Resistant starch could be decisive in determining the gl

Journal of Cereal Science 79, 348-353 DOI: 10.1016/j.jcs.2017.11.013

Citation Report

#	Article	IF	CITATIONS
1	Acute effects of non-homogenised and homogenised vegetables added to rice-based meals on postprandial glycaemic responses and in vitro carbohydrate digestion. British Journal of Nutrition, 2018, 120, 1023-1033.	2.3	10
2	Rice with pulses or cooking oils can be used to elicit lower glycemic response. Journal of Food Composition and Analysis, 2018, 71, 1-7.	3.9	26
3	A critical review on anti-diabetic and anti-obesity effects of dietary resistant starch. Critical Reviews in Food Science and Nutrition, 2019, 59, 3019-3031.	10.3	71
4	Acute Effects of Three Cooked Non-Cereal Starchy Foods on Postprandial Glycemic Responses and in Vitro Carbohydrate Digestion in Comparison with Whole Grains: A Randomized Trial. Nutrients, 2019, 11, 634.	4.1	24
5	Varietal influence on antioxidant properties and glycemic index of pigmented and non-pigmented rice. Journal of Cereal Science, 2019, 87, 202-208.	3.7	33
6	Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Advances in Food and Nutrition Research, 2019, 90, 83-134.	3.0	79
7	Starch hydrolysis kinetics of intermediate wheatgrass (Thinopyrum intermedium) flour and its effects on the unit chain profile of its resistant starch fraction. Cereal Chemistry, 2019, 96, 564-574.	2.2	6
8	Effects of Lintnerization, Autoclaving, and Freeze-Thaw Treatments on Resistant Starch Formation and Functional Properties of Pathumthani 80 Rice Starch. Foods, 2019, 8, 558.	4.3	21
9	Physical, sensory, inâ€vitro starch digestibility and glycaemic index of granola bars prepared using sucrose alternatives. International Journal of Food Science and Technology, 2020, 55, 348-356.	2.7	25
10	Effects of resistant starch type 4 supplementation of bread on in vitro glycemic index value, bile acidâ€binding capacity, and mineral bioavailability. Cereal Chemistry, 2020, 97, 163-171.	2.2	9
11	Combination of rice varieties and cooking methods resulting in a high content of resistant starch. Cereal Chemistry, 2020, 97, 149-157.	2.2	17
12	Pullulanase activity: A novel indicator of inherent resistant starch in rice (Oryza sativa. L). International Journal of Biological Macromolecules, 2020, 152, 1213-1223.	7.5	24
13	Phytic acid content may affect starch digestibility and glycemic index value of rice (<scp><i>Oryza) Tj ETQq0 0 0</i></scp>	rgBT /Ove	rlock 10 Tf 5 46
14	Status of glycemic index of paddy rice grain (Oryza sativa L.) on infestation by storage pest Sitotroga cerealella. Journal of Stored Products Research, 2020, 89, 101697.	2.6	10
15	Mass transfer approach to <i>inâ€vitro</i> glycemic index of different biscuit compositions. Journal of Food Process Engineering, 2020, 43, e13559.	2.9	8
16	Nutritional quality and <i>in vitro</i> digestion of immature rice-based processed products. Food and Function, 2020, 11, 7611-7625.	4.6	7
17	Role of sedoheptulose-1,7 bisphosphatase in low light tolerance of rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 2020, 26, 2465-2485.	3.1	12

Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS ONE, 2020, 15, e0233364.

