Modeling Site Heterogeneity with Posterior Mean Site E Accurate Phylogenomic Estimation

Systematic Biology 67, 216-235

DOI: 10.1093/sysbio/syx068

Citation Report

#	Article	IF	Citations
1	Accelerated Estimation of Frequency Classes in Site-Heterogeneous Profile Mixture Models. Molecular Biology and Evolution, 2018, 35, 1266-1283.	3.5	22
2	Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature, 2018, 557, 101-105.	13.7	278
3	Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports, 2018, 8, 1523.	1.6	66
4	Phylogenomic Analysis of Nassula variabilis n. sp., Furgasonia blochmanni, and Pseudomicrothorax dubius Confirms a Nassophorean Clade. Protist, 2018, 169, 180-189.	0.6	22
5	Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group. Genome Biology and Evolution, 2018, 10, 427-433.	1.1	112
6	The genome and microbiome of a dikaryotic fungus (<i>lnocybe terrigena</i> , lnocybaceae) revealed by metagenomics. Environmental Microbiology Reports, 2018, 10, 155-166.	1.0	17
7	Ancient balancing selection on heterocyst function in a cosmopolitan cyanobacterium. Nature Ecology and Evolution, 2018, 2, 510-519.	3.4	24
8	Phylogenomics offers resolution of major tunicate relationships. Molecular Phylogenetics and Evolution, 2018, 121, 166-173.	1.2	56
9	Comparative genomic analysis of the â€~pseudofungus' <i>Hyphochytrium catenoides</i> . Open Biology, 2018, 8, 170184.	1.5	31
10	A phylogenomic resolution of the sea urchin tree of life. BMC Evolutionary Biology, 2018, 18, 189.	3.2	42
11	Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature, 2018, 564, 410-414.	13.7	101
12	Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biology, 2018, 16, 137.	1.7	42
13	Conditional Approximate Bayesian Computation: A New Approach for Across-Site Dependency in High-Dimensional Mutation–Selection Models. Molecular Biology and Evolution, 2018, 35, 2819-2834.	3.5	5
14	Inferring Ancient Relationships with Genomic Data: A Commentary on Current Practices. Integrative and Comparative Biology, 2018, 58, 623-639.	0.9	14
15	Reanalyzing the Palaeoptera problem – The origin of insect flight remains obscure. Arthropod Structure and Development, 2018, 47, 328-338.	0.8	51
16	Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry. Molecular Biology and Evolution, 2018, 35, 2198-2204.	3.5	17
17	Multiple Independent Origins of Apicomplexan-Like Parasites. Current Biology, 2019, 29, 2936-2941.e5.	1.8	84
18	Nephromyces represents a diverse and novel lineage of the Apicomplexa that has retained apicoplasts. Genome Biology and Evolution, 2019, 11, 2727-2740.	1.1	19

