Catalytic Conversion of Carbohydrates to Initial Platfor Sustainability

Chemical Reviews 118, 505-613

DOI: 10.1021/acs.chemrev.7b00395

Citation Report

#	Article	IF	CITATIONS
1	Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chemistry, 2018, 20, 1770-1776.	4.6	71
2	Aqueous Hydrogenation of Levulinic Acid to 1,4â€Pentanediol over Moâ€Modified Ru/Activated Carbon Catalyst. ChemSusChem, 2018, 11, 1316-1320.	3.6	73
3	An Easy Scalable Approach to HMF Employing DMC as Reaction Media: Reaction Optimization and Comparative Environmental Assessment. ChemistrySelect, 2018, 3, 2359-2365.	0.7	23
4	Conservative evolution and industrial metabolism in Green Chemistry. Green Chemistry, 2018, 20, 2171-2191.	4.6	45
5	Branching-First: Synthesizing C–C Skeletal Branched Biobased Chemicals from Sugars. ACS Sustainable Chemistry and Engineering, 2018, 6, 7940-7950.	3.2	5
6	Catalytic Conversion of Carbohydrates into 5â€Ethoxymethylfurfural by a Magnetic Solid Acid Using γâ€Valerolactone as a Coâ€Solvent. Energy Technology, 2018, 6, 1951-1958.	1.8	25
7	Cellulose Depolymerization over Heterogeneous Catalysts. Accounts of Chemical Research, 2018, 51, 761-768.	7.6	187
8	Interface–Promoted Dehydrogenation and Water–Gas Shift toward High-Efficient H ₂ Production from Aqueous Phase Reforming of Cellulose. ACS Sustainable Chemistry and Engineering, 2018, 6, 7313-7324.	3.2	30
9	Inositol to aromatics –benzene free synthesis of poly oxygenated aromatics. Carbohydrate Research, 2018, 461, 38-44.	1.1	1
10	Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel, 2018, 219, 344-352.	3.4	64
11	Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 5694-5707.	3.2	140
12	Continuous Flow Organic Chemistry: Successes and Pitfalls at the Interface with Current Societal Challenges. European Journal of Organic Chemistry, 2018, 2018, 2301-2351.	1.2	188
13	Multiple cluster CH activations and transformations of furan by triosmium carbonyl complexes. Chemical Communications, 2018, 54, 3464-3467.	2.2	8
14	Catalytic Transformation of Lignocellulosic Platform Chemicals. Catalysts, 2018, 8, 398.	1.6	0
15	Solvent-free mechanochemical oxidation and reduction of biomass-derived 5-hydroxymethyl furfural. Green Chemistry, 2018, 20, 5261-5265.	4.6	19
16	Simple and efficient conversion of cellulose to Î ³ -valerolactone through an integrated alcoholysis/transfer hydrogenation system using Ru and aluminium sulfate catalysts. Catalysis Science and Technology, 2018, 8, 6252-6262.	2.1	21
17	The catalytic behaviour in aqueous-phase hydrogenation over a renewable Ni catalyst derived from a perovskite-type oxide. Dalton Transactions, 2018, 47, 17276-17284.	1.6	9
18	3. Recent advances in the application of carbohydrates as renewable feedstocks for the synthesis of nitrogen-containing compounds. , 2018, , 35-66.		0

#	Article	IF	CITATIONS
19	Isobaric Vapor–Liquid Equilibrium of Furfural + γ-Valerolactone at 30 kPa and Isothermal Liquid–Liquid Equilibrium of Carbon Dioxide + γ-Valerolactone + Water at 298 K. Journal of Chemical & Engineering Data, 0, , .	1.0	6
20	Chemo―and Regioselective Synthesis of Arylated γâ€Valerolactones from Bioâ€based Levulinic Acid with Aromatics Using Hâ€Î² Zeolite Catalyst. ChemCatChem, 2019, 11, 1102-1111.	1.8	10
21	Shell biorefinery: A comprehensive introduction. Green Energy and Environment, 2018, 3, 318-327.	4.7	79
22	Metal–Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 13628-13643.	3.2	267
23	Nanostructured Metal Hydrides for Hydrogen Storage. Chemical Reviews, 2018, 118, 10775-10839.	23.0	461
24	Direct Conversion of Cellulose to Levulinic Acid over Multifunctional Sulfonated Humins in Sulfolane–Water Solution. ACS Sustainable Chemistry and Engineering, 2018, 6, 15092-15099.	3.2	49
25	Synergetic Effect of BrÃ,nsted/Lewis Acid Sites and Water on the Catalytic Dehydration of Glucose to 5â€Hydroxymethylfurfural by Heteropolyacidâ€Based Ionic Hybrids. ChemistryOpen, 2018, 7, 824-832.	0.9	22
26	Efficient synthesis of 5-hydroxymethylfurfural from mannose with a reusable MCM-41-supported tin catalyst. Catalysis Science and Technology, 2018, 8, 5526-5534.	2.1	16
27	The synthesis of HMF-based α-amino phosphonates <i>via</i> one-pot Kabachnik–Fields reaction. RSC Advances, 2018, 8, 31496-31501.	1.7	25
28	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	18.7	493
29	Preparation of the recycled and regenerated mesocarbon microbeads-based solid acid and its catalytic behaviors for hydrolysis of cellulose. Bioresource Technology, 2018, 270, 166-171.	4.8	26
30	Alkene Metathesis for Transformations of Renewables. Topics in Organometallic Chemistry, 2018, , 77-102.	0.7	5
31	Zirconium tripolyphosphate as an efficient catalyst for the hydrogenation of ethyl levulinate to γ-valerolactone with isopropanol as hydrogen donor. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 71-84.	0.8	4
32	Highly Efficient Transfer Hydrogenation of Levulinate Esters to γ-Valerolactone over Basic Zirconium Carbonate. Industrial & Engineering Chemistry Research, 2018, 57, 10126-10136.	1.8	31
33	Waste to Chemicals for a Circular Economy. Chemistry - A European Journal, 2018, 24, 11831-11839.	1.7	41
34	Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Frontiers in Chemistry, 2018, 6, 285.	1.8	30
35	Homogeneous Catalysis: A Powerful Technology for the Modification of Important Biomolecules. Chemistry - an Asian Journal, 2018, 13, 2991-3013.	1.7	13
36	Exploring succinic acid production by engineered Yarrowia lipolytica strains using glucose at low pH. Biochemical Engineering Journal, 2018, 139, 51-56.	1.8	23

#	Article	IF	CITATIONS
37	Heterogeneous Bimetallic Catalysts for Upgrading Biomassâ€Derived Furans. Asian Journal of Organic Chemistry, 2018, 7, 1901-1923.	1.3	33
38	Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals. Chinese Journal of Catalysis, 2018, 39, 1445-1452.	6.9	81
39	Conversion of levulinic acid to N-substituted pyrrolidinones over a nonnoble bimetallic catalyst Cu15Pr3/Al2O3. Catalysis Communications, 2018, 116, 85-90.	1.6	29
40	CH activations in aldehydes in reactions with Ru5(\hat{l} ¼5-C)(CO)15. Journal of Organometallic Chemistry, 2018, 871, 159-166.	0.8	5
41	Phosphotungstic acid heterogenized by assembly with pyridines for efficient catalytic conversion of fructose to methyl levulinate. RSC Advances, 2018, 8, 16585-16592.	1.7	15
42	Crystalline niobium phosphates with water-tolerant and adjustable Lewis acid sites for the production of lactic acid from triose sugars. Sustainable Energy and Fuels, 2018, 2, 1530-1541.	2.5	26
43	Origin of ligand effects on reactivities of pincer-Pd catalyzed hydrocarboxylation of allenes and alkenes with formate salts: a computational study. Catalysis Science and Technology, 2018, 8, 2835-2840.	2.1	13
44	Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced Cu0-CoO sites. Chinese Journal of Catalysis, 2018, 39, 1711-1723.	6.9	42
45	Catalytic transfer hydrogenolysis as an efficient route in cleavage of lignin and model compounds. Green Energy and Environment, 2018, 3, 328-334.	4.7	76
46	Physico-chemical kinetic modelling of hydrolysis of a steam-explosion pre-treated corn stover: A two-step approach. Bioresource Technology, 2018, 268, 592-598.	4.8	11
47	Chemocatalytic Conversion of Cellulose into Key Platform Chemicals. International Journal of Polymer Science, 2018, 2018, 1-21.	1.2	21
48	Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water. Green Chemistry, 2018, 20, 4094-4101.	4.6	21
49	Direct synthesis of α-aminophosphonates from biomass resources catalyzed by HReO ₄ . Green Chemistry, 2018, 20, 3242-3245.	4.6	10
50	A significant enhancement of catalytic performance by adjusting catalyst wettability. Science China Materials, 2018, 61, 1137-1142.	3.5	22
51	Synthesis of γâ€Valerolactone from Levulinic Acid and Formic Acid over Mgâ€Al Hydrotalcite Like Compound. ChemistrySelect, 2018, 3, 6186-6194.	0.7	18
52	Evaluation of Biobased Lighter Fluids. ACS Sustainable Chemistry and Engineering, 2018, 6, 8417-8426.	3.2	10
53	Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustainable Chemistry and Engineering, 2018, 6, 8064-8092.	3.2	232
54	Hf-based metal–organic frameworks as acid–base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chemistry, 2018, 20, 3081-3091.	4.6	59

#	Article	IF	CITATIONS
55	ZSM-5 zeolite as a promising catalyst for the preparation and upgrading of lignocellulosic biomass-derived chemicals. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 13-19.	3.2	23
56	One-pot synthesis of alkyl levulinates from biomass derivative carbohydrates in tin(II) exchanged silicotungstates-catalyzed reactions. Cellulose, 2019, 26, 7953-7969.	2.4	34
57	Photocatalytic Chemical CO ₂ Fixation by Cu-BDC Nanosheet@Macroporous–Mesoporous-TiO ₂ under Mild Conditions. ACS Catalysis, 2019, 9, 8659-8668.	5.5	38
58	Biomass Valorization via Paired Electrosynthesis Over Vanadium Nitrideâ€Based Electrocatalysts. Advanced Functional Materials, 2019, 29, 1904780.	7.8	120
59	Waste Seashells as a Highly Active Catalyst for Cyclopentanone Self-Aldol Condensation. Catalysts, 2019, 9, 661.	1.6	14
60	Systematic Hydrogenâ€Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angewandte Chemie, 2019, 131, 13261-13266.	1.6	35
61	Formic acid as a hydrogen source for the iridium-catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. Catalysis Science and Technology, 2019, 9, 4077-4082.	2.1	21
62	Synthesis of $\hat{1}\pm$, $\hat{1}^2$ -Disubstituted Acrylates via Galat Reaction. Organic Letters, 2019, 21, 6135-6139.	2.4	8
63	Activity of a Heterogeneous Catalyst in Deep Eutectic Solvents: The Case of Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 13359-13368.	3.2	42
64	Ionic mesoporous polyamides enable highly dispersed ultrafine Ru nanoparticles: a synergistic stabilization effect and remarkable efficiency in levulinic acid conversion into γ-valerolactone. Journal of Materials Chemistry A, 2019, 7, 19140-19151.	5.2	37
65	Systematic Hydrogenâ€Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angewandte Chemie - International Edition, 2019, 58, 13127-13132.	7.2	76
66	One-pot selective conversion of lignocellulosic biomass into furfural and co-products using aqueous choline chloride/methyl isobutyl ketone biphasic solvent system. Bioresource Technology, 2019, 289, 121708.	4.8	45
67	Lytic polysaccharide monooxygenases (LPMOs) facilitate cellulose nanofibrils production. Biotechnology for Biofuels, 2019, 12, 156.	6.2	64
68	Mechanistic Insights into the BrĄ̃nsted Acid-Catalyzed Dehydration of β- <scp>d</scp> -Glucose to 5-Hydroxymethylfurfural under Ambient and Subcritical Conditions. ACS Catalysis, 2019, 9, 7250-7263.	5.5	32
69	One-pot sol–gel synthesis of a phosphated TiO ₂ catalyst for conversion of monosaccharide, disaccharides, and polysaccharides to 5-hydroxymethylfurfural. New Journal of Chemistry, 2019, 43, 12483-12493.	1.4	25
70	Solvent issues in the Baylis-Hillman reaction of 5-hydroxymethyl furfural (HMF) and 5-glucosyloxymethyl furfural (GMF). Towards no-solvent conditions. Pure and Applied Chemistry, 2019, 91, 1149-1158.	0.9	2
71	Highly Selective Synthesis of 1,4-Butanediol via Hydrogenation of Succinic Acid with Supported Cu–Pd Alloy Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 18483-18492.	3.2	39
72	Butenolide Derivatives of Biobased Furans: Sustainable Synthetic Dyes. Angewandte Chemie - International Edition, 2019, 58, 17293-17296.	7.2	15

#	Article	IF	CITATIONS
73	Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity. Journal of Catalysis, 2019, 380, 9-20.	3.1	19
74	Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia. Green Chemistry, 2019, 21, 812-820.	4.6	46
75	Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules, 2019, 24, 4012.	1.7	164
76	Room-Temperature Asymmetric Transfer Hydrogenation of Biomass-Derived Levulinic Acid to Optically Pure γ-Valerolactone Using a Ruthenium Catalyst. ACS Omega, 2019, 4, 19491-19498.	1.6	11
77	Synthesis of ethanol and its catalytic conversion. Advances in Catalysis, 2019, 64, 89-191.	0.1	13
78	Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites. Applied Clay Science, 2019, 183, 105351.	2.6	31
79	Amination of β-hydroxyl acid esters via cooperative catalysis enables access to bio-based β-amino acid esters. Communications Chemistry, 2019, 2, .	2.0	18
80	Hydrothermally Synthesized CuCo2S4 Nanosheets as an Easily Accessible and Convenient Heterogeneous Catalyst for the Sonogashira Cross-Coupling Reactions. Frontiers in Materials, 2019, 6, .	1.2	2
81	Full Utilization of Lignocellulose with Ionic Liquid Polyoxometalates in a Oneâ€Pot Threeâ€Step Conversion. ChemSusChem, 2019, 12, 4936-4945.	3.6	17
82	Sn exchanged acidic ion exchange resin for the stable and continuous production of 5-HMF from glucose at low temperature. Applied Catalysis A: General, 2019, 588, 117267.	2.2	36
83	Butenolide Derivatives of Biobased Furans: Sustainable Synthetic Dyes. Angewandte Chemie, 2019, 131, 17453-17456.	1.6	5
84	Catalytic Oneâ€Pot Conversion of Renewable Platform Chemicals to Hydrocarbon and Ether Biofuels through Tandem Hf(OTf) ₄ +Pd/C Catalysis. ChemSusChem, 2019, 12, 5217-5223.	3.6	12
85	An analytical model for the upper bound estimation of respiratory motion–induced dose uncertainty in spotâ€scanning proton beam therapy. Medical Physics, 2019, 46, 5249-5261.	1.6	5
86	Hydrolysis of cellulose and woody biomass over sustainable weak-acid carbon catalysts from alkaline lignin. Fuel Processing Technology, 2019, 196, 106175.	3.7	22
87	5-Hydroxymethylfurfural-Derived Boron-Dipyrromethene Immobilized on Resin Support as a Sustainable Catalyst for C–H Arylation of Heterocycles. ACS Omega, 2019, 4, 14458-14465.	1.6	4
88	Mechanically Strong Shape-Memory and Solvent-Resistant Double-Network Polyurethane/Nanoporous Cellulose Gel Nanocomposites. ACS Sustainable Chemistry and Engineering, 2019, 7, 15974-15982.	3.2	26
89	Eight out of eight: a detailed kinetic study on the reactivities of the eight hydroxyl groups of sucrose with phenyl isocyanate. New Journal of Chemistry, 2019, 43, 15316-15325.	1.4	3
90	Highly selective synthesis of γ-valerolactone from levulinic acid at mild conditions catalyzed by boron oxide doped Cu/ZrO2 catalysts. Applied Catalysis A: General, 2019, 587, 117244.	2.2	21