		CITATION RE	PORT	
#	ARTICLE	n rice	IF	CITATIONS
19	grains. Food Science and Nutrition, 2020, 8, 2383-2394.	The	3.4	16
20	Addition of Pulses, Cooking Oils, and Vegetables Enhances Resistant Starch and Lowers the Index of Rice (<i>Oryza sativa</i> L.). Starch/Staerke, 2020, 72, 1900081.	Glycemic	2.1	21
21	Relationships among starch biosynthesizing protein content, fine structure and functionalit Carbohydrate Polymers, 2020, 237, 116118.	:y in rice.	10.2	36
22	In vitro glycemic index, bile acid binding capacity and mineral bioavailability of spaghetti su with resistant starch type 4 and wheat bran. Journal of Functional Foods, 2020, 65, 103778	pplemented 3.	3.4	27
23	Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanu	m) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 582
24	Effect of Drought stress on Resistant starch content and Glycemic index of rice (<i>Oryza s</i>	ativa) Tj ETQq1 1	0.784314	rgAT /Overlo
25	Recent Developments in Resistant Starch as a Functional Food. Starch/Staerke, 2021, 73, 2	.000139.	2.1	26
26	Physiochemical Properties of Resistant Starch and Its Enhancement Approaches in Rice. Ric 2021, 28, 31-42.	e Science,	3.9	16
27	Impact of Starch Storage Condition on Glycemic Index and Resistant Starch of Cooked Pota (<i>Solanum tuberosum</i>) Tubers. Starch/Staerke, 2021, 73, .	ito	2.1	29
28	Borate and phosphite treatments of potato plants (Solanum tuberosum L.) as proof of con- reinforce cell wall structure and reduce starch digestibility. Food and Function, 2021, 12, 93	cept to 372-9379.	4.6	1
29	Impact of processing techniques on the glycemic index of rice. Critical Reviews in Food Scie Nutrition, 2022, 62, 3323-3344.	nce and	10.3	23
30	Dry-heat processing at different conditions impact the nutritional composition and <i>in vitro</i> starch and protein digestibility of immature rice-based products. Food and Function 7527-7545.	n, 2021, 12,	4.6	6
31	Evaluation of indigenous aromatic rice cultivars from sub-Himalayan Terai region of India fo nutritional attributes and blast resistance. Scientific Reports, 2021, 11, 4786.	r	3.3	16
32	Evaluation of Various Starchy Foods: A Systematic Review and Meta-Analysis on Chemical P Affecting the Glycemic Index Values Based on In Vitro and In Vivo Experiments. Foods, 2023	roperties I, 10, 364.	4.3	30
33	Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends in Fo Science and Technology, 2021, 111, 741-755.	od	15.1	86
34	Innovative Milling Processes to Improve the Technological and Nutritional Quality of Parboi Brown Rice Pasta from Contrasting Amylose Content Cultivars. Foods, 2021, 10, 1316.	ed	4.3	6
35	Structural characteristics and prebiotic activities of resistant starch from Solanum tuberosu Kufri Bahar, a popular Indian tuber variety. LWT - Food Science and Technology, 2021, 145,	ım: 111445.	5.2	8
36	Development of Attenuated Total Reflectance Mid-Infrared (ATR-MIR) and Near-Infrared (NI Spectroscopy for the Determination of Resistant Starch Content in Wheat Grains. Journal o Analytical Methods in Chemistry, 2021, 2021, 1-9.	R) f	1.6	6

#	Article	IF	Citations
37	Rice Compounds with Impact on Diabetes Control. Foods, 2021, 10, 1992.	4.3	22
38	Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum) Tj ETQq1 1	l 0.784314 rg 8.2	gBT_Overlock
39	In Vitro Glycemic Response of Indigenous Pigmented Rice Cultivars from South India and Influence of Different Carbohydrate Components. Current Research in Nutrition and Food Science, 2020, 8, 815-828.	0.8	6
40	High-Pressure Processing on Whole and Peeled Potatoes: Influence on Polyphenol Oxidase, Antioxidants, and Glycaemic Indices. Foods, 2021, 10, 2425.	4.3	8
41	Changing priorities in rice grain and nutritional quality research. Oryza, 2019, 56, 115-124.	0.4	0
42	Changing priorities in rice grain and nutritional quality research. Oryza, 2019, 56, 115-124.	0.4	0
43	Potato Carbohydrates. , 2020, , 13-36.		4
44	Lipids in Potato. , 2020, , 73-85.		2
45	Effect of varietal differences on the oral processing behavior and bolus properties of cooked rice. International Journal of Food Engineering, 2021, 17, 177-188.	1.5	6
46	Effects of soybean oil and whey protein complexation by temperature treatments on the structural, physicochemical and digestive characteristics of autoclaved rice. Food Structure, 2022, 31, 100252.	4.5	1
47	Combinatorial interactive effect of vegetable and condiments with potato on starch digestibility and estimated in vitro glycemic response. Journal of Food Measurement and Characterization, 2022, 16, 2446-2458.	3.2	10
48	The role of phytochrome-mediated gibberellic acid signaling in the modulation of seed germination under low light stress in rice (O. sativa L.). Physiology and Molecular Biology of Plants, 2022, 28, 585-605.	3.1	4
49	Typeâ€⊋ Diabetes and Identification of Major Genetic Determinants of Glycemic Index in Rice – A Review. Starch/Staerke, 2022, 74, .	2.1	1
50	Resistant starch content and physicochemical properties of non-waxy rice starches modified by pullulanase, heat-moisture treatment, and citric acid. Journal of Cereal Science, 2022, 105, 103472.	3.7	15
51	High Resistant Starch Rice: Variation in Starch Related SNPs, and Functional, and Sensory Properties. Foods, 2022, 11, 94.	4.3	3
52	In-vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydrate Polymers, 2022, 291, 119600.	10.2	40
53	Evaluation of starch digestibility of Andean crops oriented to healthy diet recommendation. International Journal of Food Properties, 2022, 25, 1146-1155.	3.0	2
54	Ultrasound-chilling assisted annealing treatment to produce a lower glycemic index of white rice grains with different amylose content. Ultrasonics Sonochemistry, 2022, 87, 106055.	8.2	7