#	Article	IF	CITATIONS
19	A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera $\langle i \rangle$ Aspergillus $\langle i \rangle$ and $\langle i \rangle$ Penicillium $\langle i \rangle$. MBio, 2019, 10, .	1.8	106
20	OMA standalone: orthology inference among public and custom genomes and transcriptomes. Genome Research, 2019, 29, 1152-1163.	2.4	111
21	Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System. Animals, 2019, 9, 753.	1.0	8
22	Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats, <i>Myotis</i> *. Evolution; International Journal of Organic Evolution, 2019, 73, 2263-2280.	1.1	40
23	Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19585-19592.	3.3	119
24	Targeted metagenomic recovery of four divergent viruses reveals shared and distinctive characteristics of giant viruses of marine eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190086.	1.8	22
25	New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life. Molecular Biology and Evolution, 2019, 36, 757-765.	3.5	93
26	In silico Identification of Novel Toxin Homologs and Associated Mobile Genetic Elements in Clostridium perfringens. Pathogens, 2019, 8, 16.	1.2	15
27	A natural toroidal microswimmer with a rotary eukaryotic flagellum. Nature Microbiology, 2019, 4, 1620-1626.	5.9	14
28	Phylogenomics of Aplacophora (Mollusca, Aculifera) and a solenogaster without a foot. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190115.	1.2	22
29	Organellar DNA Polymerases in Complex Plastid-Bearing Algae. Biomolecules, 2019, 9, 140.	1.8	14
30	Asgard archaea capable of anaerobic hydrocarbon cycling. Nature Communications, 2019, 10, 1822.	5.8	165
31	The Relative Importance of Modeling Site Pattern Heterogeneity Versus Partition-Wise Heterotachy in Phylogenomic Inference. Systematic Biology, 2019, 68, 1003-1019.	2.7	45
32	Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology, 2019, 4, 1138-1148.	5.9	143
33	Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Molecular Phylogenetics and Evolution, 2019, 135, 270-285.	1.2	36
34	Physicochemical Amino Acid Properties Better Describe Substitution Rates in Large Populations. Molecular Biology and Evolution, 2019, 36, 679-690.	3.5	20
35	Phylogenomics and Morphological Reconstruction of Arcellinida Testate Amoebae Highlight Diversity of Microbial Eukaryotes in the Neoproterozoic. Current Biology, 2019, 29, 991-1001.e3.	1.8	49
36	A Critical Appraisal of the Placement of Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic Error. Systematic Biology, 2019, 68, 896-917.	2.7	138

#	ARTICLE	IF	CITATIONS
37	Characterization of the complete mitochondrial genome of Homidia socia (Collembola:) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	⁵ 50 ₂ 742 Td (E
38	Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nature Communications, 2019, 10, 5477.	5.8	197
39	Plastid Genomes and Proteins Illuminate the Evolution of Eustigmatophyte Algae and Their Bacterial Endosymbionts. Genome Biology and Evolution, 2019, 11, 362-379.	1.1	29
40	Phylogenomics supports the monophyly of the Cercozoa. Molecular Phylogenetics and Evolution, 2019, 130, 416-423.	1.2	16
41	Whole Genome Shotgun Phylogenomics Resolves the Pattern and Timing of Swallowtail Butterfly Evolution. Systematic Biology, 2020, 69, 38-60.	2.7	65
42	Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids' di-symbiotic systems. ISME Journal, 2020, 14, 259-273.	4.4	79
43	The New Tree of Eukaryotes. Trends in Ecology and Evolution, 2020, 35, 43-55.	4.2	537
44	Genetic and functional diversity of the multiple lungfish myoglobins. FEBS Journal, 2020, 287, 1598-1611.	2.2	6
45	Scalable Empirical Mixture Models That Account for Across-Site Compositional Heterogeneity. Molecular Biology and Evolution, 2020, 37, 3616-3631.	3.5	32
46	Arachnid monophyly: Morphological, palaeontological and molecular support for a single terrestrialization within Chelicerata. Arthropod Structure and Development, 2020, 59, 100997.	0.8	35
47	Selection for Reducing Energy Cost of Protein Production Drives the GC Content and Amino Acid Composition Bias in Gene Transfer Agents. MBio, 2020, 11, .	1.8	12
48	Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biology, 2020, 18, 187.	1.7	17
49	Resolving the phylogenetic position of Hygrobiidae (Coleoptera: Adephaga) requires objective statistical tests and exhaustive phylogenetic methodology: a response to Cai et al. (2020). Molecular Phylogenetics and Evolution, 2021, 162, 106923.	1.2	9
50	Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201538.	1.2	13
51	Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Science Advances, 2020, 6, eabb7258.	4.7	18
52	Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. Science Advances, 2020, 6, .	4.7	102
53	Four myriapod relatives – but who are sisters? No end to debates on relationships among the four major myriapod subgroups. BMC Evolutionary Biology, 2020, 20, 144.	3.2	13
54	Genomics of New Ciliate Lineages Provides Insight into the Evolution of Obligate Anaerobiosis. Current Biology, 2020, 30, 2037-2050.e6.	1.8	48