#	Article	IF	CITATIONS
91	Highly efficient catalytic conversion of cellulose into acetol over Ni–Sn supported on nanosilica and the mechanism study. Green Chemistry, 2019, 21, 5647-5656.	4.6	41
92	Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019, 401, 213064.	9.5	45
93	Comparative Study on the Dehydration of Biomass-Derived Disaccharides and Polysaccharides to 5-Hydroxymethylfurfural. Energy & Fuels, 2019, 33, 9985-9995.	2.5	27
94	Highly efficient hydrogenation of levulinic acid into 2-methyltetrahydrofuran over Ni–Cu/Al ₂ O ₃ –ZrO ₂ bifunctional catalysts. Green Chemistry, 2019, 21, 606-613.	4.6	66
95	Ethyl lactate as a renewable carbonyl source for the synthesis of diynones. Green Chemistry, 2019, 21, 213-218.	4.6	14
96	Selective utilization of methoxy groups in lignin for <i>N</i> -methylation reaction of anilines. Chemical Science, 2019, 10, 1082-1088.	3.7	33
97	Crab Shell-Derived Lotus Rootlike Porous Carbon for High Efficiency Isomerization of Glucose to Fructose under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 4466-4472.	3.2	34
98	Enhanced Levulinic Acid Production from Cellulose by Combined BrÃ,nsted Hydrothermal Carbon and Lewis Acid Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 2697-2703.	1.8	30
99	Synthesis of levulinic acid based poly(amine- <i>co</i> -ester)s. Green Chemistry, 2019, 21, 123-128.	4.6	18
100	The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO ₂ under solvent-free conditions. Inorganic Chemistry Frontiers, 2019, 6, 317-325.	3.0	41
101	Multiple activations of CH bonds in arenes and heteroarenes. Dalton Transactions, 2019, 48, 8530-8540.	1.6	2
102	Catalytic hydrogenolysis of glycerol into propyl acetate with ruthenium complexes. Catalysis Communications, 2019, 129, 105743.	1.6	6
103	Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation and Recycling, 2019, 149, 413-426.	5.3	112
104	Catalytic activity of H-ZSM-5 and Cu-HZSM-5 zeolites of medium SiO2/Al2O3 ratio in conversion of n-hexane to aromatics. Journal of Petroleum Science and Engineering, 2019, 180, 773-778.	2.1	33
105	Bio-based building blocks from 5-hydroxymethylfurfural <i>via</i> 1-hydroxyhexane-2,5-dione as intermediate. Chemical Science, 2019, 10, 6024-6034.	3.7	59
106	Optimization of Salix Carbonation Solid Acid Catalysts for One-Step Synthesis by Response Surface Method. Applied Sciences (Switzerland), 2019, 9, 1518.	1.3	3
107	Catalytic Transfer Hydrogenation of Biomass-Derived Ethyl Levulinate into Gamma-Valerolactone Over Graphene Oxide-Supported Zirconia Catalysts. Catalysis Letters, 2019, 149, 2749-2757.	1.4	18
108	Recent Advances in Rochowâ€Müller Process Research: Driving to Molecular Catalysis and to A More Sustainable Silicone Industry. ChemCatChem, 2019, 11, 2757-2779.	1.8	39

#	Article	IF	CITATIONS
109	Purolite-Catalyzed Etherification of 2,5-Bis(hydroxymethyl)furan: A Systematic Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 10221-10226.	3.2	27
110	Cu/Cu ₂ O-MC (MC = Mesoporous Carbon) for Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol under Visible Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 11485-11492.	3.2	35
111	A tunable precious metal-free system for selective oxidative esterification of biobased 5-(hydroxymethyl)furfural. Green Chemistry, 2019, 21, 3464-3468.	4.6	28
112	Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Research, 2019, 12, 2407-2436.	5.8	113
113	Continuous flow hydrogenation of methyl and ethyl levulinate: an alternative route to <i>γ</i> -valerolactone production. Royal Society Open Science, 2019, 6, 182233.	1.1	11
114	When Will 5â€Hydroxymethylfurfural, the "Sleeping Giant―of Sustainable Chemistry, Awaken?. ChemSusChem, 2019, 12, 2976-2982.	3.6	154
115	Complete Aqueous Hydrogenation of 5-Hydroxymethylfurfural at Room Temperature over Bimetallic RuPd/Graphene Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10670-10678.	3.2	57
116	Nitrate-Mediated Alcohol Oxidation on Cadmium Sulfide Photocatalysts. ACS Catalysis, 2019, 9, 5732-5741.	5.5	60
117	Metal-acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation. Applied Catalysis B: Environmental, 2019, 254, 560-568.	10.8	64
118	Mechanism insight into the fast pyrolysis of xylose, xylobiose and xylan by combined theoretical and experimental approaches. Combustion and Flame, 2019, 206, 177-188.	2.8	42
119	Efficient Catalytic Upgrade of Fructose to Alkyl Levulinates with Phenylpyridine- phosphotungstate Solid Hybrids. Current Green Chemistry, 2019, 6, 44-52.	0.7	11
120	Synthesis of chitosan derivatives with organoselenium and organosulfur compounds: Characterization, antimicrobial properties and application as biomaterials. Carbohydrate Polymers, 2019, 219, 240-250.	5.1	29
121	Reductive Amination/Cyclization of Methyl Levulinate with Aspartic Acid: Towards Renewable Polyesters with a Pendant Lactam Unit. ChemSusChem, 2019, 12, 3370-3376.	3.6	12
122	Selective Catalysis for Room-Temperature Hydrogenation of Biomass-Derived Compounds over Supported NiPd Catalysts in Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 9352-9359.	3.2	10
123	Highly selective synthesis under benign reaction conditions of furfural dialkyl acetal using SnCl ₂ as a recyclable catalyst. New Journal of Chemistry, 2019, 43, 8606-8612.	1.4	23
124	Structure and Mechanism of Titania-Supported Platinum–Molybdenum Catalyst for Hydrodeoxygenation of 2-Furancarboxylic Acid to Valeric Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 9601-9612.	3.2	20
125	Synthesis of functionalized tetrahydrofuran derivatives from 2,5-dimethylfuran through cascade reactions. Green Chemistry, 2019, 21, 2601-2609.	4.6	4
126	Multiscale Modeling of (Hemi)cellulose Hydrolysis and Cascade Hydrotreatment of 5-Hydroxymethylfurfural, Furfural, and Levulinic Acid. Industrial & Engineering Chemistry Research, 2019, 58, 16018-16032.	1.8	72

#	Article	IF	CITATIONS
127	Influence of surface Lewis acid sites for the selective hydrogenation of levulinic acid to γ-valerolactone over Ni–Cu–Al mixed oxide catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 601-616.	0.8	11
128	Facile, Sustainable, and Chemical-Additive-Free Synthesis of Monodisperse Carbon Spheres Assisted by External Pressure. ACS Sustainable Chemistry and Engineering, 2019, 7, 7486-7490.	3.2	10
129	Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 6458-6470.	3.2	227
130	Highly selective hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over an acid–base bifunctional hafnium-based coordination polymer catalyst. Sustainable Energy and Fuels, 2019, 3, 1033-1041.	2.5	35
131	Reactions of levulinic acid and pseudolevulinic esters with various C-nucleophiles. Tetrahedron Letters, 2019, 60, 957-960.	0.7	1
132	Highâ€Throughput Approaches in Carbohydrateâ€Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angewandte Chemie, 2019, 131, 12880-12890.	1.6	7
133	Highâ€Throughput Approaches in Carbohydrateâ€Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angewandte Chemie - International Edition, 2019, 58, 12750-12760.	7.2	14
134	DFT study of fructose dehydration to 5-hydroxymethylfurfural catalyzed by imidazolium-based ionic liquid. Chemical Physics Letters, 2019, 723, 175-181.	1.2	19
135	One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WO _x /HZSM-5. Green Chemistry, 2019, 21, 2234-2239.	4.6	51
136	An electrocatalytic route for transformation of biomass-derived furfural into 5-hydroxy-2(5 <i>H</i>)-furanone. Chemical Science, 2019, 10, 4692-4698.	3.7	36
137	Aluminum alkoxyâ€catalyzed biomass conversion of glucose to 5â€hydroxymethylfurfural: Mechanistic study of the cooperative bifunctional catalysis. Journal of Computational Chemistry, 2019, 40, 1599-1608.	1.5	12
138	Fluoro-containing Polysiloxane Thermoset with Good Thermostability and Acid Resistance Based on the Renewable Multifunctional Vanillin. ACS Sustainable Chemistry and Engineering, 2019, 7, 7304-7311.	3.2	34
139	Influence of the Nb/P ratio of acidic Nb P Si oxides on surface and catalytic properties. Applied Catalysis A: General, 2019, 579, 9-17.	2.2	14
140	Activation of Heteroaromatic C–H Bonds in Furan and 2,5-Dimethylfuran. Inorganic Chemistry, 2019, 58, 6008-6015.	1.9	7
141	Mechanistic insight into the self-coupling of 5-hydroxymethyl furfural to C12 fuel intermediate catalyzed by ionic liquids. RSC Advances, 2019, 9, 10825-10831.	1.7	2
142	Dialkyl Carbonates in the Green Synthesis of Heterocycles. Frontiers in Chemistry, 2019, 7, 300.	1.8	19
143	Unveiling the Pyrolysis Mechanisms of Hemicellulose: Experimental and Theoretical Studies. Energy & Fuels, 2019, 33, 4352-4360.	2.5	44
144	Task-Specific Organic Salts and Ionic Liquids Binary Mixtures: A Combination to Obtain 5-Hydroxymethylfurfural From Carbohydrates. Frontiers in Chemistry, 2019, 7, 134.	1.8	25

#	Article	IF	CITATIONS
145	Highly Efficient Synthesis of Alkyl Levulinates from α-Angelica Lactone, Catalyzed with Lewis Acidic Trifloaluminate Ionic Liquids Supported on Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2019, 7, 5184-5191.	3.2	24
146	Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts on Porous TiO ₂ Nanosheets. Journal of the American Chemical Society, 2019, 141, 4002-4009.	6.6	106
147	Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions without Any Additive. ACS Sustainable Chemistry and Engineering, 2019, 7, 5711-5716.	3.2	33
148	Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production. BMC Chemical Engineering, 2019, 1, .	3.4	46
149	Enhancement of Catalytic Activity by γ-NiOOH for the Production of Methyl Lactate from Sugars in Near-Critical Methanol Solutions. Industrial & Engineering Chemistry Research, 2019, 58, 3659-3665.	1.8	13
150	One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution. Green Energy and Environment, 2019, 4, 391-399.	4.7	35
151	Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48, 2366-2421.	18.7	457
152	lonic Liquid Binary Mixtures, Zeolites, and Ultrasound Irradiation: A Combination to Promote Carbohydrate Conversion into 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2019, 7, 5818-5826.	3.2	45
153	Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources. ACS Sustainable Chemistry and Engineering, 2019, 7, 20126-20138.	3.2	48
154	A novel bio-based AB ₂ monomer for preparing hyperbranched polyamides derived from levulinic acid and furfurylamine. Polymer Chemistry, 2019, 10, 6217-6226.	1.9	18
155	Boosting the utilization efficiency of glucose <i>via</i> a favored C–C coupling reaction. Green Chemistry, 2019, 21, 6236-6240.	4.6	7
156	Selective hydrogenolysis of 2-furancarboxylic acid to 5-hydroxyvaleric acid derivatives over supported platinum catalysts. Green Chemistry, 2019, 21, 6133-6145.	4.6	26
157	Glucose Isomerizes to Fructose Catalyzed by the Ecoâ€Friendly and Biodegradable Ionic Liquids. ChemistrySelect, 2019, 4, 13731-13735.	0.7	7
158	Tailor-made biofuel 2-butyltetrahydrofuran from the continuous flow hydrogenation and deoxygenation of furfuralacetone. Green Chemistry, 2019, 21, 6299-6306.	4.6	15
159	Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 2019, 102, 266-284.	8.2	69
160	Covalently linked organo-sulfonic acid modified titanate nanotube hybrid nanostructures for the catalytic esterification of levulinic acid with n-butyl alcohol. Chemical Engineering Journal, 2019, 361, 571-577.	6.6	38
161	Highly effective transformation of carbohydrates to 5-Hydroxymethylfurfural with Al- montmorillonite as catalyst. Applied Catalysis A: General, 2019, 571, 96-101.	2.2	27
162	Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. ChemSusChem, 2019, 12, 848-857.	3.6	32

#	Article	IF	CITATIONS
163	Highly efficient production of 2,5-dihydroxymethylfuran from biomass-derived 5-hydroxymethylfurfural over an amorphous and mesoporous zirconium phosphonate catalyst. Journal of Energy Chemistry, 2019, 37, 82-92.	7.1	52
164	Catalytic Upgrading of Biomassâ€Derived Sugars with Acidic Nanoporous Materials: Structural Role in Carbon hain Length Variation. ChemSusChem, 2019, 12, 347-378.	3.6	30
165	Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates. Applied Catalysis B: Environmental, 2019, 244, 170-177.	10.8	77
166	The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem, 2019, 11, 134-156.	1.8	96
167	Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chemistry, 2019, 377, 1.	3.0	104
168	Production of 1,2-Cyclohexanedicarboxylates from Diacetone Alcohol and Fumarates. ACS Sustainable Chemistry and Engineering, 2019, 7, 2980-2988.	3.2	10
169	Direct esterification of succinic acid with phenol using zeolite beta catalyst. Catalysis Communications, 2019, 122, 20-23.	1.6	22
170	Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Current Opinion in Biotechnology, 2019, 56, 193-201.	3.3	264
171	Morphological, Structural, and Chemical Properties of Thermally Stable Ni-Nb ₂ O ₅ for Catalytic Applications. Journal of Physical Chemistry C, 2019, 123, 3130-3143.	1.5	18
172	Acid–base synergistic catalysis of biochar sulfonic acid bearing polyamide for microwave-assisted hydrolysis of cellulose in water. Cellulose, 2019, 26, 751-762.	2.4	22
173	Towards Improved Biorefinery Technologies: 5â€Methylfurfural as a Versatile C ₆ Platform for Biofuels Development. ChemSusChem, 2019, 12, 185-189.	3.6	42
174	Selective reduction of Cu2+ with simultaneous degradation of tetracycline by the dual channels ion imprinted POPD-CoFe2O4 heterojunction photocatalyst. Chemical Engineering Journal, 2019, 360, 750-761.	6.6	113
175	Efficient metal-free conversion of glucose to 5-hydroxymethylfurfural using a boronic acid. Biomass Conversion and Biorefinery, 2019, 9, 471-477.	2.9	12
176	Catalytic Transfer Hydrogenation of Biomassâ€Derived Substrates to Valueâ€Added Chemicals on Dualâ€Function Catalysts: Opportunities and Challenges. ChemSusChem, 2019, 12, 71-92.	3.6	109
177	Recent advances in the application of carbohydrates as renewable feedstocks for the synthesis of nitrogen-containing compounds. Physical Sciences Reviews, 2019, 4, .	0.8	0
178	H4SiW12O40-Catalyzed Levulinic Acid Esterification at Room Temperature for Production of Fuel Bioadditives. Waste and Biomass Valorization, 2020, 11, 1895-1904.	1.8	29
179	Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst. Catalysis Today, 2020, 357, 94-101.	2.2	46
180	Zirconium-Containing Organic–Inorganic Nanohybrid as a Highly Efficient Catalyst for the Selective Synthesis of Biomass-Derived 2,5-Dihydroxymethylfuran in Isopropanol. Waste and Biomass Valorization, 2020, 11, 3485-3499.	1.8	15