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. Journal of Cereal Science, 2022, 106, 103501.	3.7	11
56	Melatonin-Polyamine Interplay in the Regulation of Stress Responses in Plants. Journal of Plant Growth Regulation, 2023, 42, 4834-4850.	5.1	19
57	Verification of autoclaving-cooling treatment to increase the resistant starch contents in food starches based on meta-analysis result. Frontiers in Nutrition, 0, 9, .	3.7	7
58	<i>In Vitro</i> Starch Digestion of Cooked Rice Grain Following the Addition of Various Vegetable Oils. Japan Agricultural Research Quarterly, 2022, 56, 261-267.	0.4	1
60	A review: Resistant starch, a promising prebiotic for obesity and weight management. Food Bioscience, 2022, 50, 101965.	4.4	7
61	Sensory Characteristic, Nutritional Content, and Glycemic Analysis of Instant Porridge Made of Red Rice, Pumpkin, and Tuna Formulated for the Elderly. Current Nutrition and Food Science, 2023, 19, 300-306.	0.6	1
62	Low Glycaemic Index Cereal Grain Functional Foods. , 2022, , 335-377.		0
63	Cooking Methods and Their Relationship with Anthropometrics and Cardiovascular Risk Factors among Older Spanish Adults. Nutrients, 2022, 14, 3426.	4.1	0
64	Effect of physicochemical modification on granule morphology, pasting behavior, and functional properties of riceberry rice (Oryza Sativa L.) starch. , 2022, 1, 100116.		2
65	Structure–function relationship of resistant starch formation: Enhancement technologies and need for more viable alternatives for whole rice grains. Journal of Food Process Engineering, 2023, 46, .	2.9	3
66	High temperature boosts resistant starch content by altering starch structure and lipid content in rice ssIlla mutants. Frontiers in Plant Science, 0, 13, .	3.6	4
67	Naturally cultured high resistant starch rice improved postprandial glucose levels in patients with type 2 diabetes: A randomized, double-blinded, controlled trial. Frontiers in Nutrition, 0, 9, .	3.7	2
68	Functional properties, antioxidant activity and in-vitro digestibility characteristics of brown and polished rice flours of Indian temperate region. Grain & Oil Science and Technology, 2023, 6, 43-57.	5.1	10
69	Chemical composition, glycaemic index, and antidiabetic property of analogue rice made from composite tubers, germinated legumes, and cereal flours. , 2022, 29, 1304-1313.		0
71	Characteristics of lowâ€fat whipped cream containing proteinâ€based fat replacers. International Journal of Dairy Technology, 2023, 76, 276-290.	2.8	2
73	Postprandial glucose-lowering effects by sago (<i>Metroxylon sagu Rottb.</i>) resistant starch in spontaneously type 2 diabetes, Goto-Kakizaki rat. Nutrition and Health, 0, , 026010602311520.	1.5	0
74	Impact of Fusarium Infection on Potato Quality, Starch Digestibility, In Vitro Glycemic Response, and Resistant Starch Content. Journal of Fungi (Basel, Switzerland), 2023, 9, 466.	3.5	4
75	Physicochemical and prebiotic properties of waxy rice flour modified by pullulanase. Food Biotechnology, 2023, 37, 89-105.	1.5	0

