostics, 2022, 12, 2833.	1.3	3
382	A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning. Clinical Imaging, 2023, 94, 18-41.	0.8	13
383	Breast cancer classification and segmentation framework using multiscale <scp>CNN</scp> and Uâ€shaped dual decoded attention network. Expert Systems, 0, , .	2.9	5
384	RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation. Engineering Applications of Artificial Intelligence, 2023, 117, 105601.	4.3	12
385	AAU-Net: An Adaptive Attention U-Net for Breast Lesions Segmentation in Ultrasound Images. IEEE Transactions on Medical Imaging, 2023, 42, 1289-1300.	5.4	24
386	Pre-Training, Transfer Learning and Pretext Learning for a Convolutional Neural Network Applied to Automated Assessment of Clinical PET Image Quality. IEEE Transactions on Radiation and Plasma Medical Sciences, 2023, 7, 372-381.	2.7	3
387	Post-pandemic healthcare for COVID-19 vaccine: Tissue-aware diagnosis of cervical lymphadenopathy via multi-modal ultrasound semantic segmentation. Applied Soft Computing Journal, 2023, 133, 109947.	4.1	2
388	AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features. Biomedical Signal Processing and Control, 2023, 81, 104425.	3.5	14
389	Mass detection in automated 3-D breast ultrasound using a patch Bi-ConvLSTM network. Ultrasonics, 2023, 129, 106891.	2.1	6
390	Breast Ultrasound Tumor Detection Based on Active Learning and Deep Learning. Communications in Computer and Information Science, 2022, , 1-10.	0.4	3

#	ARTICLE	IF	Citations
391	Generating and Weighting Semantically Consistent Sample Pairs for Ultrasound Contrastive Learning. IEEE Transactions on Medical Imaging, 2023, 42, 1388-1400.	5.4	3
392	Deep meta-learning for the selection of accurate ultrasound based breast mass classifier. , 2022, , .		1
393	Breast lesion detection and visualization utilizing artificial intelligence and the H-scan., 2022,,.		0
394	Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation. Journal of Digital Imaging, 2023, 36, 739-752.	1.6	8
395	BUS-Net: Breast Tumour Detection Network for Ultrasound Images Using Bi-directional ConvLSTM and Dense Residual Connections. Journal of Digital Imaging, 2023, 36, 627-646.	1.6	1
396	Fully automatic tumor segmentation of breast ultrasound images with deep learning. Journal of Applied Clinical Medical Physics, 2023, 24, .	0.8	7
397	Trustworthy Breast Ultrasound Image Semantic Segmentation Based on Fuzzy Uncertainty Reduction. Healthcare (Switzerland), 2022, 10, 2480.	1.0	0
398	Recent advancements of deep learning in detecting breast cancer: a survey. Multimedia Systems, 2023, 29, 917-943.	3.0	3
399	Cross-Image Dependency Modeling for Breast Ultrasound Segmentation. IEEE Transactions on Medical Imaging, 2023, 42, 1619-1631.	5.4	4
400	ADASemSeg: An Active Learning Based Data Adaptation Strategy forÂlmproving Cross Dataset Breast Tumor Segmentation. Lecture Notes in Electrical Engineering, 2023, , 587-601.	0.3	0
401	FedMix: Mixed Supervised Federated Learning for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2023, 42, 1955-1968.	5.4	9
402	Deep Learning-based Automatic Diagnosis of Breast Cancer on MRI Using Mask R-CNN for Detection Followed by ResNet50 for Classification. Academic Radiology, 2023, 30, \$161-\$171.	1.3	6
403	HoVer-Trans: Anatomy-Aware HoVer-Transformer for ROI-Free Breast Cancer Diagnosis in Ultrasound Images. IEEE Transactions on Medical Imaging, 2023, 42, 1696-1706.	5.4	12
404	Difficulty-aware prior-guided hierarchical network for adaptive segmentation of breast tumors. Science China Information Sciences, 2023, 66, .	2.7	1
