Nitrous oxide emissions and biogeochemical responses drying-wetting

Soil Biology and Biochemistry 117, 5-15 DOI: 10.1016/j.soilbio.2017.10.040

Citation Report

#	Article	IF	CITATIONS
1	Drying and Rainfall Shape the Structure and Functioning of Nitrifying Microbial Communities in Riverbed Sediments. Frontiers in Microbiology, 2018, 9, 2794.	3.5	37
2	Modeling nitrous oxide emissions from rough fescue grassland soils subjected to long-term grazing of different intensities using the Soil and Water Assessment Tool (SWAT). Environmental Science and Pollution Research, 2018, 25, 27362-27377.	5.3	16
3	Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environmental Pollution, 2018, 242, 1362-1370.	7.5	127
4	High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest. Soil Biology and Biochemistry, 2018, 124, 90-100.	8.8	83
5	N2O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of the Total Environment, 2019, 648, 350-357.	8.0	12
6	Understanding the Fertilizer Management Impacts on Water and Nitrogen Dynamics for a Corn Silage Tileâ€Drained System in Canada. Journal of Environmental Quality, 2019, 48, 1016-1028.	2.0	16
7	Effects of nitrogen split application on seasonal N2O emissions in southeast Norway. Nutrient Cycling in Agroecosystems, 2019, 115, 41-56.	2.2	17
8	Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Research, 2019, 244, 107624.	5.1	32
9	Rates and intensity of freeze–thaw cycles affect nitrous oxide and carbon dioxide emissions from agricultural soils. Canadian Journal of Soil Science, 2019, 99, 472-484.	1.2	17
10	Presence of spring-thaw N2O emissions are not linked to functional gene abundance in a drip-fertigated cropped soil in arid northwestern China. Science of the Total Environment, 2019, 695, 133670.	8.0	22
11	Reviews and syntheses: Review of causes and sources of N ₂ O emissions and NO ₃ leaching from organic arable crop rotations. Biogeosciences, 2019, 16, 2795-2819.	3.3	50
12	Effects of afforestation on soil nitrous oxide emissions in a subtropical montane agricultural landscape: A 3-year field experiment. Agricultural and Forest Meteorology, 2019, 266-267, 221-230.	4.8	9
13	Nitrous Oxide Emissions from an Open-Lot Beef Cattle Feedyard in Texas. Transactions of the ASABE, 2019, 62, 1173-1183.	1.1	5
14	Comparison of Support Vector Machine and Gradient Boosting Regression Tree for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts: A case study in corn production. , 2019, , .		7
15	Comparison of two gap-filling techniques for nitrous oxide fluxes from agricultural soil. Canadian Journal of Soil Science, 2019, 99, 12-24.	1.2	12
16	Assessing the effects of manure application rate and timing on nitrous oxide emissions from managed grasslands under contrasting climate in Canada. Science of the Total Environment, 2020, 716, 135374.	8.0	22
17	From research to policy: optimizing the design of a national monitoring system to mitigate soil nitrous oxide emissions. Current Opinion in Environmental Sustainability, 2020, 47, 28-36.	6.3	20
18	Scale effect of aggregate rupture: Using the relationship between friability and fractal dimension to parameterise discrete element models. Powder Technology, 2020, 375, 327-336.	4.2	7