#	Article	IF	CITATIONS
181	Formation of humins during degradation of carbohydrates and furfural derivatives in various solvents. Biomass Conversion and Biorefinery, 2020, 10, 277-287.	2.9	62
182	Study on the hydrolysis of cellulose with the regenerable and recyclable multifunctional solid acid as a catalyst and its catalytic hydrolytic kinetics. Cellulose, 2020, 27, 285-300.	2.4	24
183	NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Applied Catalysis B: Environmental, 2020, 261, 118235.	10.8	130
184	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 501-512.	3.6	46
185	Preparation of Polar-Modified Styrene-Divinylbenzene Copolymer and Its Adsorption Performance for Comprehensive Utilization of Sugarcane Bagasse Dilute-Acid Hydrolysate. Applied Biochemistry and Biotechnology, 2020, 190, 423-436.	1.4	5
186	N-Doped Carbon Materials as Heterogeneous Catalysts for High Efficiency Isomerization Glucose to Fructose in Aqueous Media. Catalysis Letters, 2020, 150, 493-504.	1.4	17
188	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	5.5	426
189	Pentanoic acid from γ-valerolactone and formic acid using bifunctional catalysis. Green Chemistry, 2020, 22, 1171-1181.	4.6	33
190	Selective conversion of chitin to levulinic acid catalyzed by ionic liquids: distinctive effect of <i>N</i> -acetyl groups. Green Chemistry, 2020, 22, 62-70.	4.6	43
191	Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 2020, 22, 582-611.	4.6	100
192	Efficient Hydrogenation of Xylose and Hemicellulosic Hydrolysate to Xylitol over Ni-Re Bimetallic Nanoparticle Catalyst. Nanomaterials, 2020, 10, 73.	1.9	24
193	CNN pincer ruthenium complexes for efficient transfer hydrogenation of biomass-derived carbonyl compounds. Dalton Transactions, 2020, 49, 453-465.	1.6	14
195	A Biorefinery approach towards development of renewable platform chemicals from sustainable biomass. , 2020, , 135-147.		4
196	Construction of mesoporous Cu/ZrO2-Al2O3 as a ternary catalyst for efficient synthesis of γ-valerolactone from levulinic acid at low temperature. Journal of Catalysis, 2020, 381, 163-174.	3.1	42
197	Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renewable and Sustainable Energy Reviews, 2020, 120, 109612.	8.2	97
198	Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives. Applied Microbiology and Biotechnology, 2020, 104, 527-543.	1.7	58
199	Utilizing Furfural-Based Bifuran Diester as Monomer and Comonomer for High-Performance Bioplastics: Properties of Poly(butylene furanoate), Poly(butylene bifuranoate), and Their Copolyesters. Biomacromolecules, 2020, 21, 743-752.	2.6	52
200	Recent advances in selective oxidation of biomass-derived platform chemicals over gold catalysts. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 50-55.	3.2	14

#	Article	IF	CITATIONS
201	Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 2020, 706, 136033.	3.9	225
202	The rise of lignin biorefinery. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 1-6.	3.2	99
203	In Situ Generation and Stabilization of Accessible Cu/Cu ₂ 0 Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angewandte Chemie, 2020, 132, 1941-1947.	1.6	19
204	In Situ Generation and Stabilization of Accessible Cu/Cu ₂ O Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angewandte Chemie - International Edition, 2020, 59, 1925-1931.	7.2	81
205	Bimetal Co8Ni2 catalyst supported on chitin-derived N-containing carbon for upgrade of biofuels. Applied Surface Science, 2020, 506, 144681.	3.1	30
206	Recycle of fermentation process water through mitigation of inhibitors in dilute-acid corn stover hydrolysate. Bioresource Technology Reports, 2020, 9, 100349.	1.5	6
207	Recent developments in selective catalytic conversion of lignin into aromatics and their derivatives. Biomass Conversion and Biorefinery, 2020, 10, 873-883.	2.9	19
208	Flow synthesis, characterization, anticoagulant activity of xylan sulfate from sugarcane bagasse. International Journal of Biological Macromolecules, 2020, 155, 1460-1467.	3.6	15
209	Dipolar cycloadditions of HMF-based nitrones: stepwise and multicomponent reactions, stereochemical outcome and structural scope. Green Chemistry, 2020, 22, 7907-7912.	4.6	3
210	Layered double hydroxide derived NiAl-oxide hollow nanospheres for selective transfer hydrogenation with improved stability. Journal of Materials Chemistry A, 2020, 8, 23376-23384.	5.2	9
211	Hydrocarbon hydrogen carriers for catalytic transfer hydrogenation of guaiacol. International Journal of Hydrogen Energy, 2020, 45, 27381-27391.	3.8	9
212	Catalytic etherification of 5-hydroxymethylfurfural into 5-ethoxymethyfurfural over sulfated bimetallic SO42â^'/Al-Zr/KIT-6, a Lewis/BrAֻnsted acid hybrid catalyst. Molecular Catalysis, 2020, 496, 111176.	1.0	7
213	Electrochemical Conversion of Biomass Derived Products into High-Value Chemicals. Matter, 2020, 3, 1162-1177.	5.0	63
214	Ionicity of deep eutectic solvents by Walden plot and pulsed field gradient nuclear magnetic resonance (PFG-NMR). Physical Chemistry Chemical Physics, 2020, 22, 25760-25768.	1.3	55
215	Cellulose-based polyacetals by direct and sensitized photocationic ring-opening polymerization of levoglucosenyl methyl ether. Polymer Chemistry, 2020, 11, 6884-6889.	1.9	7
216	Selective Biosynthesis of Furoic Acid From Furfural by Pseudomonas Putida and Identification of Molybdate Transporter Involvement in Furfural Oxidation. Frontiers in Chemistry, 2020, 8, 587456.	1.8	15
217	Selective conversion of biomass-derived furfuryl alcohol into n-butyl levulinate over sulfonic acid functionalized TiO2 nanotubes. Green Energy and Environment, 2022, 7, 257-265.	4.7	34
218	NaOH(KOH)-catalyzed vinylation of cellulose with acetylene gas in water. Cellulose, 2020, 27, 9271-9283.	2.4	2

#	Article	IF	CITATIONS
219	Deoxygenative Divergent Synthesis: En Route to Quinic Acid Chirons. Organic Letters, 2020, 22, 8370-8375.	2.4	1
220	Mechanistic understanding of humin formation in the conversion of glucose and fructose to 5-hydroxymethylfurfural in [BMIM]Cl ionic liquid. RSC Advances, 2020, 10, 34732-34737.	1.7	48
221	Efficient conversion of cellulose to 5-hydroxymethylfurfural catalyzed by a cobalt-phosphonate catalyst. Sustainable Energy and Fuels, 2020, 4, 5795-5801.	2.5	8
222	Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chemical Society Reviews, 2020, 49, 5704-5771.	18.7	134
223	Clucopyranoside-substituted imidazolium-based chiral ionic liquids for Pd-catalyzed homo-coupling of arylboronic acids in water. Journal of Carbohydrate Chemistry, 2020, 39, 288-299.	0.4	8
224	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	23.0	222
225	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73
226	Biomass Transformation of Cellulose via N-Heterocyclic Carbene-Catalyzed Umpolung of 5-(Chloromethyl)furfural. Cell Reports Physical Science, 2020, 1, 100071.	2.8	12
227	Transformation of carbohydrates to 5-hydroxymethylfurfural with high efficiency by tandem catalysis. Journal of Cleaner Production, 2020, 274, 123023.	4.6	40
228	Advances in catalytic production processes of biomass-derived vinyl monomers. Catalysis Science and Technology, 2020, 10, 5411-5437.	2.1	25
229	The role of catalysis in green synthesis of chemicals for sustainable future. , 2020, , 1-37.		2
230	Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into Î ³ -Valerolactone without the Addition of Molecular Hydrogen. Energies, 2020, 13, 3448.	1.6	10
231	Transformations of bioâ€sourced 4â€hydroxyphenylpropanoids based on olefin metathesis. ChemCatChem, 2020, 12, 5000-5021.	1.8	11
232	Reactive Diluent Derived from Ferulic Acid for the Preparation of a Fully Biobased Unsaturated Polyester Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17379-17386.	3.2	14
233	Collaborative Conversion of Biomass Carbohydrates into Valuable Chemicals: Catalytic Strategy and Mechanism Research. Journal of Agricultural and Food Chemistry, 2020, 68, 13760-13769.	2.4	11
234	Lipase-catalysed polycondensation of levulinic acid derived diol-diamide monomers: access to new poly(ester- <i>co</i> -amide)s. Polymer Chemistry, 2020, 11, 7506-7514.	1.9	6
235	Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO2-Based Materials. Molecules, 2020, 25, 5225.	1.7	12
236	Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catalysis, 2020, 10, 14707-14721.	5.5	41

#	Article	IF	CITATIONS
237	Improved conversion of bamboo shoot shells to furfuryl alcohol and furfurylamine by a sequential catalysis with sulfonated graphite and biocatalysts. RSC Advances, 2020, 10, 40365-40372.	1.7	16
238	Abatement of Inhibitors in Recycled Process Water from Biomass Fermentations Relieves Inhibition of a Saccharomyces cerevisiae Pentose Phosphate Pathway Mutant. Fermentation, 2020, 6, 107.	1.4	0
239	Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation. Advances in Catalysis, 2020, , 1-108.	0.1	9
240	Bifunctional carbon Ni/NiO nanofiber catalyst based on 5-sulfosalicylic acid for conversion of C5/C6 carbohydrates into ethyl levulinate. Reaction Chemistry and Engineering, 2020, 5, 1759-1767.	1.9	18
241	Aqueous Room Temperature Mono-Dehydration of Sugar Alcohols Using Functionalized Yttrium Oxide Nanocatalysts. Frontiers in Chemistry, 2020, 8, 532.	1.8	1
242	Synthesis of glucoside-based imidazolium salts for Pd-catalyzed cross-coupling reaction in water. Carbohydrate Research, 2020, 496, 108079.	1.1	6
243	Understanding the role of the substrate and the metal triflate acidic catalyst in sugar platform biorefineries: A comprehensive systematic approach to catalytic transformations of (poly)carbohydrates in ethanol. Chemical Engineering Journal, 2020, 399, 125816.	6.6	6
244	Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. Fuel Processing Technology, 2020, 209, 106528.	3.7	86
245	Photocatalytic Pinacol C–C Coupling and Jet Fuel Precursor Production on ZnIn ₂ S ₄ Nanosheets. ACS Catalysis, 2020, 10, 9346-9355.	5.5	85
246	Bimetallic PtFe-Catalyzed Selective Hydrogenation of Furfural to Furfuryl Alcohol: Solvent Effect of Isopropanol and Hydrogen Activation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12722-12730.	3.2	61
247	Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chemical Society Reviews, 2020, 49, 6329-6363.	18.7	87
248	<i>tert</i> -Butanol intervention enables chemoselective conversion of xylose to furfuryl alcohol over heteropolyacids. Green Chemistry, 2020, 22, 5656-5665.	4.6	18
249	Recent advances and mechanistic insights on the production of biomass-derived 2,5-bis(alkoxymethyl)furans. Biomass Conversion and Biorefinery, 2023, 13, 1343-1358.	2.9	14
250	Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 2020, 134, 110317.	8.2	69
251	Modulating <i>trans</i> -imination and hydrogenation towards the highly selective production of primary diamines from dialdehydes. Green Chemistry, 2020, 22, 6897-6901.	4.6	32
252	New Intensification Strategies for the Direct Conversion of Real Biomass into Platform and Fine Chemicals: What Are the Main Improvable Key Aspects?. Catalysts, 2020, 10, 961.	1.6	16
253	Controlled Natural Biomass Deoxygenation Allows the Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. ACS Applied Materials & Interfaces, 2020, 12, 45394-45403.	4.0	19
254	One-step synthesis of 2,5-diformylfuran from monosaccharides by using lanthanum(<scp>iii</scp>) triflate, sulfur, and DMSO. Chemical Communications, 2020, 56, 13005-13008.	2.2	8

#	Article	IF	CITATIONS
255	Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: progress, challenges, and future opportunities. Catalysis Reviews - Science and Engineering, 2022, 64, 445-490.	5.7	41
256	Performance of 1-(3-Sulfopropyl)-3-Methylimidazolium Hydrogen Sulfate as a Catalyst for Hardwood Upgrading into Bio-Based Platform Chemicals. Catalysts, 2020, 10, 937.	1.6	2
257	A unique pathway to platform chemicals: aldaric acids as stable intermediates for the synthesis of furandicarboxylic acid esters. Green Chemistry, 2020, 22, 8271-8277.	4.6	24
258	Highly Stable N-Doped Carbon-Supported Pd-Based Catalysts Prepared from Biomass Waste for H ₂ Production from Formic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 15030-15043.	3.2	34
259	Regiodivergent Hydration–Cyclization of Diynones under Gold Catalysis. Organic Letters, 2020, 22, 7681-7687.	2.4	27
260	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	1.7	99
261	Arundo donax Refining to Second Generation Bioethanol and Furfural. Processes, 2020, 8, 1591.	1.3	13
262	Base-Free, Vanadium-Catalyzed Conversion of Chitin into Acetic Acid under Low Oxygen Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 18661-18670.	3.2	18
263	Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and Selectivity. Catalysts, 2020, 10, 1142.	1.6	11
264	Sustainable Production of 5-Hydroxymethylfurfural from Pectin-Free Sugar Beet Pulp in a Simple Aqueous Phase System-Optimization with Doehlert Design. Energies, 2020, 13, 5649.	1.6	6
265	The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5â€(hydroxymethyl)furfural. ChemistryOpen, 2020, 9, 1135-1148.	0.9	16
266	Synthesis of 5-hydroxymethylfurfural from monosaccharides catalyzed by superacid VNU-11–SO ₄ in 1-ethyl-3-methylimidazolium chloride ionic liquid. RSC Advances, 2020, 10, 39687-39692.	1.7	10
267	Aromatics Production from Lignocellulosic Biomass: Shape Selective Dealkylation of Lignin-Derived Phenolics over Hierarchical ZSM-5. ACS Sustainable Chemistry and Engineering, 2020, 8, 8713-8722.	3.2	45
268	High-Efficiency Synthesis of 5-Hydroxymethylfurfural from Fructose over Highly Sulfonated Organocatalyst. Industrial & Engineering Chemistry Research, 2020, 59, 17218-17227.	1.8	21
269	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687.	18.7	176
270	Hydroxyl radicals-mediated oxidative cleavage of the glycosidic bond in cellobiose by copper catalysts and its application to low-temperature depolymerization of cellulose. Chinese Journal of Catalysis, 2020, 41, 1073-1080.	6.9	18
271	Heterostructured Redoxâ€Active V 2 O 5 /SnO 2 Oxide Nanocatalyst for Aqueousâ€Phase Oxidation of Furfural to Renewable Maleic Acid. ChemistrySelect, 2020, 5, 6255-6267.	0.7	10
272	One-step process to produce furfural from sugarcane bagasse over niobium-based solid acid catalysts in a water medium. Fuel Processing Technology, 2020, 207, 106482.	3.7	31

# 273	ARTICLE Zirconium Phosphate Catalyzed Transformations of Biomass-Derived Furfural to Renewable Chemicals. ACS Sustainable Chemistry and Engineering, 2020, 8, 9497-9506.	IF 3.2	CITATIONS 22
274	Reduction of sugar derivatives to valuable chemicals: utilization of asymmetric carbons. Catalysis Science and Technology, 2020, 10, 3805-3824.	2.1	20
275	Highly efficient conversion of cellulose into 5-hydroxymethylfurfural using temperature-responsive ChnH5-nCeW12O40 (nÂ=Â1–5) catalysts. Chemical Engineering Journal, 2020, 396, 125282.	6.6	35
276	A practical and concise homogeneous nickel catalyst for efficient solvent-free synthesis of γ-valerolactone. Green Chemistry, 2020, 22, 3427-3432.	4.6	28
277	Synthesis of glycidyl methacrylate modified hyperâ€crossâ€linked resins and enhancing their adsorptions toward levulinic acid and furfural from sugarcane bagasse hydrolysate. Journal of Chemical Technology and Biotechnology, 2020, 95, 2537-2548.	1.6	5
278	Micellar catalysis enabled synthesis of indolylbenzothiazoles and their functionalization via Mn(II)-catalyzed C2–H amination using pyridones. Tetrahedron Letters, 2020, 61, 152017.	0.7	6
279	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Biomass-Derived γ-Valerolactone + Tetrahydrofuran and 2-Methyltetrahydrofuran. Journal of Chemical & Engineering Data, 2020, 65, 3063-3071.	1.0	7
280	Measurable surface d charge of Pd as a descriptor for the selective hydrogenation activity of quinoline. Chinese Journal of Catalysis, 2020, 41, 1337-1347.	6.9	13
281	A gradient reduction strategy to produce defects-rich nano-twin Cu particles for targeting activation of carbon-carbon or carbon-oxygen in furfural conversion. Journal of Catalysis, 2020, 389, 78-86.	3.1	12
282	Synergistic effects of CO2 on ex situ catalytic pyrolysis of lignocellulosic biomass over a Ni/SiO2 catalyst. Journal of CO2 Utilization, 2020, 39, 101182.	3.3	19
283	Catalytic hydrodeoxygenation of biomass-derived oxygenates to bio-fuels over Co-based bimetallic catalysts. Sustainable Energy and Fuels, 2020, 4, 4558-4569.	2.5	21
284	Homogeneous Pd-Catalyzed Heck Coupling in γ-Valerolactone as a Green Reaction Medium: A Catalytic, Kinetic, and Computational Study. ACS Sustainable Chemistry and Engineering, 2020, 8, 9926-9936.	3.2	22
285	Enhancement of levoglucosan production via fast pyrolysis of sugarcane bagasse by pretreatment with Keggin heteropolyacids. Industrial Crops and Products, 2020, 154, 112680.	2.5	11
286	Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts. Applied Catalysis A: General, 2020, 602, 117719.	2.2	57
287	Continuous production of furfural from pulp prehydrolysate in a vaporization reactor. Industrial Crops and Products, 2020, 153, 112565.	2.5	10
288	Efficient and selective catalytic hydrogenation of furanic aldehydes using well defined Ru and Ir pincer complexes. Green Chemistry, 2020, 22, 6767-6772.	4.6	24
289	Sustainable Catalytic Conversion of Biomass for the Production of Biofuels and Bioproducts. Catalysts, 2020, 10, 581.	1.6	12
290	Highly-selective solvent-free catalytic isomerization of α-pinene to camphene over reusable titanate nanotubes. RSC Advances, 2020, 10, 10606-10611.	1.7	8