405	ATFE-Net: Axial Transformer and Feature Enhancement-based CNN for ultrasound breast mass segmentation. Computers in Biology and Medicine, 2023, 153, 106533.	3.9	10
406	Residual attention based uncertainty-guided mean teacher model for semi-supervised breast masses segmentation in 2D ultrasonography. Computerized Medical Imaging and Graphics, 2023, 104, 102173.	3.5	8
407	A new two-stream network based on feature separation and complementation for ultrasound image segmentation. Biomedical Signal Processing and Control, 2023, 82, 104567.	3.5	2
408	DM-YOLOv5 for ABUS Detection. , 2022, , .		1

#	ARTICLE	IF	CITATIONS
409	ECU-Net: multi-scale salient boundary detection and contrast feature enhancement U-Net for breast ultrasound image segmentation. Signal, Image and Video Processing, 0, , .	1.7	0
410	Deep learningâ€based multimodal fusion network for segmentation and classification of breast cancers using Bâ€mode and elastography ultrasound images. Bioengineering and Translational Medicine, 2023, 8,	3.9	2
411	Correlated-Weighted Statistically Modeled Contourlet and Curvelet Coefficient Image-Based Breast Tumor Classification Using Deep Learning. Diagnostics, 2023, 13, 69.	1.3	3
412	Medical-Network (Med-Net): A Neural Network forÂBreast Cancer Segmentation inÂUltrasound Image. Smart Innovation, Systems and Technologies, 2023, , 145-159.	0.5	0
413	A Regional-Attentive Multi-Task Learning Framework for Breast Ultrasound Image Segmentation and Classification. IEEE Access, 2023, $11,5377-5392$.	2.6	8
414	Segmentation of Arm Ultrasound Images in Breast Cancer-Related Lymphedema: A Database and Deep Learning Algorithm. IEEE Transactions on Biomedical Engineering, 2023, 70, 2552-2563.	2.5	4
415	HiCo: Hierarchical Contrastive Learning forÂUltrasound Video Model Pretraining. Lecture Notes in Computer Science, 2023, , 3-20.	1.0	2
416	Recent advances of Transformers in medical image analysis: A comprehensive review. , 2023, 2, .		6
417	Artificial intelligence diagnosis of intrauterine adhesion by 3D ultrasound imaging: a prospective study. Quantitative Imaging in Medicine and Surgery, 2023, 13, 2314-2327.	1.1	2
418	BiTNet: Hybrid deep convolutional model for ultrasound image analysis of human biliary tract and its applications. Artificial Intelligence in Medicine, 2023, 139, 102539.	3.8	1
419	AMCC-Net: An asymmetric multi-cross convolution for skin lesion segmentation on dermoscopic images. Engineering Applications of Artificial Intelligence, 2023, 122, 106154.	4.3	7
420	Heart disease classification based on ECG using machine learning models. Biomedical Signal Processing and Control, 2023, 84, 104796.	3.5	8
421	Breast UltraSound Image classification using fuzzy-rank-based ensemble network. Biomedical Signal Processing and Control, 2023, 85, 104871.	3 . 5	7
422	Attention guided neural ODE network for breast tumor segmentation in medical images. Computers in Biology and Medicine, 2023, 159, 106884.	3.9	4
423	Multi-path decoder U-Net: A weakly trained real-time segmentation network for object detection and localization in ultrasound scans. Computerized Medical Imaging and Graphics, 2023, 107, 102205.	3. 5	5
424	GeneViT: Gene Vision Transformer with Improved DeepInsight for cancer classification. Computers in Biology and Medicine, 2023, 155, 106643.	3.9	11
425	HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation. Computers in Biology and Medicine, 2023, 155, 106629.	3.9	28
426	BUSâ€Set: A benchmark for quantitative evaluation of breast ultrasound segmentation networks with public datasets. Medical Physics, 2023, 50, 3223-3243.	1.6	2