#	Article	IF	CITATIONS
19	Soil properties mediate the freeze-thaw-related soil N2O and CO2 emissions from temperate grasslands. Catena, 2020, 195, 104797.	5.0	15
20	Approaches and concepts of modelling denitrification: increased process understanding using observational data can reduce uncertainties. Current Opinion in Environmental Sustainability, 2020, 47, 37-45.	6.3	26
21	Biophysical controls on nitrous oxide emissions following rain-induced thawing of frozen soil microcosms by simulated rainfall. Soil Biology and Biochemistry, 2020, 149, 107960.	8.8	5
22	Impact of partial harvest on CH4 and N2O balances of a drained boreal peatland forest. Agricultural and Forest Meteorology, 2020, 295, 108168.	4.8	18
23	Comparison of Soil Greenhouse Gas Fluxes during the Spring Freeze–Thaw Period and the Growing Season in a Temperate Broadleaved Korean Pine Forest, Changbai Mountains, China. Forests, 2020, 11, 1135.	2.1	5
24	Global Research Alliance N ₂ O chamber methodology guidelines: Guidelines for gapâ€filling missing measurements. Journal of Environmental Quality, 2020, 49, 1186-1202.	2.0	22
25	Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments. Current Opinion in Environmental Sustainability, 2020, 47, 46-53.	6.3	35
26	Nitrous Oxide from Beef Cattle Manure: Effects of Temperature, Water Addition and Manure Properties on Denitrification and Nitrification. Atmosphere, 2020, 11, 1056.	2.3	5
27	Impact of compaction and post-compaction vegetation management on aggregate properties, Weibull modulus, and interactions with intra-aggregate pore structure. Geoderma, 2020, 374, 114430.	5.1	4
28	High temporal resolution nitrous oxide fluxes from corn (Zea mays L.) in response to the combined use of nitrification and urease inhibitors. Agriculture, Ecosystems and Environment, 2020, 300, 106996.	5.3	16
29	Dinitrogen (N2) pulse emissions during freeze-thaw cycles from montane grassland soil. Biology and Fertility of Soils, 2020, 56, 959-972.	4.3	17
30	Effects of short-term freezing on nitrous oxide emissions and enzyme activities in a grazed pasture soil after bovine-urine application. Science of the Total Environment, 2020, 740, 140006.	8.0	7
31	Improving N2O emission estimates with the global N2O database. Current Opinion in Environmental Sustainability, 2020, 47, 13-20.	6.3	27
32	A Review of Ongoing Advancements in Soil and Water Assessment Tool (SWAT) for Nitrous Oxide (N2o) Modeling. Atmosphere, 2020, 11, 450.	2.3	10
33	Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability, 2020, 12, 1481.	3.2	17
34	Spatially and Temporally Explicit Life Cycle Environmental Impacts of Soybean Production in the U.S. Midwest. Environmental Science & Technology, 2020, 54, 4758-4768.	10.0	25
35	Season-dependent effect of snow depth on soil microbial biomass and enzyme activity in a temperate forest in Northeast China. Catena, 2020, 195, 104760.	5.0	18
36	The effect on soil nitrogen mineralization resulting from biochar and straw regulation in seasonally frozen agricultural ecosystem. Journal of Cleaner Production, 2020, 255, 120302.	9.3	26

#	Article	IF	CITATIONS
37	River-floodplain restoration and hydrological effects on GHG emissions: Biogeochemical dynamics in the parafluvial zone. Science of the Total Environment, 2020, 715, 136980.	8.0	18
38	An improved laboratory method shows that freezing intensity increases N2O emissions. Canadian Journal of Soil Science, 2020, , 1-14.	1.2	3
39	Crop residue carbon-to-nitrogen ratio regulates denitrifier N2O production post flooding. Biology and Fertility of Soils, 2020, 56, 825-838.	4.3	21
40	Effect of grazing exclusion on nitrous oxide emissions during freeze-thaw cycles in a typical steppe of Inner Mongolia. Agriculture, Ecosystems and Environment, 2021, 307, 107217.	5.3	50
41	Fall-applied manure with cover crop did not increase nitrous oxide emissions during spring freeze-thaw periods. Applied Soil Ecology, 2021, 158, 103786.	4.3	10
42	Crop residues contribute minimally to spring-thaw nitrous oxide emissions under contrasting tillage and crop rotations. Soil Biology and Biochemistry, 2021, 152, 108057.	8.8	11
43	Winter N ₂ O accumulation and emission in sub-boreal grassland soil depend on clover proportion and soil pH. Environmental Research Communications, 2021, 3, 015001.	2.3	11
44	Topography Controls N2O Emissions Differently during Early and Late Corn Growing Season. Agronomy, 2021, 11, 187.	3.0	9
45	Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review. Food Security, 2021, 13, 457-476.	5.3	25
46	Effects of dry-wet cycles on nitrous oxide emissions in freshwater sediments: a synthesis. PeerJ, 2021, 9, e10767.	2.0	22
47	Temporal Patterns of N2O Fluxes From a Rainfed Maize Field in Northeast China. Frontiers in Environmental Science, 2021, 9, .	3.3	6
48	Alternate Infiltration Irrigation Improves Photosynthetic Characteristics and Water Use Efficiency in Mango Seedlings. Journal of Plant Growth Regulation, 0, , 1.	5.1	2
49	Strong potential of slurry application timing and method to reduce N losses in a permanent grassland. Agriculture, Ecosystems and Environment, 2021, 311, 107329.	5.3	13
50	Sources of nitrous oxide from intensively managed pasture soils: the hole in the pipe. Environmental Research Letters, 2021, 16, 065004.	5.2	14
51	Tidal rewetting in salt marshes triggers pulses of nitrous oxide emissions but slows carbon dioxide emission. Soil Biology and Biochemistry, 2021, 156, 108197.	8.8	6
52	Soil Moisture but Not Warming Dominates Nitrous Oxide Emissions During Freeze–Thaw Cycles in a Qinghai–Tibetan Plateau Alpine Meadow With Discontinuous Permafrost. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
53	Nitrogen turnover and N ₂ O production in incubated soils after receiving field applications of liquid manure and nitrification inhibitors. Canadian Journal of Soil Science, 2021, 101, 290-304.	1.2	8
54	Soil age and soil organic carbon content shape biochemical responses to multiple freeze–thaw events in soils along a postmining agricultural chronosequence. Biogeochemistry, 2021, 155, 113-125.	3.5	9