#	Article	IF	Citations
55	Phylogenetic tree building in the genomic age. Nature Reviews Genetics, 2020, 21, 428-444.	7.7	226
56	Catalase and Ascorbate Peroxidase in Euglenozoan Protists. Pathogens, 2020, 9, 317.	1.2	12
57	An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology, 2020, 20, 64.	3.2	48
58	Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Current Biology, 2020, 30, 1032-1048.e7.	1.8	52
59	The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biology, 2020, 18, 77.	1.7	9
60	Streamlining universal singleâ€copy orthologue and ultraconserved element design: A case study in Collembola. Molecular Ecology Resources, 2020, 20, 706-717.	2.2	10
61	Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5364-5375.	3.3	36
62	Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth. ISME Journal, 2020, 14, 1316-1331.	4.4	24
63	Unique Dynamics of Paramylon Storage in the Marine Euglenozoan Diplonema papillatum. Protist, 2020, 171, 125717.	0.6	8
64	New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Scientific Reports, 2020, 10, 101.	1.6	56
65	Genome-Wide Analysis of the Cryptochrome Gene Family in Plants. Tropical Plant Biology, 2020, 13, 117-126.	1.0	6
66	Continuous pre- and post-transplant exposure to a disease-associated gut microbiome promotes hyper-acute graft-versus-host disease in wild-type mice. Gut Microbes, 2020, 11, 754-770.	4.3	17
67	Mitochondrial genome to aid species delimitation and effective conservation of the Sharpnose Guitarfish (Glaucostegus granulatus). Meta Gene, 2020, 24, 100648.	0.3	13
68	Phylomitogenomic analyses on collembolan higher taxa with enhanced taxon sampling and discussion on method selection. PLoS ONE, 2020, 15, e0230827.	1.1	17
69	Phylogenomic analyses recover a clade of large-bodied decapodiform cephalopods. Molecular Phylogenetics and Evolution, 2021, 156, 107038.	1.2	29
70	Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Current Biology, 2021, 31, 346-357.e3.	1.8	21
71	A Total-Evidence Dated Phylogeny of Echinoidea Combining Phylogenomic and Paleontological Data. Systematic Biology, 2021, 70, 421-439.	2.7	33
72	Phage Origin of Mitochondrion-Localized Family A DNA Polymerases in Kinetoplastids and Diplonemids. Genome Biology and Evolution, 2021, 13, .	1.1	7

#	Article	IF	Citations
73	Evolutionary Trajectory of the Replication Mode of Bacterial Replicons. MBio, 2021, 12, .	1.8	10
75	Isolation and genotyping of novel T4 cyanophages associated with diverse coral reef invertebrates. Coral Reefs, 2021, 40, 485-504.	0.9	1
76	A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes. Molecular Biology and Evolution, 2021, 38, 2396-2412.	3.5	4
77	Characterization of the complete mitochondrial genome of Sogatella kolophon (Hemiptera:) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 T
78	Long Branch Attraction Biases in Phylogenetics. Systematic Biology, 2021, 70, 838-843.	2.7	26
79	Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Molecular Biology and Evolution, 2021, 38, 2446-2467.	3.5	53
80	Inferring the Deep Past from Molecular Data. Genome Biology and Evolution, 2021, 13, .	1.1	19
81	The Roles of Protein Structure, Taxon Sampling, and Model Complexity in Phylogenomics: A Case Study Focused on Early Animal Divergences. Biophysica, 2021, 1, 87-105.	0.6	2
82	A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nature Communications, 2021, 12, 1879.	5.8	124
83	Signal, bias, and the role of transcriptome assembly quality in phylogenomic inference. Bmc Ecology and Evolution, 2021, 21, 43.	0.7	8
84	A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Molecular Biology and Evolution, 2021, 38, 2915-2929.	3.5	39
85	A mitogenomic phylogeny of the Entomobryoidea (Collembola): A comparative perspective. Zoologica Scripta, 2021, 50, 658-666.	0.7	5
86	Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nature Communications, 2021, 12, 1783.	5.8	70
87	Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria. Science Advances, 2021, 7, .	4.7	60
89	<i>Olisthodiscus</i> represents a new class of Ochrophyta. Journal of Phycology, 2021, 57, 1094-1118.	1.0	10
90	And Then There Were Three…: Extreme Regeneration Ability of the Solitary Chordate Polycarpa mytiligera. Frontiers in Cell and Developmental Biology, 2021, 9, 652466.	1.8	15
92	Smelling in the dark: Phylogenomic insights into the chemosensory system of a subterranean beetle. Molecular Ecology, 2021, 30, 2573-2590.	2.0	9
93	A rooted phylogeny resolves early bacterial evolution. Science, 2021, 372, .	6.0	128