#	Article	IF	Citations
427	Cancer Detection Based on Medical Image Analysis with the Help of Machine Learning and Deep Learning Techniques: A Systematic Literature Review. Current Medical Imaging, 2023, 19, 1487-1522.	0.4	0
428	A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation. Physica Medica, 2023, 107, 102560.	0.4	11
429	Toward Intraoperative Margin Assessment Using a Deep Learning-Based Approach for Automatic Tumor Segmentation in Breast Lumpectomy Ultrasound Images. Cancers, 2023, 15, 1652.	1.7	2
430	Artificial intelligence-based traffic flow prediction: a comprehensive review. Journal of Electrical Systems and Information Technology, 2023, 10, .	1.2	4
431	Semi-universal geo-crack detection by machine learning. Frontiers in Earth Science, 0, 11, .	0.8	1
432	Transfer Learning with Pre-trained CNNs for Breast Cancer Stage Identification. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 127-136.	0.2	0
433	2-Stage Convolutional Neural Network for Breast Cancer Detection from Ultrasound Images. , 2023, , .		1
434	Boundary-oriented Network for Automatic Breast Tumor Segmentation in Ultrasound Images. Ultrasonic Imaging, 2023, 45, 62-73.	1.4	2
435	Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 859-876.	8.5	14
436	Survival Analysis for Multimode Ablation Using Self-Adapted Deep Learning Network Based on Multisource Features. IEEE Journal of Biomedical and Health Informatics, 2024, 28, 19-30.	3.9	1
437	Transformers in medical imaging: A survey. Medical Image Analysis, 2023, 88, 102802.	7.0	152
438	A Multiscale Nonlocal Feature Extraction Network for Breast Lesion Segmentation in Ultrasound Images. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	2.4	0
439	Ultrasonic imaging using conditional generative adversarial networks. Ultrasonics, 2023, 133, 107015.	2.1	1
440	Learning from multiple modalities of imaging data for cancer diagnosis. , 2023, , 67-87.		0
448	Machine learning and deep learning techniques for breast cancer diagnosis and classification: a comprehensive review of medical imaging studies. Journal of Cancer Research and Clinical Oncology, 2023, 149, 10473-10491.	1.2	9
450	Faster Boundary-aware Transformer for Breast Cancer Segmentation. , 2023, , .		2
452	Classification Performance of Breast Tumors Using Deep Learning by a Reflected Pixel-Based Augmentation Method., 2022,,.		0
455	Machine Learning Algorithms for Binary Classification of Breast Cancer. Lecture Notes in Electrical Engineering, 2023, , 29-42.	0.3	1

#	Article	IF	Citations
458	The Effect of Using Augmented Image in the Identification of Human Nail Abnormality using Yolo3. , 2023, , .		3
459	Exploiting Multi-Decision and Deep Refinement for Ultrasound Image Segmentation. , 2023, , .		0
462	A Study of Breast Cancer Identification with Deep Learning Techniques. Lecture Notes in Networks and Systems, 2023, , 743-757.	0.5	1
463	A Convolutional Neural Network Based Classification Approach for Breast Cancer Detection. , 2023, , .		2
467	A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning. Archives of Computational Methods in Engineering, 2023, 30, 5023-5052.	6.0	12
469	Detection of Cancer Using Deep Learning Techniques. Studies in Big Data, 2023, , 187-210.	0.8	0
477	A Novel Metaheuristic Algorithm Optimized Deep CNN-LSTM Model for Amla Disease Identification. , 2023, , .		0
479	Temperature prediction based on XGBoost-PredRNN++. , 2023, , .		0
481	Convolutional Neural Networks Based Classification of Segmented Breast Ultrasound Images – A Comparative Preliminary Study. , 2023, , .		0
482	Fully Automated Interpretable Breast Ultrasound Assisted Diagnosis System. , 2023, , .		0