#	Article	IF	CITATIONS
55	Antecedent soil moisture and rain intensity control pathways and quality of organic carbon exports from arable land. Catena, 2021, 202, 105297.	5.0	22
56	Recovery of bacterial communities and functions of soils under ridge tillage and no-tillage after different intensities and frequencies of drying-wetting disturbances in agroecosystems of northeastern China. Catena, 2021, 203, 105367.	5.0	4
57	Opportunities to reduce nitrous oxide emissions from horticultural production systems in Canada. Canadian Journal of Plant Science, 2021, 101, 999-1013.	0.9	3
58	Interactive role of topography and best management practices on N2O emissions from agricultural landscape. Soil and Tillage Research, 2021, 212, 105063.	5.6	12
59	Spatial variation of nitrous oxide fluxes during growing and non-growing seasons at a location subjected to seasonally frozen soils. Canadian Journal of Soil Science, 2021, 101, 555-564.	1.2	5
60	Evidence for microbial rather than aggregate origin of substrates fueling freeze-thaw induced N2O emissions. Soil Biology and Biochemistry, 2021, 160, 108352.	8.8	14
61	Greenhouse gas emissions, nitrogen dynamics and barley productivity as impacted by biosolids applications. Agriculture, Ecosystems and Environment, 2021, 320, 107577.	5.3	18
62	Interannual and seasonal variabilities in soil NO fluxes from a rainfed maize field in the Northeast China. Environmental Pollution, 2021, 286, 117312.	7.5	5
63	Effects of in situ freeze-thaw cycles on winter soil respiration in mid-temperate plantation forests. Science of the Total Environment, 2021, 793, 148567.	8.0	17
64	Plausible impacts of fall manuring on cover crop production and spring nitrous oxide emissions under climate change in southern Quebec, Canada. Agriculture, Ecosystems and Environment, 2021, 321, 107620.	5.3	0
65	How could simulated dewatering of slurry mitigate nitrous oxide emissions from fall and spring injections? – A modelling study in a Chernozem soil in Western Canada. Science of the Total Environment, 2021, 796, 148758.	8.0	0
66	Spring thaw pulses decrease annual N2O emissions reductions by nitrification inhibitors from a seasonally frozen cropland. Geoderma, 2021, 403, 115310.	5.1	12
67	Freeze-thaw cycles release nitrous oxide produced in frozen agricultural soils. Biology and Fertility of Soils, 2021, 57, 389-398.	4.3	10
68	Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. ISME Journal, 2021, 15, 1207-1221.	9.8	54
69	Freezing and thawing cycles affect nitrous oxide emissions in rain-fed lucerne (<i>Medicago) Tj ETQq0 0 0 rgBT /</i>	Overlock 1 2.0	10 Tf 50 182
70	Clover increases N2O emissions in boreal leys during winter. Soil Biology and Biochemistry, 2021, 163, 108459.	8.8	3
71	Unimodal response of N2O flux to changing rainfall amount and frequency in a wet meadow in the Tibetan Plateau. Ecological Engineering, 2022, 174, 106461.	3.6	10
	Sail freezing the user induces immediate chifte in microbial and recourse steichiometry in Lyvical		

	Soil freezing-thawing induces immediate shifts in microbial and resource stoichiometry in Luvisol		
72	soils along a postmining agricultural chronosequence in Western Germany. Geoderma, 2022, 408,	5.1	10
	115596.		