#	Article	IF	CITATIONS
94	A human respiratory tract-associated bacterium with an extremely small genome. Communications Biology, 2021, 4, 628.	2.0	3
95	Phylogenomic Insights into the Origin of Primary Plastids. Systematic Biology, 2021, 71, 105-120.	2.7	22
96	St. Louis Encephalitis Virus in the Southwestern United States: A Phylogeographic Case for a Multi-Variant Introduction Event. Frontiers in Genetics, 2021, 12, 667895.	1.1	5
97	Pangenomics reveals alternative environmental lifestyles among chlamydiae. Nature Communications, 2021, 12, 4021.	5.8	29
98	A standardized archaeal taxonomy for the Genome Taxonomy Database. Nature Microbiology, 2021, 6, 946-959.	5.9	198
99	Multigene phylogenetics of euglenids based on single-cell transcriptomics of diverse phagotrophs. Molecular Phylogenetics and Evolution, 2021, 159, 107088.	1.2	15
100	Advances and Discoveries in Myxozoan Genomics. Trends in Parasitology, 2021, 37, 552-568.	1.5	18
103	Phylogenomic analyses clarify the pattern of evolution of Adephaga (Coleoptera) and highlight phylogenetic artefacts due to model misspecification and excessive data trimming. Systematic Entomology, 2021, 46, 991-1018.	1.7	12
104	Phylogeny of the Varidnaviria Morphogenesis Module: Congruence and Incongruence With the Tree of Life and Viral Taxonomy. Frontiers in Microbiology, 2021, 12, 704052.	1.5	18
105	Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Molecular Biology and Evolution, 2021, 38, 5514-5527.	3.5	42
111	PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. PLoS Biology, 2021, 19, e3001365.	2.6	51
112	Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nature Communications, 2021, 12, 4973.	5.8	48
113	Expanding Archaeal Diversity and Phylogeny: Past, Present, and Future. Annual Review of Microbiology, 2021, 75, 359-381.	2.9	34
114	Signs of the plastid: Enzymes involved in plastid-localized metabolic pathways in a eugregarine species. Parasitology International, 2021, 83, 102364.	0.6	4
116	Questioning the source of identified non-foodborne pathogens from food-contact wooden surfaces used in Hong Kong's urban wet markets. One Health, 2021, 13, 100300.	1.5	4
117	Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. ELife, $2021,10,$.	2.8	38
118	Predatory colponemids are the sister group to all other alveolates. Molecular Phylogenetics and Evolution, 2020, 149, 106839.	1.2	16
119	The Iron-Responsive Genome of the Chiton <i>Acanthopleura granulata</i> . Genome Biology and Evolution, 2021, 13, .	1.1	42