#	Article	IF	CITATIONS
291	Effective and facile conversion of bamboo into platform chemicals over SnCl4 in a sulfolane/water solution. Journal of the Energy Institute, 2020, 93, 1642-1650.	2.7	6
292	Fabrication of immobilized nickel nanoclusters decorated by C N species for cellulose conversion to C2,3 oxygenated compounds: Rational design via typical C- and N-sources. Journal of Energy Chemistry, 2020, 50, 25-36.	7.1	5
293	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	3.2	63
294	Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy, 2020, 2, .	6.3	25
295	Dehydration of Fructose to 5-HMF over Acidic TiO2 Catalysts. Materials, 2020, 13, 1178.	1.3	27
296	Functionalized Metal-Organic Framework Catalysts for Sustainable Biomass Valorization. Advances in Polymer Technology, 2020, 2020, 1-11.	0.8	10
297	Current and Future Trends in Polyurethanes: An Industrial Perspective. Macromolecular Chemistry and Physics, 2020, 221, 2000114.	1.1	67
298	Selective Activation of C–OH, C–O–C, or C╀ in Furfuryl Alcohol by Engineered Pt Sites Supported on Layered Double Oxides. ACS Catalysis, 2020, 10, 8032-8041.	5.5	73
299	Transformation of remnant algal biomass to 5-HMF and levulinic acid: influence of a biphasic solvent system. RSC Advances, 2020, 10, 24753-24763.	1.7	30
300	FeCrAl as a Catalyst Support. Chemical Reviews, 2020, 120, 7516-7550.	23.0	59
301	Treating a Global Health Crisis with a Dose of Synthetic Chemistry. ACS Central Science, 2020, 6, 1017-1030.	5.3	25
302	Convenient synthesis of cobalt nanoparticles for the hydrogenation of quinolines in water. Catalysis Science and Technology, 2020, 10, 4820-4826.	2.1	14
303	Efficient and selective aqueous photocatalytic mono-dehydration of sugar alcohols using functionalized yttrium oxide nanocatalysts. Green Chemistry, 2020, 22, 5333-5344.	4.6	2
304	Qualitative Analysis of Liquid Products Generated from Lignocellulosic Biomass Using Post-Target and Nontarget Analysis Methods and Liquefaction Mechanism Research. ACS Sustainable Chemistry and Engineering, 2020, 8, 11099-11113.	3.2	6
305	Chemo-enzymatic Conversion of Glucose in 5-Hydroxymethylfurfural: The Joint Effect of Ionic Liquids and Ultrasound. ACS Sustainable Chemistry and Engineering, 2020, 8, 11204-11214.	3.2	16
306	Environmental sustainability assessment of a biomass-based chemical industry in the Visegrad countries: Czech Republic, Hungary, Poland, and Slovakia. Chemical Papers, 2020, 74, 3067-3076.	1.0	0
307	Preparation of 1-Hydroxy-2,5-hexanedione from HMF by the Combination of Commercial Pd/C and Acetic Acid. Molecules, 2020, 25, 2475.	1.7	17

#	Article	IF	CITATIONS
309	Selective hydrogenation of aromatic furfurals into aliphatic tetrahydrofurfural derivatives. Green Chemistry, 2020, 22, 4937-4942.	4.6	34
310	Directional and integrated conversion of whole components in biomass for levulinates and phenolics with biphasic system. Bioresource Technology, 2020, 315, 123776.	4.8	10
311	Catalytic conversion of fructose to 1,3-dihydroxyacetone under mild conditions. Catalysis Communications, 2020, 145, 106098.	1.6	3
312	Size Effects of Ni Particles on the Cleavage of C–H and C–C Bonds toward Hydrogen Production from Cellulose. ACS Applied Energy Materials, 2020, 3, 7048-7057.	2.5	14
313	Efficient production of adipic acid from 2-methoxycyclohexanone by aerobic oxidation with a phosphotungstic acid catalyst. Green Chemistry, 2020, 22, 4962-4974.	4.6	18
314	An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383, 172-180.	3.1	119
315	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 438-438.	3.6	4
316	Reductive amination of levulinic acid to N-substituted pyrrolidones over RuCl3 metal ion anchored in ionic liquid immobilized on graphene oxide. Journal of Catalysis, 2020, 383, 206-214.	3.1	26
317	Preparation of 5-Hydroxymethylfurfural from High Fructose Corn Syrup Using Organic Weak Acid in Situ as Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 4358-4366.	1.8	15
318	Mutarotation of aldoses: Getting a deeper knowledge of a classic equilibrium enabled by computational analyses. Carbohydrate Research, 2020, 490, 107964.	1.1	5
319	Directing the Simultaneous Conversion of Hemicellulose and Cellulose in Raw Biomass to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 4244-4255.	3.2	47
320	Effect of highly selective oxypropylation of phenolic hydroxyl groups on subsequent lignin pyrolysis: Toward the lignin valorization. Energy Conversion and Management, 2020, 207, 112551.	4.4	26
321	The significance of biomass in a circular economy. Bioresource Technology, 2020, 300, 122755.	4.8	266
322	Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nature Communications, 2020, 11, 265.	5.8	280
323	Hydrothermal Liquefaction of αâ€Oâ€4 Aryl Ether Linkages in Lignin. ChemSusChem, 2020, 13, 2002-2006.	3.6	11
324	Automated access to well-defined ionic oligosaccharides. Organic and Biomolecular Chemistry, 2020, 18, 1349-1353.	1.5	14
325	The role of pretreatment in the catalytic valorization of cellulose. Molecular Catalysis, 2020, 487, 110883.	1.0	43
326	Selective Electrocatalytic Oxidation of Biomassâ€Derived 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran: from Mechanistic Investigations to Catalyst Recovery. ChemSusChem, 2020, 13, 3127-3136.	3.6	45

#	Article	IF	CITATIONS
327	Evaluation of Pore Structure of Polarity-Controllable Post-Cross-Linked Adsorption Resins on the Adsorption Performance of 5-Hydroxymethylfurfural in Both Single- and Ternary-Component Systems. Industrial & Engineering Chemistry Research, 2020, 59, 17575-17586.	1.8	16
328	Ruâ€Catalyzed Carbonylative Murai Reaction: Directed C3â€Acylation of Biomassâ€Derived 2â€Formyl Heteroaromatics. Advanced Synthesis and Catalysis, 2020, 362, 2486-2493.	2.1	16
329	Selective Conversion of Various Monosaccharaides into Sugar Acids by Additiveâ€Free Dehydrogenation in Water. ChemCatChem, 2020, 12, 3746-3752.	1.8	9
330	Eco-Friendly Synthesis of SO ₃ H-Containing Solid Acid via Mechanochemistry for the Conversion of Carbohydrates to 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2020, 8, 7059-7067.	3.2	54
331	Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.	2.1	60
332	Scalable synthesis of hydroxymethyl alkylfuranoates as stable 2,5-furandicarboxylic acid precursors. Green Chemistry, 2020, 22, 2399-2402.	4.6	1
333	Efficient hydrogenation of furfural to fufuryl alcohol over hierarchical MOF immobilized metal catalysts. Catalysis Today, 2021, 368, 217-223.	2.2	15
334	Metal-Catalyzed Carbon–Carbon Bond Cleavage of Unstrained Alcohols. Chemical Reviews, 2021, 121, 300-326.	23.0	124
335	Biomass valorisation over polyoxometalate-based catalysts. Green Chemistry, 2021, 23, 18-36.	4.6	101
336	An Account of the Catalytic Transfer Hydrogenation and Hydrogenolysis of Carbohydrateâ€Derived Renewable Platform Chemicals over Nonâ€Precious Heterogeneous Metal Catalysts. ChemCatChem, 2021, 13, 59-80.	1.8	36
337	Fabrication of porous polymer membrane from polysulfone grafted with acid ionic liquid and the catalytic property for inulin hydrolysis. Journal of Membrane Science, 2021, 618, 118742.	4.1	9
338	Selective Transformation of Nickelâ€Bound Formate to CO or Câ^C Coupling Products Triggered by Deprotonation and Steered by Alkaliâ€Metal Ions. Angewandte Chemie - International Edition, 2021, 60, 2312-2321.	7.2	14
339	Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry, 2021, 23, 119-231.	4.6	223
340	Directional depolymerization of lignin into high added-value chemical with synergistic effect of binary solvents. Bioresource Technology, 2021, 321, 124440.	4.8	23
341	Valorization of textile waste hydrolysate for hydrogen gas and levulinic acid production. International Journal of Hydrogen Energy, 2021, 46, 4992-4997.	3.8	6
342	Cascade Hydrogenation–Cyclization of Levulinic Acid into γ-Valerolactone Catalyzed by Half-Sandwich Iridium Complexes: A Mechanistic Insight from Density Functional Theory. Journal of Organic Chemistry, 2021, 86, 674-682.	1.7	7
343	Selective 5-hydroxymethylfurfural production from cellulose formate in DMSO-H2O media. Applied Catalysis B: Environmental, 2021, 285, 119799.	10.8	30
344	Rapid conversion of glucose to 5-hydroxymethylfurfural using a MoCl3 catalyst in an ionic liquid with microwave irradiation. Industrial Crops and Products, 2021, 160, 113091.	2.5	28

#	Article	IF	CITATIONS
345	Bioeconomy as a transforming driver of intensive greenhouse horticulture in SE Spain. New Biotechnology, 2021, 61, 50-56.	2.4	11
346	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Gamma-Valerolactone + Toluene. Journal of Chemical & Engineering Data, 2021, 66, 568-574.	1.0	7
347	Cellulose conversion to biofuel precursors using conjugated ionic liquid catalyst: An experimental and DFT studyâ€. Applied Catalysis A: General, 2021, 610, 117951.	2.2	11
348	Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9, 1110-1118.	5.2	102
349	Recyclable catalysts for the synthesis of heterocyclic compounds using carbon materials. Journal of Heterocyclic Chemistry, 2021, 58, 1039-1057.	1.4	11
350	Surface kinetics and transport phenomena modelling for furfural hydrotreatment over Pd/C in isopropanol and tetrahydrofuran. Applied Surface Science, 2021, 541, 148485.	3.1	13
351	Building biobased, degradable, flexible polymer networks from vanillin <i>via</i> thiol–ene "click― photopolymerization. Polymer Chemistry, 2021, 12, 564-571.	1.9	22
352	Selective Transformation of Nickelâ€Bound Formate to CO or Câ^'C Coupling Products Triggered by Deprotonation and Steered by Alkaliâ€Metal Ions. Angewandte Chemie, 2021, 133, 2342-2351.	1.6	3
353	Microwave-assisted condensation of bio-based hydroxymethylfurfural and acetone over recyclable hydrotalcite-related materials. Applied Catalysis B: Environmental, 2021, 282, 119599.	10.8	17
354	Dehydration of carbohydrates into 5-hydroxymethylfurfural over vanadyl pyrophosphate catalysts. Renewable Energy, 2021, 164, 11-22.	4.3	27
355	Inline Raman Spectroscopy and Indirect Hard Modeling for Concentration Monitoring of Dissociated Acid Species. Applied Spectroscopy, 2021, 75, 506-519.	1.2	7
356	Novel Oneâ€Step Process for the Production of Levulinic Acid from Furfural over Hierarchical Zeolites in a Microwave Reactor. Advanced Sustainable Systems, 2021, 5, .	2.7	5
357	Transformation of biomass derivatives in aqueous medium: Oxidation of ethanol from sugarcane and acetol from biodiesel glycerol catalyzed by Fe3+- H2O2. Molecular Catalysis, 2021, 500, 111307.	1.0	2
358	Conversion of glucose to levulinic acid and upgradation to γ-valerolactone on Ru/TiO ₂ catalysts. New Journal of Chemistry, 2021, 45, 14406-14413.	1.4	5
359	Recent trends on the food wastes valorization to value-added commodities. , 2021, , 171-196.		2
360	Lignocellulose Biomass as a Multifunctional Tool for Sustainable Catalysis and Chemicals: An Overview. Catalysts, 2021, 11, 125.	1.6	13
361	One-Step Conversion of Crab Shells to Levulinic Acid Catalyzed by Ionic Liquids: Self-Healing of Chitin Fraction. ACS Sustainable Chemistry and Engineering, 2021, 9, 1762-1771.	3.2	16
362	Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels. Green Chemistry, 2021, 23, 3818-3841.	4.6	33

	CITATION	Report	
#	Article	IF	CITATIONS
363	Xylochemicals and where to find them. Chemical Communications, 2021, 57, 9979-9994.	2.2	5
364	Bio-Catalytic Itaconic Acid and Bio-Based Vinyl Monomer Production Processes. , 2021, , 89-111.		0
365	Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis. RSC Advances, 2021, 11, 27042-27058.	1.7	44
366	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 2021, 50, 11270-11292.	18.7	102
367	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
368	Functionalized nanomaterials for biomass conversion. Materials Today: Proceedings, 2021, 35, 156-163.	0.9	4
369	Potential of petrochemicals from lignin. , 2021, , 147-171.		4
370	A catalytic approach <i>via</i> retro-aldol condensation of glucose to furanic compounds. Green Chemistry, 2021, 23, 5481-5486.	4.6	15
371	CaCl ₂ molten salt hydrate-promoted conversion of carbohydrates to 5-hydroxymethylfurfural: an experimental and theoretical study. Green Chemistry, 2021, 23, 2058-2068.	4.6	19
372	Production of functional C4 organic acids from ammonolysis of biofeedstock poly(3-hydroxybutyrate). Biomass Conversion and Biorefinery, 0, , 1.	2.9	0
374	Application of vanadyl hydrogen phosphate/KIT-6 composites as a catalyst for dehydration of sucrose. Journal of the Iranian Chemical Society, 2021, 18, 2291-2302.	1.2	2
375	Sustainable biorefinery processes using renewable deep eutectic solvents. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100396.	3.2	28
376	Recent advances in biotransformation of <scp>5â€Hydroxymethylfurfural</scp> : challenges and future aspects. Journal of Chemical Technology and Biotechnology, 2022, 97, 409-419.	1.6	33
377	Biomass-derived <i>rctt</i> -3,4-di-2-furanyl-1,2-cyclobutanedicarboxylic acid: a polytopic ligand for synthesizing green metal-organic materials. Journal of Coordination Chemistry, 2021, 74, 226-240.	0.8	7
378	Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge. Chinese Journal of Chemical Engineering, 2021, 30, 146-167.	1.7	5
379	Engineering the Distinct Structure Interface of Subnano-alumina Domains on Silica for Acidic Amorphous Silica–Alumina toward Biorefining. Jacs Au, 2021, 1, 262-271.	3.6	7
380	Biobased C ₆ -Furans in Organic Synthesis and Industry: Cycloaddition Chemistry as a Key Approach to Aromatic Building Blocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 3011-3042.	3.2	44
381	Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chemistry - an Asian Journal, 2021, 16, 604-620.	1.7	16