#	Article	IF	CITATIONS
73	Perennial Grain Crops Reduce N ₂ O Emissions Under Specific Site Conditions. SSRN Electronic Journal, 0, , .	0.4	0
74	Perennial grain crops reduce N2O emissions under specific site conditions. Agriculture, Ecosystems and Environment, 2022, 326, 107802.	5.3	4
75	Increased soil-derived N2O production following a simulated fall-freeze–thaw cycle: effects of fall urea addition, soil moisture, and history of manure applications. Biogeochemistry, 2022, 157, 379-398.	3.5	6
76	Biochar rather than organic fertilizer mitigated the global warming potential in a saline-alkali farmland. Soil and Tillage Research, 2022, 219, 105337.	5.6	12
77	Roots and other residues from leys with or without red clover: Quality and effects on N2O emission factors in a partly frozen soil following autumn ploughing. Science of the Total Environment, 2022, 831, 154582.	8.0	4
78	Meta-analysis of the impact of freeze–thaw cycles on soil microbial diversity and C and N dynamics. Soil Biology and Biochemistry, 2022, 168, 108608.	8.8	31
79	Soil pH-increase strongly mitigated N2O emissions following ploughing of grass and clover swards in autumn: A winter field study. Science of the Total Environment, 2022, 828, 154059.	8.0	4
80	Grazing Reduces the Soil-Atmosphere Exchange of Greenhouse Gases During Freeze-Thaw Cycles in Meadow Steppes in Inner Mongolia. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
81	Changes in GHG Emissions Based on Irrigation Water Quality in Short-Term Incubated Agricultural Soil of the North China Plain. Agriculture (Switzerland), 2021, 11, 1268.	3.1	6
83	Effect of freeze-thaw cycle aging and high-temperature oxidation aging on the sorption of atrazine by microplastics. Environmental Pollution, 2022, 307, 119434.	7.5	18
84	Rapid soil rewetting promotes limited N2O emissions and suppresses NH3 volatilization under urea addition. Environmental Research, 2022, 212, 113402.	7.5	8
85	Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. Agriculture, Ecosystems and Environment, 2022, 335, 108007.	5.3	13
86	Dry-Wet Cycles Affect Nitrous Oxide Emissions Across Aquatic-Terrestrial Interfaces: A Mesocosms Study. Frontiers in Soil Science, 2022, 2, .	2.2	2
87	Effects of water regimes on soil N2O, CH4 and CO2 emissions following addition of dicyandiamide and N fertilizer. Environmental Research, 2022, 212, 113544.	7.5	17
88	Spring Freeze–Thaw Stimulates Greenhouse Gas Emissions From Agricultural Soil. Frontiers in Environmental Science, 0, 10, .	3.3	3
89	A Study on the Freeze–Thaw Damage and Deterioration Mechanism of Slope Rock Mass Based on Model Testing and Numerical Simulation. Applied Sciences (Switzerland), 2022, 12, 6545.	2.5	2
90	Nitrous oxide emissions from five fertilizer treatments during one year – High-frequency measurements on a Swedish Cambisol. Agriculture, Ecosystems and Environment, 2022, 337, 108062.	5.3	3
91	A gap in nitrous oxide emission reporting complicates long-term climate mitigation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14