#	ARTICLE	IF	CITATIONS
120	IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 2020, 37, 1530-1534.	3.5	5,960
138	Reduced Genome of the Gut Symbiotic Bacterium "Candidatus Benitsuchiphilus tojoi―Provides Insight Into Its Possible Roles in Ecology and Adaptation of the Host Insect. Frontiers in Microbiology, 2020, 11, 840.	1.5	7
139	The complete mitogenome of Helix pomatia and the basal phylogeny of Helicinae (Gastropoda,) Tj ETQq0 0 0 rgE	BT /Overloo	ck
140	Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. ELife, 2018, 7, .	2.8	51
141	Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. ELife, 2018, 7, .	2.8	82
142	An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. ELife, 2019, 8, .	2.8	91
146	The Transcriptome of <i>Paraphelidium Tribonemae</i> Illuminates the Ancestry of Fungi and Opisthosporidia. SSRN Electronic Journal, 0, , .	0.4	0
158	Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Current Biology, 2021, 31, 5605-5612.e5.	1.8	29
159	Genomic Insights Into the Archaea Inhabiting an Australian Radioactive Legacy Site. Frontiers in Microbiology, 2021, 12, 732575.	1.5	5
161	Role of Plasma Gelsolin Protein in the Final Stage of Erythropoiesis and in Correction of Erythroid Dysplasia In Vitro. International Journal of Molecular Sciences, 2020, 21, 7132.	1.8	3
167	Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nature Communications, 2021, 12, 6651.	5.8	40
168	Leave no stone unturned: individually adapted xerotolerant Thaumarchaeota sheltered below the boulders of the Atacama Desert hyperarid core. Microbiome, 2021, 9, 234.	4.9	18
170	How many long branch orders occur in Chelicerata? Opposing effects of Palpigradi and Opilioacariformes on phylogenetic stability. Molecular Phylogenetics and Evolution, 2022, 168, 107378.	1.2	11
171	Phylogenomic Analysis of the Phylum Nematoda: Conflicts and Congruences With Morphology, 18S rRNA, and Mitogenomes. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	28
172	Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nature Ecology and Evolution, 2022, 6, 253-262.	3.4	48
173	Host Adaptation in <i>Legionellales </i> lis 1.9 Ga, Coincident with Eukaryogenesis. Molecular Biology and Evolution, 2022, 39, .	3.5	15
174	Chromosome-level genome assembly, annotation, and phylogenomics of the gooseneck barnacle <i>Pollicipes pollicipes </i> . GigaScience, 2022, 11 , .	3.3	8
175	An estimate of the deepest branches of the tree of life from ancient vertically evolving genes. ELife, 2022, 11, .	2.8	43

#	Article	IF	CITATIONS
177	Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biology, 2022, 20, 56.	1.7	13
178	Testing the systematic status of <i>Homalictus</i> and <i>Rostrohalictus</i> with weakened crossâ€vein groups within Halictini (Hymenoptera: Halictidae) using lowâ€coverage wholeâ€genome sequencing. Insect Science, 2022, 29, 1819-1833.	1.5	7
179	Independent Size Expansions and Intron Proliferation in Red Algal Plastid and Mitochondrial Genomes. Genome Biology and Evolution, 2022, 14, .	1.1	5
180	Phylogenomics of Elongate-Bodied Springtails Reveals Independent Transitions from Aboveground to Belowground Habitats in Deep Time. Systematic Biology, 2022, 71, 1023-1031.	2.7	10
181	Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. ELife, 2022, 11, .	2.8	22
182	Phylotranscriptomic insights into a Mesoproterozoic–Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae). Nature Communications, 2022, 13, 1610.	5.8	21
183	An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis. Molecular Biology and Evolution, 2022, 39, .	3.5	8
184	Phylogenomic resolution of the root of Panpulmonata, a hyperdiverse radiation of gastropods: new insight into the evolution of air breathing. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211855.	1.2	9
186	Monophyly of diverse Bigyromonadea and their impact on phylogenomic relationships within stramenopiles. Molecular Phylogenetics and Evolution, 2022, 171, 107468.	1.2	7
191	Functional Differentiation among the <i>Arabidopsis</i> Phosphatidylinositol 4-Phosphate 5-Kinase Genes <i>PIP5K1, PIP5K2</i> and <i>PIP5K3</i> Plant and Cell Physiology, 2022, 63, 635-648.	1.5	7
192	The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include <i>Microheliella maris</i> . Open Biology, 2022, 12, 210376.	1.5	13
194	Conflict over the Eukaryote Root Resides in Strong Outliers, Mosaics and Missing Data Sensitivity of Site-Specific (CAT) Mixture Models. Systematic Biology, 2023, 72, 1-16.	2.7	11
195	The SITE-100 Project: Site-Based Biodiversity Genomics for Species Discovery, Community Ecology, and a Global Tree-of-Life. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	6
196	Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biology, 2022, 20, 92.	1.7	30
197	AliSim: A Fast and Versatile Phylogenetic Sequence Simulator for the Genomic Era. Molecular Biology and Evolution, 2022, 39, .	3.5	28
198	Context-Aware Phylogenetic Trees for Phylogeny-Based Taxonomy Visualization. Frontiers in Genetics, 2022, 13, .	1.1	1
199	Evidence for an Independent Hydrogenosome-to-Mitosome Transition in the CL3 Lineage of Fornicates. Frontiers in Microbiology, 2022, 13, .	1.5	3
200	Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex eusociality. Current Biology, 2022, 32, 2942-2947.e4.	1.8	20