#	Article	IF	CITATIONS
382	Synthetic approaches to 2,5-bis(hydroxymethyl)furan (BHMF): a stable bio-based diol. Pure and Applied Chemistry, 2021, 93, 551-560.	0.9	9
383	Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation. Biomass Conversion and Biorefinery, 2022, 12, 1013-1047.	2.9	14
384	Ethanol: Unlocking an Abundant Renewable C 2 â€Feedstock for Catalytic Enantioselective Câ^'C Coupling. Angewandte Chemie, 2021, 133, 10636-10640.	1.6	0
385	Seagrass-based platform strategies for sustainable hydroxymethylfurfural (HMF) production: toward bio-based chemical products. Critical Reviews in Biotechnology, 2021, 41, 902-917.	5.1	13
386	Disaccharide phosphorylases: Structure, catalytic mechanisms and directed evolution. Synthetic and Systems Biotechnology, 2021, 6, 23-31.	1.8	17
387	A green and highly efficient synthesis of 5-hydroxymethylfurfural from monosaccharides using a novel binary ionic liquid mixture. Molecular Catalysis, 2021, 503, 111428.	1.0	14
388	Reductive Conversion of Biomass-Derived Furancarboxylic Acids with Retention of Carboxylic Acid Moiety. Transactions of Tianjin University, 2021, 27, 165-179.	3.3	21
389	Tuning the Reaction Selectivity over MgAl Spinel-Supported Pt Catalyst in Furfuryl Alcohol Conversion to Pentanediols. Catalysts, 2021, 11, 415.	1.6	2
390	Lignocellulosic biomass and carbohydrates as feed-stock for scalable production of 5-hydroxymethylfurfural. Cellulose, 2021, 28, 3967-3980.	2.4	19
391	Amidation Way of Diphenolic Acid for Preparing Biopolybenzoxazine Resin with Outstanding Thermal Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 4668-4680.	3.2	31
392	PTFE-Carbon Nanotubes and Lipase B from Candida antarctica—Long-Lasting Marriage for Ultra-Fast and Fully Selective Synthesis of Levulinate Esters. Materials, 2021, 14, 1518.	1.3	9
393	Ethanol: Unlocking an Abundant Renewable C 2 â€Feedstock for Catalytic Enantioselective Câ^'C Coupling. Angewandte Chemie - International Edition, 2021, 60, 10542-10546.	7.2	14
394	<i>O,O</i> -Silyl Group Migrations in Quinic Acid Derivatives: An Opportunity for Divergent Synthesis. Organic Letters, 2021, 23, 3083-3087.	2.4	2
395	Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 2021, 409, 128182.	6.6	72
396	Base-free atmospheric O2-mediated oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid triggered by Mg-bearing MTW zeolite supported Au nanoparticles. Applied Catalysis A: General, 2021, 616, 118106.	2.2	16
397	A mechanistic insight into glucose conversion in subcritical water: Complex reaction network and the effects of acid-base catalysis. Fuel, 2021, 289, 119969.	3.4	20
398	Hydrogenation and Hydrogenolysis with Ruthenium Catalysts and Application to Biomass Conversion. , 0, , .		0
399	Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds. Jacs Au, 2021, 1, 501-507.	3.6	34

#	Article	IF	CITATIONS
400	Coupling effect of bifunctional ZnCe@SBA-15 catalyst in 1,3-butadiene production from bioethanol. Chinese Journal of Chemical Engineering, 2022, 45, 162-170.	1.7	2
401	Alkyl carbonate derivatives of furanics: A family of bio-based stable compounds. Sustainable Chemistry and Pharmacy, 2021, 19, 100352.	1.6	12
402	Organocatalytic Ringâ€Opening Alternating Copolymerization of Epoxides and Cyclic Anhydrides by a Simple Organobase/Urea Binary Catalyst. Macromolecular Chemistry and Physics, 2021, 222, 2100104.	1.1	6
403	Glucopyranoside-Functionalized NHCs-Pd(II)-PEPPSI Complexes: Anomeric Isomerism Controlled and Catalytic Activity in Aqueous Suzuki Reaction. Catalysis Letters, 2022, 152, 838-847.	1.4	7
404	Real-Time Measurement of Cellobiose and Glucose Formation during Enzymatic Biomass Hydrolysis. Analytical Chemistry, 2021, 93, 7732-7738.	3.2	13
405	Thermal Catalytic Conversion of Biomass-Derived Glucose to Fine Chemicals. Energy & Fuels, 2021, 35, 8602-8616.	2.5	27
406	Preparation of energy platform chemicals by hydrothermal conversion of citrus peel. Energy Science and Engineering, 2021, 9, 1033-1041.	1.9	4
407	Immobilization of an Iridium(I)-NHC-Phosphine Catalyst for Hydrogenation Reactions under Batch and Flow Conditions. Catalysts, 2021, 11, 656.	1.6	2
408	Sustainable and high-quality synthesis of carbon nanospheres with excellent dispersibility via synergistic external pressure- and PSSMA-assisted hydrothermal carbonization. Advanced Powder Technology, 2021, , .	2.0	3
409	Functionalized chitosan as a novel support for stabilizing palladium in Suzuki reactions. Carbohydrate Polymers, 2021, 260, 117815.	5.1	39
410	Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass. Biomass and Bioenergy, 2021, 148, 106033.	2.9	69
411	Conversion of Xylose to Furfural Catalyzed by Carbon-Based Solid Acid Prepared from Pectin. Energy & Fuels, 2021, 35, 9961-9969.	2.5	23
412	Hydrogenolysis of Furfuryl Alcohol to 1,2â€Pentanediol Over Supported Ruthenium Catalysts. ChemistryOpen, 2021, 10, 731-736.	0.9	6
413	Conversion of levulinic acid to valuable chemicals: a review. Journal of Chemical Technology and Biotechnology, 2021, 96, 3009-3024.	1.6	29
414	Multiple-SO3H functionalized ionic liquid as efficient catalyst for direct conversion of carbohydrate biomass into levulinic acid. Molecular Catalysis, 2021, 509, 111659.	1.0	13
415	Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural Over Poly(4-Styrenesulfonic Acid) Catalyst. Catalysis Letters, 0, , 1.	1.4	3
416	The efficient conversion of D-Fructose to 5-Hydroxymethylfurfural using organic acids as catalytic promoters. Biomass Conversion and Biorefinery, 2023, 13, 6705-6714.	2.9	2
417	Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade. Transactions of Tianjin University, 2021, 27, 434-449.	3.3	18

	CITATION REPORT			
Article		IF	CITATIONS	
Staged biorefinery of Moso bamboo by integrating polysaccharide hydrolysis and ligni catalytic fractionation (RCF) for the sequential production of sugars and aromatics. In and Products, 2021, 164, 113358.	n reductive dustrial Crops	2.5	8	
Direct Conversion of Alginate Oligo―and Polysaccharides into Biodegradable and No Anionic Furanic Surfactants—An Experimental and Mechanistic Study. Advanced Sus 2021, 5, 2100108.	nâ€Ecotoxic stainable Systems,	2.7	5	
Development of Lignin-Based Mesoporous Carbons for the Adsorption of Humic Acid. 6, 15222-15235.	ACS Omega, 2021,	1.6	13	

419	Direct Conversion of Alginate Oligo―and Polysaccharides into Biodegradable and Nonâ€Ecotoxic Anionic Furanic Surfactants—An Experimental and Mechanistic Study. Advanced Sustainable Systems, 2021, 5, 2100108.	2.7	5
420	Development of Lignin-Based Mesoporous Carbons for the Adsorption of Humic Acid. ACS Omega, 2021, 6, 15222-15235.	1.6	13
421	Natural magnolol derivatives as platform chemicals for bio-based phthalonitrile thermoset: Achieving high performances without an external curing agent. Polymer, 2021, 226, 123814.	1.8	20
422	Mini-Review on the Synthesis of Furfural and Levulinic Acid from Lignocellulosic Biomass. Processes, 2021, 9, 1234.	1.3	24
423	From Waste to Value—Direct Utilization of α-Angelica Lactone as a Nonconventional Irreversible Acylating Agent in a Chromatography-Free Lipase-Catalyzed KR Approach toward <i>sec</i> -Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 10276-10290.	3.2	4
424	Processes for the valorization of food and agricultural wastes to value-added products: recent practices and perspectives. Systems Microbiology and Biomanufacturing, 2022, 2, 50-66.	1.5	21
425	Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. ACS Catalysis, 2021, 11, 10058-10083.	5.5	60
426	Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 2021, 19, 4075-4118.	8.3	263
428	Pdâ€Catalysed Decarbonylation Free Approach to Carbonylative Esterification of 5â€HMF to Its Aryl Esters Synthesis Using Aryl Halides and Oxalic Acid as C ₁ Source. Chemistry - A European Journal, 2021, 27, 12971-12975.	1.7	13
429	Solid acid catalyst prepared via one-step microwave-assisted hydrothermal carbonization: Enhanced stability towards intensified production of 5-hydroxymethylfurfural in water/γ-valerolactone/NaCl. Molecular Catalysis, 2021, 512, 111772.	1.0	1
430	Liquid phase hydrogenation of furfural to biofuel over robust NiCu/Laponite catalyst: A study on the role of copper loading. Advanced Powder Technology, 2021, 32, 3034-3045.	2.0	7
431	Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering. Nature Communications, 2021, 12, 4946.	5.8	56
432	Highly selective glucose isomerization by HY zeolite in gamma-butyrolactone/H2O system over fixed bed reactor. Catalysis Communications, 2021, 156, 106324.	1.6	8
433	γ-valerolactone from levulinic acid and its esters: Substrate and reaction media determine the optimal catalyst. Applied Catalysis A: General, 2021, 623, 118276.	2.2	8
434	Insights into Photocatalytic Selective Dehydrogenation of Ethanol over Au/Anatase–Rutile TiO ₂ . Industrial & Engineering Chemistry Research, 2021, 60, 12282-12291.	1.8	11
435	Bridging Scales in Bioenergy and Catalysis: A Review of Mesoscale Modeling Applications, Methods, and Future Directions. Energy & Fuels, 2021, 35, 14382-14400.	2.5	12
436	Efficient conversion of carbohydrates and biomass into furan compounds by chitin/Ag co-modified H3PW12O40 catalysts, Journal of Cleaner Production, 2021, 316, 128243.	4.6	12

#

#	Article	IF	CITATIONS
437	Selective Oxidation of Furfural to 2(5H)-Furanone and Maleic Acid over CuMoO ₄ . ACS Sustainable Chemistry and Engineering, 2021, 9, 13176-13187.	3.2	13
438	Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for <i>In Vitro</i> Cell Imaging and Metal Ion Detection. ACS Applied Materials & Interfaces, 2021, 13, 43952-43962.	4.0	34
439	Efficient Conversion of Biomass Derived Levulinic Acid to γâ€Valerolactone Using Hydrosilylation. European Journal of Organic Chemistry, 2021, 2021, 5243-5247.	1.2	1
440	Critical Review on the Preparation of Platform Compounds from Biomass or Saccharides via Hydrothermal Conversion over Carbon-Based Solid Acid Catalysts. Energy & Fuels, 2021, 35, 14462-14483.	2.5	15
441	Enantioselective synthesis of D-lactic acid via chemocatalysis using MgO: Experimental and molecular-based rationalization of the triose's reactivity and preliminary insights with raw biomass. Applied Catalysis B: Environmental, 2021, 292, 120145.	10.8	37
442	Sulfonic Acid-Functionalized Inorganic Materials as Efficient Catalysts in Various Applications: A Minireview. Catalysts, 2021, 11, 1143.	1.6	17
443	Electron-Rich Ruthenium Single-Atom Alloy for Aqueous Levulinic Acid Hydrogenation. ACS Catalysis, 2021, 11, 12146-12158.	5.5	50
444	Catalytic Aerobic Oxidation of Lignocellulose-Derived Levulinic Acid in Aqueous Solution: A Novel Route to Synthesize Dicarboxylic Acids for Bio-Based Polymers. ACS Catalysis, 2021, 11, 11588-11596.	5.5	13
445	Selective Hydrogenation of the Carbonyls in Furfural and 5-Hydroxymethylfurfural Catalyzed by PtNi Alloy Supported on SBA-15 in Aqueous Solution Under Mild Conditions. Frontiers in Chemistry, 2021, 9, 759512.	1.8	14
446	In-situ fabrication of Ag nanoparticles on biomass derived biochar as highly active catalyst for the halogenation of terminal alkynes at room temperature. Applied Surface Science, 2021, 560, 150039.	3.1	10
447	Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. Journal of Industrial and Engineering Chemistry, 2021, 101, 214-226.	2.9	20
448	Differences of Short Straight-Chain Monoalcohols in the Value-Added Conversion of Furfural Catalyzed by Zr ₃ Al ₁ -MMO: Effect of Hydroxyl Position and Carbochain Length. ACS Sustainable Chemistry and Engineering, 2021, 9, 13312-13323.	3.2	13
449	Energy Densification of Biomass-Derived Furfurals to Furanic Biofuels by Catalytic Hydrogenation and Hydrodeoxygenation Reactions. Sustainable Chemistry, 2021, 2, 521-549.	2.2	6
450	Role of the Cu-ZrO2 interface in the hydrogenation of levulinic acid to Î ³ -valerolactone. Journal of Energy Chemistry, 2021, 61, 446-458.	7.1	23
451	Acid-catalyzed steam explosion for high enzymatic saccharification and low inhibitor release from lignocellulosic cardoon stalks. Biochemical Engineering Journal, 2021, 174, 108121.	1.8	17
452	Economical concerns of lignin in the energy sector. Cleaner Engineering and Technology, 2021, 4, 100258.	2.1	14
453	Direct production of 2, 5-Furandicarboxylicacid from raw biomass by manganese dioxide catalysis cooperated with ultrasonic-assisted diluted acid pretreatment. Bioresource Technology, 2021, 337, 125421.	4.8	18
454	Chitosan membranes from acetic acid and imidazolium ionic liquids: Effect of imidazolium structure on membrane properties. Journal of Molecular Liquids, 2021, 340, 117209.	2.3	19

#	Article	IF	CITATIONS
455	Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions. Renewable Energy, 2021, 178, 1070-1083.	4.3	12
456	Plasmonic silver nanoparticles promoted sugar conversion to 5-hydroxymethylfurfural over catalysts of immobilised metal ions. Applied Catalysis B: Environmental, 2021, 296, 120340.	10.8	7
457	Synthesis of furfural from xylan in Î ³ -valerolactone/molten salt hydrate biphasic system. Chemical Engineering Journal, 2021, 425, 130608.	6.6	29
458	Cr-Mn bimetallic functionalized USY zeolite monolithic catalyst for direct production of 2, 5-Furandicarboxylic acid from raw biomass. Chemical Engineering Journal, 2022, 429, 132173.	6.6	18
459	Efficient reduction of 5-hydroxymethylfurfural to 2, 5-bis (hydroxymethyl) furan by a fungal whole-cell biocatalyst. Molecular Catalysis, 2021, 500, 111341.	1.0	16
460	LiCl-promoted-dehydration of fructose-based carbohydrates into 5-hydroxymethylfurfural in isopropanol. RSC Advances, 2021, 11, 1404-1410.	1.7	9
461	Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran with ethanol as a hydrogen donor over β-Mo ₂ C embedded in carbon microspheres. Sustainable Energy and Fuels, 2021, 5, 4749-4757.	2.5	12
462	Highly effective production of levulinic acid and γ-valerolactone through self-circulation of solvent in a continuous process. Reaction Chemistry and Engineering, 2021, 6, 1811-1818.	1.9	4
463	Ozonolysis of α-angelica lactone: a renewable route to malonates. Chemical Communications, 2021, 57, 10524-10527.	2.2	2
464	Promotion effects of PrPO ₄ for the hydrogenation transformation of biomass-derived compounds over Pr–Ni–P composites. Materials Advances, 2021, 2, 3927-3939.	2.6	7
465	Homogeneous transition metal catalyzed conversion of levulinic acid to gamma-valerolactone. Advances in Inorganic Chemistry, 2021, 77, 1-25.	0.4	8
466	Amphipathic 1,3-oxazolidines from N-alkyl glucamines and benzaldehydes: stereochemical and mechanistic studies. New Journal of Chemistry, 2021, 45, 4365-4386.	1.4	2
467	An efficient approach to synthesizing 2,5-bis(<i>N</i> -methyl-aminomethyl)furan from 5-hydroxymethylfurfural <i>via</i> 2,5-bis(<i>N</i> -methyl-iminomethyl)furan using a two-step reaction in one pot. Green Chemistry, 2021, 23, 5656-5664.	4.6	8
468	Metal-free photocatalytic aerobic oxidation of biomass-based furfural derivatives to prepare γ-butyrolactone. Green Chemistry, 2021, 23, 1758-1765.	4.6	13
469	Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50, 6042-6093.	18.7	104
470	Oxidative Esterification of 5â€Hydroxymethylfurfural with an Nâ€doped Carbonâ€supported CoCu Bimetallic Catalyst. ChemSusChem, 2020, 13, 4151-4158.	3.6	33
471	Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery. Renewable and Sustainable Energy Reviews, 2020, 122, 109724.	8.2	16
472	Catalytic Pyrolysis Mechanism of β-O-4 Type of Lignin Dimer: The Role of H Proton. Energy & Fuels, 2021, 35, 575-582.	2.5	11