486	State-of-the-Art of Breast Cancer Diagnosis in Medical Images via Convolutional Neural Networks (CNNs). Journal of Healthcare Informatics Research, 2023, 7, 387-432.	5.3	1
490	Using Forestnets for Partial Fine-Tuning Prior to Breast Cancer Detection in Ultrasounds., 2023,,.		0
493	Classification Task Assisted Segmentation Network for Breast Tumor Segmentation in Ultrasound Images. , 2023, , .		0
494	Machine Learning Detects a Biopsy Needle in Ultrasound Images. , 2023, , .		0
500	Mining Negative Temporal Contexts forÂFalse Positive Suppression inÂReal-Time Ultrasound Lesion Detection. Lecture Notes in Computer Science, 2023, , 3-13.	1.0	0
501	Breast Ultrasound Tumor Classification Using aÂHybrid Multitask CNN-Transformer Network. Lecture Notes in Computer Science, 2023, , 344-353.	1.0	0
502	A Spatial-Temporal Deformable Attention Based Framework forÂBreast Lesion Detection inÂVideos. Lecture Notes in Computer Science, 2023, , 479-488.	1.0	0
503	Pre-training withÂSimulated Ultrasound Images forÂBreast Mass Segmentation andÂClassification. Lecture Notes in Computer Science, 2023, , 34-45.	1.0	0

#	Article	IF	Citations
504	Self-Supervised Domain Adaptive Segmentation ofÂBreast Cancer viaÂTest-Time Fine-Tuning. Lecture Notes in Computer Science, 2023, , 539-550.	1.0	0
509	CNN based breast cancer detection using artifical intelligence. AIP Conference Proceedings, 2023, , .	0.3	O
512	A Review on Computational Methods for Breast Cancer Detection in Ultrasound Images Using Multi-Image Modalities. Archives of Computational Methods in Engineering, 0, , .	6.0	1
518	Copy-Paste Image Augmentation with Poisson Image Editing for Ultrasound Instance Segmentation Learning. , 2023, , .		0
520	Multi-scale Dual-Attention-Based U-Net for Breast Cancer Segmentation in Ultrasound Images. Signals and Communication Technology, 2024, , 27-40.	0.4	0
523	Deep learning routes to thyroid ultrasound image segmentation: A review. AIP Conference Proceedings, 2023, , .	0.3	0
528	Dense Swin Transformer for Classification of Thyroid Nodules. , 2023, , .		1
530	A Novel Approach toÂBreast Cancer Segmentation Using U-Net Model withÂAttention Mechanisms andÂFedProx. Lecture Notes in Computer Science, 2024, , 310-324.	1.0	0
531	Deep Learning Networks for Breast Lesion Classification in Ultrasound Images: A Comparative Study. , 2023, , .		1
534	A Real-Time Network forÂFast Breast Lesion Detection inÂUltrasound Videos. Lecture Notes in Computer Science, 2024, , 40-50.	1.0	0
537	Ultrasound Speckle Filtering Using Deep Learning. IFMBE Proceedings, 2024, , 283-289.	0.2	0
539	Breast Cancer Detection Using B-Mode and Ultrasound Strain Imaging. Algorithms for Intelligent Systems, 2024, , 373-386.	0.5	0
543	Deep Learning Techniques for Breast Cancer Diagnose Via Image Segmentation. , 2023, , .		0
544	An End-to-End Multi-stage Network for Ultrasound Video Object Segmentation. , 2023, , .		0
546	Transformer for medical image analysis. , 2024, , 99-131.		0
549	Machine learning and deep learning techniques for breast cancer detection using ultrasound imaging. , 2024, , 235-257.		0
550	Medical image analysis of masses in mammography using deep learning model for early diagnosis of cancer tissues., 2024,, 75-89.		0
554	Developing a Computer-Aided Diagnostic System for Breast Cancer Ultrasound Imaging. , 2023, , .		0

#	Article	IF	CITATIONS
558	Federated Learning for Breast Cancer Classification. Advances in Medical Diagnosis, Treatment, and Care, 2024, , 238-273.	0.1	0
559	BI-TLM: Bilinear Interpolation with Transfer Learning Model for Breast Cancer Classification. , 2023, , .		O
561	Kidney Abnormalities Prediction in Ultrasound Images using Transfer Learning Approach., 2023,,.		0