#	Article	IF	CITATIONS
201	CT295 Is Chlamydia trachomatisâ \in TM Phosphoglucomutase and a Type 3 Secretion Substrate. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
202	Recoding Amino Acids to a Reduced Alphabet may Increase or Decrease Phylogenetic Accuracy. Systematic Biology, 2023, 72, 723-737.	2.7	8
203	Human Follicular Mites: Ectoparasites Becoming Symbionts. Molecular Biology and Evolution, 2022, 39, .	3.5	6
204	Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nature Communications, 2022, 13, .	5.8	27
206	Mitogenomic phylogeny of Typhlocybinae (Hemiptera: Cicadellidae) reveals homoplasy in tribal diagnostic morphological traits. Ecology and Evolution, 2022, 12, .	0.8	11
207	A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nature Microbiology, 2022, 7, 948-952.	5.9	18
210	Different phylogenomic methods support monophyly of enigmatic â€~Mesozoa' (Dicyemida +) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 50
211	Assessment of Absolute Substitution Model Fit Accommodating Time-Reversible and Non-Time-Reversible Evolutionary Processes. Systematic Biology, 0, , .	2.7	0
212	Comparative Plastid Genomics of Green-Colored Dinoflagellates Unveils Parallel Genome Compaction and RNA Editing. Frontiers in Plant Science, 0, 13, .	1.7	4
213	The evolutionary origin of host association in the Rickettsiales. Nature Microbiology, 2022, 7, 1189-1199.	5.9	29
214	Phylogenomic insights into the early diversification of fungi. Current Biology, 2022, 32, 3628-3635.e3.	1.8	24
215	Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies. Systematic Biology, 2023, 72, 505-515.	2.7	15
217	A Practical Guide to Design and Assess a Phylogenomic Study. Genome Biology and Evolution, 2022, 14, .	1.1	16
218	Comparative Mitogenomic Analyses of Hydropsychidae Revealing the Novel Rearrangement of Protein-Coding Gene and tRNA (Trichoptera: Annulipalpia). Insects, 2022, 13, 759.	1.0	6
219	Phylogenomic Evidence for the Origin of Obligate Anaerobic Anammox Bacteria Around the Great Oxidation Event. Molecular Biology and Evolution, 2022, 39, .	3.5	7
220	Divergent genomic trajectories predate the origin of animals and fungi. Nature, 2022, 609, 747-753.	13.7	32
221	A novel structural maintenance of chromosomes (SMC)-related protein family specific to Archaea. Frontiers in Microbiology, 0, 13, .	1.5	3
222	Estimating the Divergence Times of Alphaproteobacteria Based on Mitochondrial Endosymbiosis and Eukaryotic Fossils. Methods in Molecular Biology, 2022, , 95-116.	0.4	0