#	Article	IF	CITATIONS
473	Isobaric Vapor–Liquid Equilibria of Binary Mixtures of γ-Valerolactone + Acetone and Ethyl Acetate. Journal of Chemical & Engineering Data, 2020, 65, 419-425.	1.0	6
474	Renewable Cyclobutane-1,3-dicarboxylic Acid (CBDA) Building Block Synthesized from Furfural via Photocyclization. ACS Sustainable Chemistry and Engineering, 2020, 8, 8909-8917.	3.2	22
475	Continuous-Flow Production of Isosorbide from Aqueous-Cellulosic Derivable Feed over Sustainable Heterogeneous Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 927-935.	3.2	23
476	Nanoparticle Design for the Catalytic Valorization of Lignocellulosic Biomass. RSC Catalysis Series, 2019, , 184-206.	0.1	1
477	Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49, 4273-4306.	18.7	559
478	Current challenges and future perspectives in sustainable mechanochemical transformations of carbohydrates. Green Chemistry, 2020, 22, 5559-5583.	4.6	31
479	lsomerization of glucose into fructose with homogenous amine-type base catalysts: amine structure, chain length, and kinetics. Bioresources and Bioprocessing, 2019, 6, .	2.0	3
481	Core-Magnetic Composites Catalysts for the Valorization and Up-grading of the Renewable Feedstocks: A Minireview. Current Catalysis, 2019, 8, 2-19.	0.5	1
482	Synergetic Effect between Pd Clusters and Oxygen Vacancies in Hierarchical Nb ₂ O ₅ for Lignin-Derived Phenol Hydrodeoxygenation into Benzene. SSRN Electronic Journal, 0, , .	0.4	0
483	Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustainable Energy and Fuels, 2021, 6, 29-65.	2.5	49
484	Valorization of Wastewater from Table Olives: NMR Identification of Antioxidant Phenolic Fraction and Microwave Single-Phase Reaction of Sugary Fraction. Antioxidants, 2021, 10, 1652.	2.2	6
485	Hierarchical Porous MIL-101(Cr) Solid Acid-Catalyzed Production of Value-Added Acetals from Biomass-Derived Furfural. Polymers, 2021, 13, 3498.	2.0	6
486	Continuousâ€Flow Synthesis of 5â€Hydroxymethylfurfural, Furfural from Monosaccharides: A Simple, Fast, and Practical Method. ChemistrySelect, 2021, 6, 10827-10833.	0.7	10
487	Catalytic Production of Methyl Lactate from Fructoseâ€Based Carbohydrates Using Yttrium Modified ZSMâ€5 Zeolite. ChemistrySelect, 2021, 6, 10674-10681.	0.7	0
488	One-pot synthesis of pyrrolidone derivatives via reductive amination of levulinic acid/ester with nitriles over Pd/C catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 777-792.	0.8	4
489	Catalytic conversion of glucose to 5-hydroxymethylfurfural productions over sulphated Ti-Al2O3 catalysts. Biomass and Bioenergy, 2021, 154, 106261.	2.9	10
490	Advance in Hydrothermal Bio-Oil Preparation from Lignocellulose: Effect of Raw Materials and Their Tissue Structures. Biomass, 2021, 1, 74-93.	1.2	9
491	Effects of solvents in the depolymerization of lignin into value-added products: a review. Biomass Conversion and Biorefinery, 2023, 13, 11383-11416.	2.9	10

#	Article	IF	CITATIONS
492	Intermolecular Diels-Alder Cycloadditions of Furfural-Based Chemicals from Renewable Resources: A Focus on the Regio- and Diastereoselectivity in the Reaction with Alkenes. International Journal of Molecular Sciences, 2021, 22, 11856.	1.8	18
493	5-Hydroxymethylfurfural as a chemical platform for a lignocellulosic biomass biorefinery. , 2022, , 269-315.		0
494	Biorefining within food loss and waste frameworks: A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111781.	8.2	12
495	Selective tandem catalysis for the synthesis of 5-hydroxymethylfurfural from glucose over in-situ phosphated titania catalysts: Insights into structure, bi-functionality and performance in flow microreactors. Applied Catalysis B: Environmental, 2022, 301, 120800.	10.8	41
496	Design of noble metal-free CoTiO3/Zn0.5Cd0.5S heterostructure photocatalyst for selective synthesis of furfuraldehyde combined with H2production. Journal of Colloid and Interface Science, 2022, 608, 1040-1050.	5.0	40
498	Production of chemicals from marine biomass catalysed by acidic ionic liquids. Green Chemistry, 2021, 23, 9800-9814.	4.6	13
499	A smart use of biomass derivatives to template an <i>ad hoc</i> hierarchical SAPO-5 acid catalyst. RSC Advances, 2020, 10, 38578-38582.	1.7	0
500	The Role of Heterogeneous Catalysts in Converting Cellulose to Platform Chemicals. Nanotechnology in the Life Sciences, 2020, , 305-328.	0.4	1
501	Catalytic Transformation of Ethanol to Industrially Relevant Fine Chemicals. , 2020, , 49-74.		1
502	Metabolic engineering of cyanobacteria for production of platform chemicals: A synthetic biology approach. , 2020, , 127-145.		1
503	Homogenous Iridium Catalysts for Biomass Conversion. Topics in Organometallic Chemistry, 2020, , 341-395.	0.7	2
504	Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. Fermentation, 2021, 7, 248.	1.4	23
505	Structureâ€Performance Guided Design of Sustainable Plasticizers from Biorenewable Feedstocks. European Journal of Organic Chemistry, 2021, 2021, 6086-6096.	1.2	5
506	Efficient chemoenzymatic valorization of biobased D-fructose into 2,5-bis(hydroxymethyl)furan with deep eutectic solvent Lactic acid:Betaine and Pseudomonas putida S12 whole cells. Bioresource Technology, 2022, 344, 126299.	4.8	27
507	Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli. Systems Microbiology and Biomanufacturing, 2022, 2, 331-344.	1.5	4
508	Aqueousâ€Natural Deep Eutectic Solventâ€Enhanced 5â€Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes. ChemSusChem, 2022, 15, .	3.6	30
509	Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step. Chinese Journal of Chemical Engineering, 2022, 43, 230-239.	1.7	4
510	Fabrication of BrÃ,nsted acidic ionic liquids functionalized organosilica nanospheres for microwave-assisted fructose valorization. Science of the Total Environment, 2022, 818, 151761.	3.9	8

#	Article	IF	CITATIONS
511	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie - International Edition, 2022, 61, .	7.2	1
512	Highly efficient syntheses of 2,5-bis(hydroxymethyl)furan and 2,5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel–cobalt bimetallic catalyst. Applied Surface Science, 2022, 577, 151869.	3.1	36
513	Recent Advances in the BrĄ̃,nsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 2021, 11, 1395.	1.6	21
514	Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural. Green Energy and Environment, 2022, 7, 900-932.	4.7	38
515	Preparation of functionalized diallylimidazole ionic liquid and its application in conversion of D-fructose into HMF. Journal of Molecular Liquids, 2022, 345, 118233.	2.3	9
516	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie, 0, , .	1.6	0
517	Pt Nanoparticles on ZSM-5 Nanoparticles for Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Applied Nano Materials, 2021, 4, 14047-14059.	2.4	14
518	Synthesis of ternary-based visible light nano-photocatalyst for decontamination of organic dyes-loaded wastewater. Chemosphere, 2022, 289, 133121.	4.2	32
519	<i>N</i> -Acetylglucosamine as a platform chemical produced from renewable resources: opportunity, challenge, and future prospects. Green Chemistry, 2022, 24, 493-509.	4.6	21
520	Selective Photocatalytic Activation of Ethanol C–H and O–H Bonds over Multi-Au@SiO ₂ /TiO ₂ : Role of Catalyst Surface Structure and Reaction Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 2848-2859.	4.0	10
521	Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu–Re/TiO ₂ bimetallic catalysts. RSC Advances, 2021, 12, 602-610.	1.7	7
522	Elucidating adsorption behavior of cellulase on lignin through isolated lignin and model compounds. Wood Science and Technology, 0, , 1.	1.4	4
523	Synthesis of Secondary Monoalcohols from Terminal Vicinal Alcohols over Silica-Supported Rhenium-Modified Ruthenium Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 1220-1231.	3.2	8
524	Oligomer-first mechanism in the transformation of biomass derivatives selectively to produce D-lactic acid. Chemical Engineering Journal, 2022, 432, 134359.	6.6	8
525	On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone. Fuel, 2022, 314, 123074.	3.4	23
526	Advances in Diels–Alder/aromatization of biomass furan derivatives towards renewable aromatic hydrocarbons. Catalysis Science and Technology, 2022, 12, 1902-1921.	2.1	28
527	Recent Advances in the Catalytic Upgrading of Biomass Platform Chemicals Via Hydrotalcite-Derived Metal Catalysts. Transactions of Tianjin University, 2022, 28, 89-111.	3.3	17
528	Kinetic study of the conversion of glucose to 5-hydroxymethylfurfural using niobium phosphate. Molecular Catalysis, 2022, 518, 112079.	1.0	4

#	Article	IF	CITATIONS
529	Deep eutectic solvents boosting solubilization and Se-functionalization of heteropolysaccharide: Multiple hydrogen bonds modulation. Carbohydrate Polymers, 2022, 284, 119159.	5.1	12
530	27 Years of Catalytic Carbonylative Coupling Reactions in Hungary (1994–2021). Molecules, 2022, 27, 460.	1.7	9
531	Insights into cascade and sequential one-pot pathways for reductive amination of aldehydes paired with bio-derived levulinic acid to <i>N</i> -substituted pyrrolidones using molecular hydrogen. Reaction Chemistry and Engineering, 2022, 7, 1005-1013.	1.9	4
532	Efficient conversion of bio-renewable citric acid to high-value carboxylic acids on stable solid catalysts. Green Chemistry, 2022, 24, 1650-1658.	4.6	11
533	Synthesis of jet fuel and diesel range cycloalkanes with 2-methylfuran and benzaldehyde. Sustainable Energy and Fuels, 2022, 6, 1156-1163.	2.5	4
534	Bifunctional heterogeneous catalysts derived from the coordination of adenosine monophosphate to Sn(<scp>iv</scp>) for effective conversion of sucrose to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2022, 12, 630-640.	2.1	3
535	Furfural – a versatile, biomass-derived platform chemical for the production of renewable chemicals. Green Chemistry, 2022, 24, 510-551.	4.6	104
536	Roles of Ball Milling Pretreatment and Titanyl Sulfate in the Synthesis of 5-Hydroxymethylfurfural from Cellulose. ACS Sustainable Chemistry and Engineering, 2022, 10, 1205-1213.	3.2	17
537	5â€Hydroxymethylfurfural and Furfural Chemistry Toward Biobased Surfactants. ChemSusChem, 2022, 15, .	3.6	10
538	Synthetic Study of 5â€Hydroxymethylfurfural in Groebkeâ€Blackburnâ€Bienaymé Reaction. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
539	Efficient synthesis of furfural from xylose over <scp>HCl</scp> catalyst in slug flow microreactors promoted by <scp>NaCl</scp> addition. AICHE Journal, 2022, 68, .	1.8	11
540	Integrated bio-based processes for the production of industrially important chemicals. , 2022, , 163-187.		1
541	Catalytic Conversion of Glycerol to Methyl Lactate over Au-CuO/Sn-Beta: The Roles of Sn-Beta. Catalysts, 2022, 12, 104.	1.6	3
542	Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. Journal of Surfactants and Detergents, 2022, 25, 147-183.	1.0	21
543	Design of noble metal-free NiTiO3/ZnIn2S4 heterojunction photocatalyst for efficient visible-light-assisted production of H2 and selective synthesis of 2,5-Bis(hydroxymethyl)furan. Journal of Colloid and Interface Science, 2022, 615, 346-356.	5.0	38
544	Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene. Renewable Energy, 2022, 187, 271-281.	4.3	20
545	A facile synthesis of amphiphilic <i>N</i> -glycosyl naphthalimides and fabrication of flexible semiconductors using molecular self-assembly. Green Chemistry, 2022, 24, 2451-2463.	4.6	6
546	Chemocatalytic value addition of glucose without carbon–carbon bond cleavage/formation reactions: an overview. RSC Advances, 2022, 12, 4891-4912.	1.7	9

#	Article	IF	CITATIONS
547	Improved Production of 5-Hydroxymethylfurfural in Acidic Deep Eutectic Solvents Using Microwave-Assisted Reactions. International Journal of Molecular Sciences, 2022, 23, 1959.	1.8	6
548	Regulating the Alkalinity of Carbon Nitride by Magnesium Doping to Boost the Selective Isomerization of Glucose to Fructose. ACS Sustainable Chemistry and Engineering, 2022, 10, 1986-1993.	3.2	16
549	Radical generation and fate control for photocatalytic biomass conversion. Nature Reviews Chemistry, 2022, 6, 197-214.	13.8	69
550	Accelerated <scp>d</scp> -Fructose Acid-Catalyzed Reactions in Thin Films Formed by Charged Microdroplets Deposition. Journal of the American Society for Mass Spectrometry, 2022, 33, 565-572.	1.2	4
551	Furfural hydrogenation over Cu, Ni, Pd, Pt, Re, Rh and Ru catalysts: Ab initio modelling of adsorption, desorption and reaction micro-kinetics. Chemical Engineering Journal, 2022, 436, 135070.	6.6	32
552	Efficient Electrocatalytic Upgradation of Furan-Based Biomass: Key Roles of a Two-Dimensional Mesoporous Poly(m-phenylenediamine)-Graphene Heterostructure and a Ternary Electrolyte. Macromolecules, 0, , .	2.2	5
553	Synergistic catalysis of species in molten salt hydrate for conversion of cellulose to 5-hydroxymethylfurfural. Biomass and Bioenergy, 2022, 158, 106363.	2.9	14
554	Design and Properties of a Novel Family of Nonionic Biobased Furanic Hydroxyester and Amide Surfactants. ACS Sustainable Chemistry and Engineering, 2021, 9, 16977-16988.	3.2	6
555	Etherification of Hydroxymethyl Furfural with Ethanol on Mesoporous Silica Catalysts of Regulated Acidity to Obtain Ethoxymethyl Furane, a Bio-Additive for Diesel. SSRN Electronic Journal, 0, , .	0.4	0
556	Efficient 5-Hydroxymethylfurfural Synthesis from Carbohydrates and Food Wastes in Aqueous-Natural Deep Eutectic Solvent (A-Nades) with Robust Al2o3 or Al(Oh)3. SSRN Electronic Journal, 0, , .	0.4	0
557	Amberlyst-15 supported zirconium sulfonate as an efficient catalyst for Meerwein–Ponndorf–Verley reductions. Chemical Communications, 2022, 58, 4067-4070.	2.2	9
558	Carbohydrate structure–activity relations of Au-catalysed base-free oxidations: gold displaying a platinum lustre. RSC Advances, 2022, 12, 8918-8923.	1.7	1
559	Microwave-Induced Synthesis of Highly Dispersed Zirconia@Cnts as an Efficient Catalyst for the Production of 5-Hydroxymethylfurfural (5-Hmf). SSRN Electronic Journal, 0, , .	0.4	0
560	Titania-supported molybdenum oxide combined with Au nanoparticles as a hydrogen-driven deoxydehydration catalyst of diol compounds. Catalysis Science and Technology, 2022, 12, 2146-2161.	2.1	14
561	Recent progress of mesoporous carbons applied in electrochemical catalysis. New Carbon Materials, 2022, 37, 152-179.	2.9	13
562	Tungsten Promoted Ni/Al2O3 as a Noble-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-Hexanedione. Frontiers in Chemistry, 2022, 10, 857199.	1.8	11
563	Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over PrOx promoted Ni catalysts. Catalysis Today, 2022, 402, 79-87.	2.2	8
564	Sustainable Catalytic Synthesis of 2,5-Diformylfuran from Various Carbohydrates. Catalysts, 2022, 12, 360.	1.6	2