#	Article	IF	CITATIONS
92	Does Loading Ammonium to Sorbents Affect Plant Availability in Soil?. Agriculture (Switzerland), 2022, 12, 1057.	3.1	2
93	Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nature Communications, 2022, 13, .	12.8	20
94	Cold spots and cold moments: The potential for sediment freezing to depress denitrification in wetland sediments. Journal of Environmental Quality, 0, , .	2.0	1
95	Progressive freeze-thaw redistributes water, solute and CO2 emissions across soil layers – The role of soil particle size. Catena, 2022, 219, 106614.	5.0	2
96	Cover crop residue influence on soil <scp> N ₂ O </scp> and <scp> CO ₂ </scp> emissions under wettingâ€drying intensities: an incubation study. European Journal of Soil Science, 0, , .	3.9	0
97	Response of Carbon Emissions and the Bacterial Community to Freeze–Thaw Cycles in a Permafrost-Affected Forest–Wetland Ecotone in Northeast China. Microorganisms, 2022, 10, 1950.	3.6	3
98	Effects of winter pulsed warming and snowmelt on soil nitrogen cycling in agricultural soils: A lysimeter study. Frontiers in Environmental Science, 0, 10, .	3.3	3
99	Effects of plant communities on the emission of soil greenhouse gases in riparian wetlands during spring thaw. Ecohydrology, 0, , .	2.4	1
100	Increasing sensitivity of terrestrial nitrous oxide emissions to precipitation variations. , 2022, 1, 025010.		1
101	Does the repeated freezing and thawing of the aerobic layer affect the anaerobic release of N2O from SWIS?. Science of the Total Environment, 2023, 859, 160313.	8.0	4
102	Progressively thawed soil layers differed in microbial properties and CO2 emission rates. Catena, 2023, 221, 106791.	5.0	0
103	Ratio of non-growing season to growing season N ₂ O emissions in Canadian croplands: an update to national inventory methodology. Canadian Journal of Soil Science, 2023, 103, 344-352.	1.2	4
104	The effect of upland crop planting on field N2O emission from rice-growing seasons: A case study comparing rice-wheat and rice-rapeseed rotations. Agriculture, Ecosystems and Environment, 2023, 347, 108365.	5.3	4
105	Soil pH management for mitigating N2O emissions through nosZ (Clade I and II) gene abundance in rice paddy system. Environmental Research, 2023, 225, 115542.	7.5	5
106	Flooding lowers the emissions of CO2 and CH4 during the freeze-thaw process in a lacustrine wetland. Catena, 2023, 227, 107132.	5.0	2
107	Hot moment of N2O emissions in seasonally frozen peatlands. ISME Journal, 2023, 17, 792-802.	9.8	3
108	Moderate precipitation reduction enhances nitrogen cycling and soil nitrous oxide emissions in a semiâ€arid grassland. Global Change Biology, 2023, 29, 3114-3129.	9.5	8
109	Short-term effects of increasing compost application rates on soil C and greenhouse gas (N2O and) Tj ETQq1 1	0.784314	rgBT /Overloc

#	Article	IF	CITATIONS
110	Effect of calcareous and siliceous amendments on <scp> N ₂ O </scp> emissions of a grassland soil. Soil Use and Management, 0, , .	4.9	0
111	Nongrowing season soil nitrous oxide emissions as influenced by cover crops and fall tillage termination. Canadian Journal of Soil Science, 0, , .	1.2	0
112	Straw management effects on global warming potential and yield-scaled greenhouse gas emissions in a subtropical rice ecosystem. Revista Brasileira De Ciencia Do Solo, 2023, 47, .	1.3	2
113	Remote Sensing Soil Freezeâ€Thaw Status and North American N ₂ O Emissions From a Regional Inversion. Global Biogeochemical Cycles, 2023, 37, .	4.9	1
114	Plant communities can attenuate flooding induced N2O fluxes by altering nitrogen cycling microbial communities and plant nitrogen uptake. Soil Biology and Biochemistry, 2023, 185, 109142.	8.8	0
115	Light grazing reduces gaseous nitrogen emissions from temperate grassland soils during freeze‒thaw cycles: An intact core incubation study. Soil Biology and Biochemistry, 2023, 186, 109166.	8.8	1
116	Effects of phase change material inclusion on reducing greenhouse gas emissions from soil in cold region. Environmental Science and Pollution Research, 2023, 30, 102839-102852.	5.3	0
117	Enhanced efficiency urea fertilizers and timing effects on N ₂ O emissions from spring wheat production in Manitoba. Agronomy Journal, 2024, 116, 51-72.	1.8	0
118	The effect of antecedent soil moisture conditions on soil nitrous oxide and dinitrogen dynamics after wetting: An intact soil core study. Applied Soil Ecology, 2024, 193, 105136.	4.3	0
119	Availability of dissolved organic carbon drives differences in microbial nitrogen ycling processes between two sites with cover crops interseeded into corn. Soil Science Society of America Journal, 0, , .	2.2	1
120	Elevated soil moisture amplified the effects of freeze–thaw cycles on soil CO2 and CH4 fluxes in subalpine forests. Ecological Indicators, 2023, 157, 111313.	6.3	0
121	Soil organic nitrogen priming to nitrous oxide: A synthesis. Soil Biology and Biochemistry, 2024, 189, 109254.	8.8	0
122	Grazing reduced greenhouse gas fluxes in Inner Mongolia grasslands: A meta-analysis. Ecological Engineering, 2024, 199, 107160.	3.6	0
123	No-tillage with total green manure mulching: A strategy to lower N2O emissions. Field Crops Research, 2024, 306, 109238.	5.1	1
124	Environmental change legacies attenuate disturbance response of desert soil microbiome and multifunctionality. Functional Ecology, 2024, 38, 1104-1120.	3.6	0