Differential Evolution-Based Multiobjective Optimization Variable Transmission System

IEEE Transactions on Industrial Electronics 65, 2080-2089

DOI: 10.1109/tie.2017.2733458

Citation Report

#	Article	IF	Citations
1	A novel hybrid-excited flux-modulated memory machine for electrical continuously variable transmission system. , 2017, , .		0
2	Front-End Parameter Monitoring Method Based on Two-Layer Adaptive Differential Evolution for SS-Compensated Wireless Power Transfer Systems. IEEE Transactions on Industrial Informatics, 2019, 15, 6101-6113.	7.2	63
3	Recurrent Neural Network-Based Model Predictive Control for Multiple Unmanned Quadrotor Formation Flight. International Journal of Aerospace Engineering, 2019, 2019, 1-18.	0.5	13
4	Design Optimization of a Pole-Changing Biased Flux Machine Based on Sensitivity Analysis. , 2019, , .		1
5	Adaptive Current Sharing of Distributed Battery Systems in DC Microgrids Using Adaptive Virtual Resistance-Based Droop Control., 2019,,.		23
6	Integrated Position and Speed Loops Under Sliding-Mode Control Optimized by Differential Evolution Algorithm for PMSM Drives. IEEE Transactions on Power Electronics, 2019, 34, 8994-9005.	5.4	63
7	A Fault-Tolerant Wideband Amplifier Based on Distributed Amplification Topology. IEEE Transactions on Industrial Electronics, 2020, 67, 4516-4526.	5.2	0
8	Tracking control of multiple unmanned aerial vehicles incorporating disturbance observer and model predictive approach. Transactions of the Institute of Measurement and Control, 2020, 42, 951-964.	1.1	17
9	Design of an Effective Double-Rotor Machine With Robust Mechanical Structure. IEEE Transactions on Magnetics, 2020, 56, 1-7.	1.2	6
10	Adaptive Differential Evolution-Based Distributed Model Predictive Control for Multi-UAV Formation Flight. International Journal of Aeronautical and Space Sciences, 2020, 21, 538-548.	1.0	9
11	Operating Cost Reduction of DC Microgrids Under Real-Time Pricing Using Adaptive Differential Evolution Algorithm. IEEE Access, 2020, 8, 169247-169258.	2.6	31
12	Distribution Power Loss Reduction of Standalone DC Microgrids Using Adaptive Differential Evolution-Based Control for Distributed Battery Systems. Energies, 2020, 13, 2129.	1.6	22
13	Improving transmission efficiency and reducing energy consumption with automotive continuously variable transmission: A model prediction comprehensive optimization approach. Applied Energy, 2020, 274, 115303.	5.1	30
14	A Dual-Modulator Magnetic-Geared Machine for Tidal-Power Generation. IEEE Transactions on Magnetics, 2020, 56, 1-7.	1.2	7
15	Optimization of digital predistortion models for RF power amplifiers using a modified differential evolution algorithm. AEU - International Journal of Electronics and Communications, 2020, 124, 153323.	1.7	7
16	Electric vehicles with two motors combined via planetary gear train. Mechanism and Machine Theory, 2020, 148, 103789.	2.7	25
17	Robust Design Optimization of Electrical Machines: Multi-Objective Approach. IEEE Transactions on Energy Conversion, 2021, 36, 390-401.	3.7	39
18	A Bagging Based Multiobjective Differential Evolution With Multiple Subpopulations. IEEE Access, 2021, 9, 105902-105913.	2.6	5

#	Article	IF	CITATIONS
19	Multi-Objective-Layered Optimization of a Magnetic Planetary Gear for Hybrid Powertrain. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 934-944.	3.7	6
20	Multi-Objective Optimization of Planetary Gearbox with Adaptive Hybrid Particle Swarm Differential Evolution Algorithm. Applied Sciences (Switzerland), 2021, 11, 1107.	1.3	11
21	A new parameter identification method of a dualâ€rotor fluxâ€modulation machine based on an adaptive differential evolution algorithm. IET Renewable Power Generation, 2021, 15, 1888-1897.	1.7	1
22	Dual-Motor Planetary Transmission to Improve Efficiency in Electric Vehicles. Machines, 2021, 9, 58.	1.2	27
23	Airgap-Harmonic-Based Multilevel Design and Optimization of a Double-Stator Flux-Modulated Permanent-Magnet Motor. IEEE Transactions on Industrial Electronics, 2021, 68, 10534-10545.	5.2	29
24	Topology Exploration and Analysis of a Novel Winding Factor Modulation-Based Hybrid- Excited Biased Flux Machine. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 1788-1799.	3.7	2
25	Analysis and Design Considerations of a Dual-Rotor Multiple-Winding Machine. IEEE Transactions on Industrial Electronics, 2022, 69, 8727-8738.	5.2	9
26	Design and Optimization of a Magnetic-Geared Direct-Drive Machine With V-Shaped Permanent Magnets for Ship Propulsion. IEEE Transactions on Transportation Electrification, 2022, 8, 1619-1633.	5.3	23
27	Economic Dispatch of DC Microgrids Under Real-Time Pricing Using Adaptive Differential Evolution Algorithm. , 2020, , .		4
28	Multiobjective Optimization for a Li-Ion Battery and Supercapacitor Hybrid Energy Storage Electric Vehicle. Energies, 2022, 15, 2821.	1.6	7
29	Optimization of Magnetic Gear Patterns Based on Taguchi Method Combined with Genetic Algorithm. Energies, 2022, 15, 4963.	1.6	3
31	Helical gears pair optimal design using Genetic Algorithms. , 2023, , .		1