#	Article	IF	CITATIONS
565	Recent Approaches in the Catalytic Transformation of Biomassâ€Derived 5â€Hydroxymethylfurfural into 2,5â€Diformylfuran. ChemSusChem, 2022, 15, .	3.6	18
566	Identification of Crucial Intermediates in the Formation of Humins from Celluloseâ€Derived Platform Chemicals Under BrÃ,nsted Acid Catalyzed Reaction Conditions. ChemPhysChem, 2022, 23, .	1.0	5
567	Ambientâ€Temperature Reductive Amination of 5â€Hydroxymethylfurfural Over Al ₂ O ₃ â€Supported Carbonâ€Doped Nickel Catalyst. ChemSusChem, 2022, 15, .	3.6	12
568	Redox-Neutral Ru(0)-Catalyzed Alkenylation of 2-Carboxaldimine-heterocyclopentadienes. Journal of Organic Chemistry, 2022, 87, 4640-4648.	1.7	10
569	Preparation of bagasse pith-derived biochar for high-efficiency removal of Cr(VI) and further hydrogenation of furfural. Biomass Conversion and Biorefinery, 2024, 14, 1763-1780.	2.9	3
570	Biodiesel production using a novel surface functionalized biomass residue solid green catalyst. Biomass Conversion and Biorefinery, 2024, 14, 2311-2320.	2.9	0
571	In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. ACS Applied Materials & Interfaces, 2022, 14, 17195-17207.	4.0	14
572	Active metal oxide-nitrogen-doped carbon hybrid catalysts towards selective catalytic transfer hydrogenation of furfural to furfuryl alcohol. Applied Catalysis A: General, 2022, 636, 118574.	2.2	3
573	Highly efficient isomerization of glucose to fructose over a novel aluminum doped graphitic carbon nitride bifunctional catalyst. Journal of Cleaner Production, 2022, 346, 131144.	4.6	10
574	Dual Responsive Molecularâ€Arm Modified Single Enzyme Molecules for Efficient Cellulose Hydrolysis. Macromolecular Rapid Communications, 2022, 43, e2200092.	2.0	1
575	Selective Biocatalytic Defunctionalization of Raw Materials. ChemSusChem, 2022, 15, .	3.6	11
576	Targeted conversion of model phenolics in pyrolysis bio-oils to arenes via hydrodeoxygenation over MoOx/BaO@SBA-15 catalyst. Chemical Engineering Journal, 2022, 438, 135577.	6.6	23
577	Production of 100% bio-based semi-aromatic nylon by aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with bio aliphatic diamine. Chemical Engineering Journal, 2022, 437, 135361.	6.6	22
578	Mechanocatalytic depolymerization of hemicellulose to xylooligosaccharides: New insights into the influence of impregnation solvent. Industrial Crops and Products, 2022, 180, 114704.	2.5	3
579	Electrochemical reforming of ethanol with acetate Co-Production on nickel cobalt selenide nanoparticles. Chemical Engineering Journal, 2022, 440, 135817.	6.6	19
580	Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309, 121260.	10.8	49
581	Engineering the Electronic Structure of NiFe Layered Double Hydroxide Nanosheet Array by Implanting Cationic Vacancies for Efficient Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 645-654.	3.2	31
582	A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals. EcoMat, 2021, 3, .	6.8	9

#	Article	IF	CITATIONS
583	Synergistic interaction of renewable nipagin and eugenol for aromatic copoly(ether ester) materials with desired performance. Scientific Reports, 2021, 11, 24119.	1.6	0
584	Diels–Alder Cycloadditions of Bio-Derived Furans with Maleimides as a Sustainable «Click» Approach towards Molecular, Macromolecular and Hybrid Systems. Processes, 2022, 10, 30.	1.3	8
585	Recent Advances in Reductive Upgrading of 5â€Hydroxymethylfurfural via Heterogeneous Thermocatalysis. ChemSusChem, 2022, 15, .	3.6	11
586	Fungal Laccases: The Forefront of Enzymes for Sustainability. Journal of Fungi (Basel, Switzerland), 2021, 7, 1048.	1.5	32
587	Electrodeposited 3D hierarchical NiFe microflowers assembled from nanosheets robust for the selective electrooxidation of furfuryl alcohol. Green Energy and Environment, 2023, 8, 874-882.	4.7	12
588	Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides. Cellulose, 2022, 29, 3059-3077.	2.4	15
589	Reaction Extraction of Levulinic Acid and Formic Acid from Cellulose Deep Hydrolyzate. Processes, 2022, 10, 734.	1.3	3
590	Current Status and Future Prospects of Biolubricants: Properties and Applications. Lubricants, 2022, 10, 70.	1.2	19
591	Carbohydrate-based nanostructured catalysts: applications in organic transformations. Materials Today Chemistry, 2022, 24, 100869.	1.7	10
596	Single-Atom Cu Catalyst in a Zirconium-Based Metal-Organic Framework for Levulinic Acid Hydrogenation to Γ-Valerolactone. SSRN Electronic Journal, 0, , .	0.4	Ο
597	Preparation of 5-hydroxymethylfurfural using magnetic Fe ₃ O ₄ @SiO ₂ @mSiO ₂ -TaOPO ₄ catalyst in 2-pentanol. RSC Advances, 2022, 12, 13251-13260.	1.7	3
598	Optimally designed solvent system for lignocellulosic biomass conversion supported by property predictions. Sustainable Energy and Fuels, 2022, 6, 2734-2744.	2.5	1
599	<i>In situ</i> reconfiguration of plasma-engineered copper electrodes towards efficient electrocatalytic hydrogenation. Catalysis Science and Technology, 2022, 12, 4032-4039.	2.1	8
600	Copper Clusters Encapsulated in Carbonaceous Mesoporous Silica Nanospheres for the Valorization of Biomass-Derived Molecules. ACS Catalysis, 2022, 12, 5711-5725.	5.5	34
601	Effect of Crystalline Structure on the Catalytic Hydrolysis of Cellulose in Subcritical Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 5859-5866.	3.2	11
602	Electrochemical Oxidation of HMF via Hydrogen Atom Transfer and Hydride Transfer on NiOOH and the Impact of NiOOH Composition. ChemSusChem, 2022, 15, .	3.6	24
603	Microwave-assisted synthesis of highly dispersed ZrO2 on CNTs as an efficient catalyst for producing 5-hydroxymethylfurfural (5-HMF). Fuel Processing Technology, 2022, 233, 107292.	3.7	13
604	One-pot, cascade conversion of cellulose to γ-valerolactone over a multifunctional Ru–Cu/zeolite-Y catalyst in supercritical methanol. Applied Catalysis B: Environmental, 2022, 314, 121466.	10.8	10

			_
#		IF	CITATIONS
605	Sulphonated Carbon Dots Synthesized Through a Oneâ€Pot, Facile and Scalable Protocol Facilitates the Preparation of Renewable Precursors Using Glucose/Levulinic Acid. ChemistrySelect, 2022, 7, .	0.7	3
606	Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol. Journal of Energy Chemistry, 2022, 72, 306-317.	7.1	12
607	High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges. Journal of Bioresources and Bioproducts, 2022, 7, 148-160.	11.8	10
608	Copper phosphotungstate-catalyzed microwave-assisted synthesis of 5-hydroxymethylfurfural in a biphasic system. Cellulose, 2022, 29, 5529-5545.	2.4	8
609	Catalytic Oxidation of Ethyl Lactate to Ethyl Pyruvate over Au-Based Catalyst Using Authentic Air as Oxidant. Catalysis Surveys From Asia, 2022, 26, 211-220.	1.0	2
610	High-Selective and Effective Carbon Nanotubes Supported Ultrasmall Ptpdrh Electrocatalysts for Ethanol Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
611	Near quantitative conversion of xylose into bisfuran. Green Chemistry, 2022, 24, 5052-5057.	4.6	4
612	1,4-Pentanediol: Vapor Pressure, Density, Viscosity, Refractive Index, and Its Isobaric Vapor–Liquid Equilibrium with 2-Methyltetrahydrofurane. Journal of Chemical & Engineering Data, 2022, 67, 1450-1459.	1.0	5
613	C3–H Silylation of Furfural Derivatives: Direct Access to a Versatile Synthetic Platform Derived from Biomass. Asian Journal of Organic Chemistry, 0, , .	1.3	3
614	Oxygen affinity of transition metal cations: A coherent descriptor elucidating catalytic oxygenate transformations. Journal of Catalysis, 2022, 412, 21-29.	3.1	2
615	Conversion of furfuryl alcohol to 1,5-pentanediol over CuCoAl nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides. Molecular Catalysis, 2022, 526, 112391.	1.0	4
616	A highly effective approach to enhance the performance of biomass-derived acid for fructose conversion to 5-hydroxymethylfurfural. Fuel Processing Technology, 2022, 234, 107318.	3.7	2
617	Etherification of Hydroxymethyl Furfural with Ethanol on Mesoporous Silica Catalysts of Regulated Acidity to Obtain Ethoxymethyl Furane, a Bio-Additive for Diesel. SSRN Electronic Journal, 0, , .	0.4	0
618	Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ringâ€Opening Polymerization of Bioâ€renewable Bifunctional αâ€Methyleneâ€Î´â€valerolactone. Angewandte Chemie, 2022, 1	34,.6	6
619	Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ringâ€Opening Polymerization of Bioâ€renewable Bifunctional αâ€Methyleneâ€Î´â€valerolactone. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
620	Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron, 2022, 223, 115950.	1.0	3
621	A solid acid catalysed one-pot selective approach for 2,5-diformylfuran synthesis from fructose/carbohydrate feedstocks. Green Chemistry, 2022, 24, 6125-6130.	4.6	6
622	Role of catalysts in sustainable production of biojet fuel from renewable feedstocks. , 2022, , 125-176.		0

CITATION REPORT IF CITATIONS Artificial Intelligence Approach In Predicting Biomass-to-Biofuels Conversion Performances., 2022,,. 2 Conversion sweet sorghum biomass to produce value-added products., 2022, 15, . Catalytic Hydrogenation of Biomassâ€Derived Furoic Acid to Tetrahydrofuroic Acid Derivatives over 1.8 1 Pd/CoO_x Catalyst in Water. ChemCatChem, 2022, 14, . Eco-Friendly Synthesis of 5-Hydroxymethylfurfural and Its Applications as a Starting Material to Synthesize Valuable Heterocyclic Compounds. ACS Sustainable Chemistry and Engineering, 2022, 10, Hydrogen-Bond-Promoted Sucrose Conversion in a Separable Eutectic Mixture Solvent System. ACS 3.2 1

627	Sústainable Chemistry and Engineering, 2022, 10, 9155-9165.	3.2	1
628	Insights into the Play of Novel BrÄnsted Acid-Based Deep Eutectic Solvents for the Conversion of Glucose into 5-Hydroxymethylfurfural without Additional Catalysts. Industrial & Engineering Chemistry Research, 2022, 61, 11645-11654.	1.8	3
629	Cotton fabrics with antibacterial and antiviral properties produced by a simple pad-dry-cure process using diphenolic acid. Applied Surface Science, 2022, 600, 154152.	3.1	25
630	Understanding the impact of different pretreatment methods on the conversion of Casuarina equisetifolia biomass to 5-hydroxymethylfurfural and their energy cost assessment. Industrial Crops and Products, 2022, 186, 115275.	2.5	4
631	Efficient 5-hydroxymethylfurfural synthesis from carbohydrates and food wastes in aqueous-natural deep eutectic solvent (A-NADES) with robust Al2O3 or Al(OH)3. Fuel, 2022, 326, 125062.	3.4	7
632	Investigation of solvent-free esterification of levulinic acid in the presence of tin(IV) complexes. Molecular Catalysis, 2022, 528, 112499.	1.0	2
633	Weak-acid biochar catalyst prepared from mechanochemically-activated biomass and humic acid for production of 5-hydroxymethylfurfural. Biochar, 2022, 4, .	6.2	7
634	Glycolaldehyde as a Bioâ€Based C ₁ Building Block for Selective <i>N</i> â€Formylation of Secondary Amines. ChemSusChem, 2022, 15, .	3.6	4
635	Biomass Valorization to Chemicals over Cobalt Nanoparticles on SBA-15. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 533-541.	0.5	0
636	Biomass-based production of food preservatives. Chem Catalysis, 2022, 2, 2302-2311.	2.9	6
637	Câ°'H Activation Based Functionalization of Furfural Derivatives. European Journal of Organic Chemistry, 2022, 2022, .	1.2	8
638	Realizing direct conversion of glucose to furfurals with tunable selectivity utilizing a carbon dot catalyst with dual acids controlled by a biphasic medium. Biomass Conversion and Biorefinery, 0, , .	2.9	5
639	Unveiling the mechanism for selective cleavage of C-C bonds in sugar reactions on tungsten trioxide–based catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
640	Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Molecules, 2022, 27, 5383.	1.7	3

8673-8684.

623

624

625

		CITATION REPORT		
#	Article		IF	CITATIONS
641	Design principle of electrocatalysts for the electrooxidation of organics. CheM, 2022, 8, 25	94-2629.	5.8	44
642	Dehydration of levoglucosan to levoglucosenone over solid acid catalysts. Tuning the produ distribution by changing the acid properties of the catalysts. Molecular Catalysis, 2022, 529	ct , 112564.	1.0	3
643	Acetic Acidâ€Catalyzed Selective Synthesis of <i>N</i> â€Substituted 2â€Aminoâ€3â€Cya Threeâ€Component Reaction Between Carbohydrates, Primary Amines and Malononitrile. A of Organic Chemistry, 0, , .		1.3	0
644	Dimethyl carbonate solvent assisted efficient conversion of lignocellulosic biomass to 5- hydroxymethylfurfural and furfural. Renewable Energy, 2022, 197, 237-243.		4.3	15
645	Etherification of hydroxymethylfurfural with ethanol on mesoporous silica catalysts of regul acidity to obtain ethoxymethylfurfural, a bio-additive for diesel. Microporous and Mesoporo Materials, 2022, 343, 112145.		2.2	7
646	Direct and low-cost transformation of glucose to 2,5-diformylfuran by AlCl3·6H2O, sulfur, dimethyl sulfoxide. Molecular Catalysis, 2022, 530, 112588.	and	1.0	2
647	Valorization of dairy by-products: Optimized synthesis of 5-hydroxymethylfurfural and levuli from lactose and whey. Journal of Environmental Chemical Engineering, 2022, 10, 108413.	nic acid	3.3	2
648	Biomass-derived polyols valorization towards glycolic acid production with high atom-econo Applied Catalysis B: Environmental, 2022, 317, 121785.	omy.	10.8	8
649	Modular synthesis of 2-furyl carbinols from 3-benzyldimethylsilylfurfural platforms relying o oxygen-assisted C–Si bond functionalization. Beilstein Journal of Organic Chemistry, 0, 18	ו 3, 1256-1263.	1.3	1
650	Efficient conversion of 5-hydroxymethylfurfural to 2,5-dimethylfuran by the rational design catalysts. Molecular Catalysis, 2022, 531, 112698.	of NiZn	1.0	5
651	Sustainable microwave-assisted solketal synthesis over sulfonic silica-based catalysts. Journ Environmental Chemical Engineering, 2022, 10, 108628.	al of	3.3	8
652	Greener approach for the synthesis of nitrovinylfurans from biomass-derived 5-hydroxymethyfurfural as selective antiproliferative agents. Sustainable Chemistry and Pha 2022, 30, 100828.	rmacy,	1.6	0
653	Selectivity catalytic transfer hydrogenation of biomass-based furfural to cyclopentanone. Fu 332, 126057.	ıel, 2023,	3.4	15
654	Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol over Zr-doped ordere mesoporous carbon synthesized by Zr-arbutin coordinated self-assembly. Fuel, 2023, 331, 1	d 25834.	3.4	9
655	Production of 5-Hydroxymethylfurfural from Fructose by Extractive Reaction in Supercritical Subcritical H2O Two-Phase System. SSRN Electronic Journal, 0, , .	CO2 –	0.4	0
656	Fischer–Helferich glycosidation mechanism of glucose to methyl glycosides over Al-based alcoholic media. RSC Advances, 2022, 12, 23416-23426.	catalysts in	1.7	1
657	Direct conversion of glyceric acid to succinic acid by reductive carbonylation. Green Chemis 24, 7644-7651.	try, 2022,	4.6	2
658	An insight towards the photo-generation of H2 and multifarious carbon fuel additive from biomass-derived ethanol: Boosting the bio-chemical economy. Journal of Materials Chemistr	y A, O, , .	5.2	3