#	ARTICLE	IF	CITATIONS
223	Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae. ISME Journal, 2022, 16, 2725-2740.	4.4	8
224	Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nature Ecology and Evolution, 2022, 6, 1634-1643.	3.4	45
225	EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes., 0, 2, .		57
226	A phylogenomically informed five-order system for the closest relatives of land plants. Current Biology, 2022, 32, 4473-4482.e7.	1.8	38
227	Finding a home for the ram's horn squid: phylogenomic analyses support Spirula spirula (Cephalopoda: Decapodiformes) as a close relative of Oegopsida. Organisms Diversity and Evolution, 2023, 23, 91-101.	0.7	4
228	An early origin of iron–sulfur cluster biosynthesis machineries before Earth oxygenation. Nature Ecology and Evolution, 2022, 6, 1564-1572.	3.4	25
230	Phylotranscriptomics interrogation uncovers a complex evolutionary history for the planarian genus Dugesia (Platyhelminthes, Tricladida) in the Western Mediterranean. Molecular Phylogenetics and Evolution, 2023, 178, 107649.	1.2	2
232	Complex statistical modelling for phylogenetic inference. Canadian Journal of Statistics, 2022, 50, 1339-1354.	0.6	O
233	Massive gene rearrangements of mitochondrial genomes and implications for the phylogeny of Trichoptera (Insecta). Systematic Entomology, 2023, 48, 278-295.	1.7	15
234	Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Current Biology, 2022, 32, 5057-5068.e5.	1.8	7
235	Phylogenomics reveals deep relationships and diversification within phylactolaemate bryozoans. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	6
236	Genomic remnants of ancestral methanogenesis and hydrogenotrophy in Archaea drive anaerobic carbon cycling. Science Advances, 2022, 8, .	4.7	17
238	New Mitogenome Features of Philopotamidae (Insecta: Trichoptera) with Two New Species of Gunungiella. Insects, 2022, 13, 1101.	1.0	0
239	Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nature Microbiology, 2022, 7, 2114-2127.	5.9	19
242	Microbial predators form a new supergroup of eukaryotes. Nature, 2022, 612, 714-719.	13.7	21
244	The Evolution of Collembola Higher Taxa (Arthropoda, Hexapoda) Based on Mitogenome Data. Diversity, 2023, 15, 7.	0.7	6
245	Micro and macroevolution of sea anemone venom phenotype. Nature Communications, 2023, 14, .	5.8	10
247	The Structure of Evolutionary Model Space for Proteins across the Tree of Life. Biology, 2023, 12, 282.	1.3	2

#	Article	IF	CITATIONS
250	Characterization of the Complete Mitochondrial Genome of a Flea Beetle Luperomorpha xanthodera (Coleoptera: Chrysomelidae: Galerucinae) and Phylogenetic Analysis. Genes, 2023, 14, 414.	1.0	1
251	Ancient Rapid Radiation Explains Most Conflicts Among Gene Trees and Well-Supported Phylogenomic Trees of Nostocalean Cyanobacteria. Systematic Biology, 2023, 72, 694-712.	2.7	2
252	Phylogenetic placement of the protosteloid amoeba <i>Microglomus paxillus</i> identifies another case of sporocarpic fruiting in Discosea (Amoebozoa). Journal of Eukaryotic Microbiology, 2023, 70, .	0.8	3
253	New Mitogenomes of the Polypedilum Generic Complex (Diptera: Chironomidae): Characterization and Phylogenetic Implications. Insects, 2023, 14, 238.	1.0	2
256	Phylogenomics of novel ploeotid taxa contribute to the backbone of the euglenid tree. Journal of Eukaryotic Microbiology, 2023, 70, .	0.8	3
258	Compositionally Constrained Sites Drive Long-Branch Attraction. Systematic Biology, 0, , .	2.7	3
260	Maturases and Group II Introns in the Mitochondrial Genomes of the Deepest Jakobid Branch. Genome Biology and Evolution, 2023, 15, .	1.1	1
261	Mirusviruses link herpesviruses to giant viruses. Nature, 2023, 616, 783-789.	13.7	28
272	Building Phylogenies from Transcriptomic Data. Methods in Molecular Biology, 2023, , 1-27.	0.4	О