#	Article	IF	CITATIONS
76	Effects of Consuming Heat-Treated Dodamssal Brown Rice Containing Resistant Starch on Glucose Metabolism in Humans. Nutrients, 2023, 15, 2248.	4.1	2
77	Effects of extrusion cooking on the nutritional quality of puffed snacks made from blends of barley and green lentil flours. Journal of Food Measurement and Characterization, 2023, 17, 4473-4481.	3.2	3
79	Understanding starch digestibility of rice: a study in white rice. International Journal of Food Science and Technology, 2023, 58, 4849-4859.	2.7	0
80	Microdroplet sensor for point-of-care-testing of glycemic index using gold-amylase nanocomposite. , 2023, , 1-1.		0
81	A review of green methods used in starch–polyphenol interactions: physicochemical and digestion aspects. Food and Function, 2023, 14, 8071-8100.	4.6	2
82	Quality, Nutritional Properties, and Glycemic Index of Colored Whole Wheat Breads. Foods, 2023, 12, 3376.	4.3	3
83	Starch Properties of Roasting Rice from Naturally High-Resistant Starch Rice Varieties. Molecules, 2023, 28, 6408.	3.8	0
84	Cooking, sensory and in-vitro digestibility characteristics of rice as affected by rice-water ratio and karaya gum concentration. Food Hydrocolloids for Health, 2023, 4, 100152.	3.9	0
85	Impact of cooking, parboiling and fermentation on nutritional components, predicted glycemic index and pasting properties of rice. Journal of Cereal Science, 2023, 114, 103763.	3.7	1
86	Effects of starch multiscale structure on the physicochemical properties and digestibility of Radix Cynanchi bungei starch. International Journal of Biological Macromolecules, 2023, 253, 126873.	7.5	1
87	Genome-Wide Association Study of Starch Properties in Local Thai Rice. Plants, 2023, 12, 3290.	3.5	2
88	Traditional and Emerging Climate-Resilient Agricultural Practices for Enhancing Food Production and Nutritional Quality. Environmental Science and Engineering, 2023, , 551-570.	0.2	0
89	Discrepancies in resistant starch and starch physicochemical properties between rice mutants similar in high amylose content. Frontiers in Plant Science, 0, 14, .	3.6	0
90	Parboiling of pigmented and non-pigmented Philippine rice (Oryza sativa L.) cultivars: Textural properties and carbohydrate quality. , 2023, 30, 1593-1602.		0
91	Extraction process, physicochemical properties, and digestive performance of red yeast rice starch. Biotechnology and Applied Biochemistry, 0, , .	3.1	0
92	Relationship between Physicochemical and Cooking Quality Parameters with Estimated Glycaemic Index of Rice Varieties. Foods, 2024, 13, 135.	4.3	Ο
93	A New Functional Wheat Flour Flatbread (Bazlama) Enriched with High-β-Glucan Hull-Less Barley Flour. Foods, 2024, 13, 326.	4.3	1
94	Geographic differences and variation of functional components of brown rice in 690 mini-core collections from global germplasms. Heliyon, 2023, 9, e23035.	3.2	0

CITATION REPORT

#	Article	IF	CITATIONS
95	Endosperm structure and Glycemic Index of Japonica Italian rice varieties. Frontiers in Plant Science, 0, 14, .	3.6	0
96	Impact of Oil Addition on Physicochemical Properties and In Vitro Digestibility of Extruded Pineapple Stem Starch. Polymers, 2024, 16, 210.	4.5	0
97	Starch-based nanofibres for food packaging application. , 2024, , 83-102.		0
99	Structure, properties, and resistant starch content of modified rice flour prepared using dual hydrothermal treatment. International Journal of Biological Macromolecules, 2024, 262, 130050.	7.5	0
101	A functional bread produced by supplementing wheat flour with high βâ€glucan hullâ€less barley flour. Cereal Chemistry, 2024, 101, 630-640.	2.2	0
102	Methodological Breakdown of Potato Peel's Influence on Starch Digestibility, In Vitro Clycemic Response and Pasting Properties of Potato. American Journal of Potato Research, 2024, 101, 65-75.	0.9	0
103	Correlation between in vitro starch digestibility and starch structure/physicochemical properties in rice. International Journal of Biological Macromolecules, 2024, 263, 130316.	7.5	0
104	Cooking quality of rice is a potential predictor to identify low starch digestibility rice. International Journal of Food Science and Technology, 2024, 59, 2763-2770.	2.7	0