ARTICLE IF CITATIONS Zeolite confinement-catalyzed cleavage of C–O/C–C bonds in biomass. Green Chemistry, 2022, 24, 659 4.6 3 7243-7280. Electrochemical deoxygenative reduction of ketones. Chemical Communications, 2022, 58, 11155-11158. 2.2 9 Palladium complexes bearing bis-aldimine N^C^N and N^N^N pincer ligands; A study of 661 1.2 1 homogeneous/heterogeneous catalyzed CO2 hydrogenation. Inorganica Chimica Acta, 2023, 545, 121207. Experiments and Kinetic Modeling of Fructose Dehydration to 5-Hydroxymethylfurfural with Hydrochloric Acid in Acetone–Water Solvent. Industrial & Énginéering Chemistry Research, 2022, 1.8 61, 13877-13885. New Bifunctional Monomers from Methyl Vinyl Glycolate. Chemical Communications, 0, , . 663 2.2 0 Continuous conversion of furfural to furfuryl alcohol by transfer hydrogenation catalyzed by 664 copper deposited in a monolith reactor. Reaction Chemistry and Engineering, 2023, 8, 377-388. Aqueous phase hydrogenation of maleic acid to succinic acid mediated by formic acid: the robustness 665 2.5 3 of the Pd/C catalytic system. Sustainable Energy and Fuels, 2022, 6, 5160-5176. Hf-Î² zeolites as highly efficient catalysts for the production of 5-hydroxymethylfurfural from 3.6 cellulose in biphasic system. International Journal of Biological Macromólecules, 2022, 222, 3014-3023. Understanding HÎ² Zeolite in 1,4-Dioxane Efficiently Converts Hemicellulose-Related Sugars to Furfural. 668 5.5 13 ACS Catalysis, 2022, 12, 12833-12844. Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Frontiers in Chemistry, 0, 10, . 1.8 Catalytic Esterification of Levulinic Acid into the Biofuel n-Butyl Levulinate over Nanosized TiO2 671 3 1.9 Particles. Nanomaterials, 2022, 12, 3870. Lactic acid production by catalytic conversion of glucose: An experimental and techno-economic 2.2 evaluation. Catalysis Today, 2023, 408, 2-8. Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals. 673 2.5 5 Industrial Crops and Products, 2022, 189, 115766. Alginate immobilization as a strategy for improving succinate production during autofermentation using cyanobacteria Synechocystis sp. PCCA6803. Biochemical Engineering Journal, 2022, 188, 108681. 674 1.8 High-selective and effective carbon nanotubes supported ultrasmall PtPdRh electrocatalysts for 675 2.6 6 ethanol oxidation. Electrochimica Acta, 2023, 437, 141531. Plasmon resonance enhanced palygorskite-based composite toward the photocatalytic reformation of cellulose biomass under full spectrum. Applied Clay Science, 2023, 231, 106755. Efficient continuous dehydration of fructose to 5-hydroxymethylfurfural in ternary solvent system. 677 3.4 11 Fuel, 2023, 334, 126632. Single-atom Cu catalyst in a zirconium-based metal–organic framework for biomass conversion. 678 6.6 Chemical Engineering Journal, 2023, 454, 140156.

#	Article	IF	CITATIONS
680	Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device. Chinese Journal of Catalysis, 2022, 43, 2966-2986.	6.9	12
681	Valorization of bark to natural lubrication additives via fractionation based on chemical product engineering concept. Chemical Engineering Science, 2023, 266, 118288.	1.9	1
682	Electrochemical valorization of lignin: Status, challenges, and prospects. Journal of Bioresources and Bioproducts, 2023, 8, 1-14.	11.8	10
683	Solvent free hydrogenation of levulinic acid over in-situ generated Ni(0) stabilized by supported phosphomolybdic acid using formic acid as an internal hydrogen source. Renewable Energy, 2022, 201, 190-201.	4.3	7
684	One-pot reductive etherification of 5-hydroxymethylfurfural into biofuel (2,5-bis(propoxymethyl)) Tj ETQq0 0 0 r 891-899.	gBT /Overlo 1.4	ock 10 Tf 50 3
685	The weak interaction between polar aprotic solvent and saline water enables efficient production of furans from lignocellulosic biomass. Green Chemistry, 0, , .	4.6	5
686	Biochar catalysts for efficiently 5-Hydroxymethylfurfural (HMF) synthesis in aqueous natural deep eutectic solvent (A-NADES). Industrial Crops and Products, 2023, 192, 115953.	2.5	10
687	Green synthesis of 5-hydroxymethylfurfural from biomass-derived carbohydrates using deep eutectic solvents as environmentally benign catalyst. Environmental Technology and Innovation, 2023, 29, 102982.	3.0	6
688	Supramolecular preorganization synthesis of nitrogen-doped carbon nanotubes functionalized by BrAnsted acidic ionic liquid for microwave-assisted production of promising furanic derivatives. Fuel, 2023, 335, 127016.	3.4	6
689	Porous SiO2 nanosphere-supported PtCuCo trimetallic nanoparticles for highly efficient and selective furfural hydrogenation. Fuel, 2023, 335, 126935.	3.4	4
690	Chemical transformations of 5-hydroxymethylfurfural into highly added value products: present and future. Green Chemistry, 2023, 25, 871-892.	4.6	51
691	Continuous flow synthesis of HMF from glucose using gadolinium (III) trifluoromethanesulfonate in BrÃ,nsted acidic ionic liquid as a catalytic system. Journal of Flow Chemistry, 2023, 13, 121-132.	1.2	3
692	Synthesis of <i>N</i> -Substituted 3-Hydroxypyridinium Salts from Bioderived 5-Hydroxymethylfurfural in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 15642-15647.	3.2	2
693	Valorisation of Corncob Residue towards the Sustainable Production of Glucuronic Acid. Catalysts, 2022, 12, 1603.	1.6	1
694	A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. Molecules, 2022, 27, 8578.	1.7	7
695	Temperature-Responsive Deep Eutectic Solvents for Highly Selective Separation of 5-Hydroxymethylfurfural from Reaction Mixture. ACS Sustainable Chemistry and Engineering, 2023, 11, 399-406.	3.2	Ο
696	Insights into Shape Selectivity and Acidity Control in NiO-Loaded Mesoporous SBA-15 Nanoreactors for Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2022, 10, 17081-17093.	3.2	4
697	Efficient selective activation of sorbitol C–O bonds over C–C bonds on CoGa (221) generated by lattice-induction strategy. Nano Research, 0, , .	5.8	0

#	Article	IF	CITATIONS
698	Continuous flow synthesis of phenyl glucosazone and its conversion to 2H-1,2,3-Triazole building blocks. Journal of Flow Chemistry, 2023, 13, 211-215.	1.2	2
699	Linear diketones as next-generation biomass-derived platform molecules: from heterogeneous catalytic synthesis to supply of high-end chemicals. Green Chemistry, 2023, 25, 833-848.	4.6	1
700	Rapid access to molecular complexity from bioderived 5-HMF derivatives <i>via</i> cascade cycloadditions. Green Chemistry, 0, , .	4.6	2
701	The E factor at 30: a passion for pollution prevention. Green Chemistry, 2023, 25, 1704-1728.	4.6	54
702	Electrocatalytic transformation of biosourced organic molecules. Current Opinion in Electrochemistry, 2023, 38, 101210.	2.5	2
703	Selective hydrodeoxygenation of levulinic acid to Î ³ -valerolactone over Ru supported on functionalized carbon nanofibers. Sustainable Energy and Fuels, 2023, 7, 857-867.	2.5	3
704	Synthesis of high-grade Jet fuel blending precursors by aldol condensation of lignocellulosic ketones using HTTPA/MCM-41 with strong acids and enhanced stability. Applied Catalysis B: Environmental, 2023, 325, 122330.	10.8	2
705	Efficient one-pot conversion of cellulose to sorbitol over Ni-based carbon catalysts with embedment structure. Fuel, 2023, 339, 127447.	3.4	8
706	Catalytic Production of Functional Monomers from Lysine and Their Application in High-Valued Polymers. Catalysts, 2023, 13, 56.	1.6	0
707	Effects of down-regulation of ackA expression by CRISPR-dCpf1 on succinic acid production in Actinobacillus succinogenes. AMB Express, 2023, 13, .	1.4	3
708	Metal-Organic Frameworks and Their Derived Structures for Biomass Upgrading. , 2023, , 184-255.		0
709	Dynamic materials derived from biobased furans: towards the â€~sleeping giant' awakening. Mendeleev Communications, 2023, 33, 1-8.	0.6	1
710	A nitrogen-doped carbon nanotube confined CuCo nanoalloy catalyzing one-pot conversion of levulinic acid to 1,4-pentanediol. Chemical Communications, 2023, 59, 2477-2480.	2.2	2
711	Zr Oxo Cluster for Cascade Conversion of Furfural to Alkyl Levulinates. ChemCatChem, 2023, 15, .	1.8	2
712	Catalytic transformations for agro-waste conversion to 5-hydroxymethylfurfural and furfural: Chemistry and scale-up development. Green Chemistry, 2023, 25, 849-870.	4.6	8
713	Elucidating the effect of the physicochemical properties of organosolv lignins on its solubility and reductive catalytic depolymerization. Chemical Engineering Journal, 2023, 461, 141999.	6.6	7
714	A Review of the Use of Carbon Nanostructures and Other Reducing Agents During Auto-reduction for Fischer–Tropsch Synthesis and Other Applications. Catalysis Letters, 2024, 154, 366-386.	1.4	1
715	Novel chemical looping oxidation of biomass-derived carbohydrates to super-high-yield formic acid using heteropolyacids as oxygen carrier. Renewable Energy, 2023, 207, 461-470.	4.3	10

#	Article	IF	CITATIONS
716	Microwave radiation-assisted synthesis of levulinic acid from microcrystalline cellulose: Application to a melon rind residue. International Journal of Biological Macromolecules, 2023, 237, 124149.	3.6	5
717	Orientated inhibition of humin formation in efficient production of levulinic acid from cellulose with high substrate loading: Synergistic role of additives. Carbohydrate Polymers, 2023, 309, 120692.	5.1	3
718	Bioprocess development for levulinic acid production using sugarcane biomass. Sustainable Chemistry and Pharmacy, 2023, 33, 101085.	1.6	2
719	From tetroses to methionine hydroxy analogues through Sn (IV) Lewis acid catalysis using methanethiol as sulphur feedstock. Catalysis Today, 2023, 418, 114137.	2.2	1
720	Combining Theoretical and Experimental Methods to Probe Confinement within Microporous Solid Acid Catalysts for Alcohol Dehydration. ACS Catalysis, 2023, 13, 5955-5968.	5.5	4
721	Recent advances of computational studies on bioethanol to light olefin reactions using zeolite and metal oxide catalysts. Chemical Engineering Science, 2023, 270, 118532.	1.9	2
722	Hydrolysis of cellulose to glucose in aqueous phase with phosphate group modified hydroxy-rich carbon-based catalyst. Carbon, 2023, 206, 72-83.	5.4	11
724	Niobium: The Focus on Catalytic Application in the Conversion of Biomass and Biomass Derivatives. Molecules, 2023, 28, 1527.	1.7	6
725	Biomass-based production of trimellitic and trimesic acids. Green Energy and Environment, 2023, , .	4.7	3
726	Applications of ionic liquids for the biochemical transformation of lignocellulosic biomass into biofuels and biochemicals: A critical review. Biochemical Engineering Journal, 2023, 193, 108850.	1.8	13
727	Hydrogen from natural gas and biogas: Building bridges for a sustainable transition to a green economy. , 2023, 111, 204918.		6
728	Kinetic and Mechanistic Studies of the Selective Hydrogenation of (<i>E</i>)â€Chalcones in Biomassâ€Derived γâ€Valerolactone Catalyzed by Rhâ^PPh ₃ Complexes. ChemCatChem, 2023, 15,	. 1.8	1
729	High-Barrier Biobased Copolyesters with Targeted Glass Transition Temperatures as Renewable Alternatives for PET. ACS Applied Polymer Materials, 2023, 5, 2144-2153.	2.0	4
730	Unraveling the active states of WO3-based catalysts in the selective conversion of cellulose to glycols. Chinese Journal of Catalysis, 2023, 46, 56-63.	6.9	1
731	Synergism of ionic liquids and lipases for lignocellulosic biomass valorization. Chemical Engineering Journal, 2023, 461, 142011.	6.6	9
732	Bioproduction of isoprene and isoprenoids. , 2023, , 265-277.		1
733	Minireview on the Mechanism for the Production of 5-hydroxymethylfurfural from Biomass. Current Green Chemistry, 2023, 10, .	0.7	0
734	Catalyst-free synthesis of 5-hydroxymethylfurfural from fructose by extractive reaction in supercritical CO2 – subcritical H2O two-phase system. Journal of Supercritical Fluids, 2023, 198, 105904.	1.6	1

#	Article	IF	CITATIONS
735	Recent Advances in the Efficient Synthesis of Useful Amines from Biomass-Based Furan Compounds and Their Derivatives over Heterogeneous Catalysts. Catalysts, 2023, 13, 528.	1.6	1
736	Selective and effective oxidation of 5-hydroxymethylfurfural by tuning the intermediates adsorption on Co-Cu-CNx. Nano Research, 2023, 16, 6670-6678.	5.8	5
737	A recoverable polyoxometalate-ionic liquid catalyst for selective cleavage of lignin β-O-4 models under mild conditions. Green Chemistry, 2023, 25, 2815-2824.	4.6	5
738	Selective Valorization of Bioâ€derived Levulinic Acid and Its Derivatives into Hydrocarbons and Biochemicals by Using Hydrosilylation. Chemistry - A European Journal, 2023, 29, .	1.7	0
739	Anchoring hydroxyl intermediate on NiCo(OOH) <i>_x</i> nanosheets to enable highly efficient electrooxidation of benzyl alcohols. AICHE Journal, 2023, 69, .	1.8	4
740	On the gelation of humins: from transient to covalent networks. Soft Matter, 2023, 19, 2801-2814.	1.2	Ο
741	Progress in the biosynthesis of bio-based PET and PEF polyester monomers. Green Chemistry, 2023, 25, 5836-5857.	4.6	12
742	Efficient synthesis of furfurylamine from biomass via a hybrid strategy in an EaCl:Gly–water medium. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	0
743	Eco-Friendly Catalytic Synthesis of Top Value Chemicals from Valorization of Cellulose Waste. Polymers, 2023, 15, 1501.	2.0	2
744	Isobaric Vapor–Liquid Equilibria for Binary Mixtures of Biomass-Derived Gamma-Valerolactone + 1,4-Pentanediol and 1,2-Ethanediol. Journal of Chemical & Engineering Data, 2023, 68, 900-908.	1.0	Ο
745	Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen. Advanced Science, 2023, 10, .	5.6	28
746	Preparation of 2,5-furandicarboxylic acid from carbohydrates via 5-acetoxymethylfurfural as intermediate in a single acetic acid system. Biomass Conversion and Biorefinery, 0, , .	2.9	Ο
747	A preliminary multistep combination of pulsed electric fields and supercritical fluid extraction to recover bioactive glycosylated and lipidic compounds from exhausted grape marc. LWT - Food Science and Technology, 2023, 180, 114725.	2.5	10
748	Insights into the reaction network and kinetics of xylose conversion over combined Lewis/BrØnsted acid catalysts in a flow microreactor. Green Chemistry, 0, , .	4.6	2
749	Facile Hydrogenation of Furfural by MOFâ€Derived Graphitic Carbon Wrapped FeCo Bimetallic Catalysts. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
750	Hemicellulolytic enzymes in lignocellulose processing. Essays in Biochemistry, 2023, 67, 533-550.	2.1	4
751	Selective furanyl ring hydrogenation of 5-hydroxymethylfurfural at sub-ambient temperature via steric effect on decorated Pd surfaces. International Journal of Hydrogen Energy, 2023, , .	3.8	0
752	Sequential extraction of almond hull biomass with pulsed electric fields (PEF) and supercritical CO2 for the recovery of lipids, carbohydrates and antioxidants. Food and Bioproducts Processing, 2023, 139, 216-226.	1.8	6

#	Article	IF	CITATIONS
756	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
777	Agriculture Biomass Characterization and Exploitation. , 2023, , .		0
801	Preparation of Green N-Doped Biochar Materials with Biomass Pyrolysis and Their Application to Catalytic Systems. Biofuels and Biorefineries, 2023, , 345-367.	0.5	0
839	Chemocatalytic production of sorbitol from cellulose <i>via</i> sustainable chemistry – a tutorial review. Green Chemistry, 0, , .	4.6	0
854	Adsorptive separation of saccharides and polyols over materials functionalized with boronate groups. Green Chemistry, 0, , .	4.6	0
868	Photocatalytic upgrading of 5-hydroxymethylfurfural – aerobic or anaerobic?. Green Chemistry, 2024, 26, 2949-2966.	4.6	0