Increasing the Flexibility of Combined Heat and Power Energy Storage

Journal of Energy Resources Technology, Transactions of the A 140,

DOI: 10.1115/1.4038461

Citation Report

#	Article	IF	CITATIONS
1	Modeling and optimal operation of community integrated energy systems: A case study from China. Applied Energy, 2018, 230, 1242-1254.	10.1	130
2	A Thermo-Economic and Emissions Analysis of Different Sanitary-Water Heating Units Embedded Within Fourth-Generation District-Heating Systems. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	2.3	3
3	Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance. Energy, 2019, 188, 116074.	8.8	77
4	Optimal operation of the combined heat and power system equipped with powerâ€toâ€heat devices for the improvement of wind energy utilization. Energy Science and Engineering, 2019, 7, 1605-1620.	4.0	21
5	Dynamic modeling for assessment of steam cycle operation in waste-fired combined heat and power plants. Energy Conversion and Management, 2019, 198, 111926.	9.2	19
6	Multi-Objective Optimal Capacity Planning for 100% Renewable Energy-Based Microgrid Incorporating Cost of Demand-Side Flexibility Management. Applied Sciences (Switzerland), 2019, 9, 3855.	2.5	24
7	Micro Combined Heat and Power System Transient Operation in a Residential User Microgrid. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	2.3	5
8	Absorption Process in MgCl2–NH3 Thermochemical Batteries With Constant Mass Flow Rate. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	2.3	2
9	A comprehensive thermodynamic analysis of loadâ€flexible <scp>CHP</scp> plants using district heating network. International Journal of Energy Research, 2019, 43, 4613-4629.	4.5	16
10	Designing a novel solar-assisted heat pump system with modification of a thermal energy storage unit. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233, 588-603.	1.4	13
11	An Optimal Strategic Portfolio of Biomass-Based Integrated Energy System. , 2019, , .		1
12	A Two-Stage Stochastic Operation Approach of Combined Heat and Power Networks. , 2019, , .		0
13	Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	2.3	17
14	Investigation of real-time flexibility of combined heat and power plants in district heating applications. Applied Energy, 2019, 237, 196-209.	10.1	68
15	Impacts of thermal energy storage on the management of variable demand and production in electricity and district heating systems: a Swedish case study. International Journal of Sustainable Energy, 2020, 39, 446-464.	2.4	14
16	Demystifying market clearing and price setting effects in low-carbon energy systems. Energy Economics, 2021, 93, 105051.	12.1	27
17	Optimization Model for Cooperative Operation of "Source-Grid-Load―in Distribution Network with Renewable Energy. Smart Grid, 2021, 11, 148-163.	0.0	1
18	Operation optimization of electrical-heating integrated energy system based on concentrating solar power plant hybridized with combined heat and power plant. Journal of Cleaner Production, 2021, 289, 125712	9.3	64

CITATION REPORT

#	Article	IF	CITATIONS
19	Smart electric vehicle charging strategies for sectoral coupling in a city energy system. Applied Energy, 2021, 288, 116640.	10.1	50
20	Analysis of an Integrated Thermal Energy System for Applications in Cold Regions. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	5
21	Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. Applied Thermal Engineering, 2021, 189, 116666.	6.0	72
22	Integrated electricity, hydrogen and methane system modelling framework: Application to the Dutch Infrastructure Outlook 2050. Applied Energy, 2021, 289, 116713.	10.1	41
23	EGZOZ GAZLARINI KULLANAN TERMAL ENERJİ DEPOLAMA SİSTEMİNDE RT35 PARAFİN MUMUNUN ERİM KATILAŞMA SÜREÇLERİNİN SAYISAL ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 2021, 9, 52	IE VE 20-534.	1
24	Comprehensive Thermodynamic Analysis of Steam Storage in a Steam Cycle in a Different Regime of Work: A Zero-Dimensional and Three-Dimensional Approach. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	8
25	Optimizing CHP operational planning for participating in day-ahead power markets: The case of a coal-fired CHP system with thermal energy storage. , 2021, , 237-258.		2
26	The Utilization of Renewable Energy Sources in the Construction and Maintenance of Transport Infrastructure. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 362-373.	0.3	0
27	Increasing Revenue of Nuclear Power Plants With Thermal Storage. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	12
28	Techno-Economic Optimization of Electricity and Heat Production in a Gas-Fired Combined Heat and Power Plant With a Heat Accumulator. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	8
29	Development of a Grid Connected Solar-Wind Hybrid System With Reduction in Levelized Tariff for a Remote Island in India. Journal of Solar Energy Engineering, Transactions of the ASME, 2020, 142, .	1.8	16
30	Energy Efficiency Improvement of a Refrigerator Integrated With Phase Change Material-Based Condenser. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143, .	2.3	6
31	A Study on Urban Heating System Flexibility: Modeling and Evaluation. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	2
32	Comparing electricity balancing capacity, emissions, and cost for three different storageâ€based local energy systems. IET Renewable Power Generation, 2020, 14, 3936-3945.	3.1	2
33	Modeling and Simulation of Building Cooling System With Supercooling-Based Ice Energy Storage. ASME Journal of Engineering for Sustainable Buildings and Cities, 2020, 1, .	0.9	1
34	Exploiting Flexibility of Heating Network for Integrated Energy System Considering Temperature Gradient and Fatigue Life. , 2020, , .		0
35	Investigation and Optimization of the Performance of Energy Systems in the Textile Industry by Using CHP Systems. Sustainability, 2022, 14, 1551.	3.2	10
36	Design and Feasibility Study of Biomass-Driven Combined Heat and Power Systems for Rural Communities. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	5

#	Article	IF	CITATIONS
37	Analysis of economy, energy efficiency, environment: A case study of the CHP system with both civil and industrial heat users. Case Studies in Thermal Engineering, 2022, 30, 101768.	5.7	18
38	Assessing the Effects of Uncertain Energy and Carbon Prices on the Operational Patterns and Economic Results of CHP Systems. Energies, 2021, 14, 8216.	3.1	4
39	Combined heat and power plants integrated with steam turbine renovations: Optimal dispatch for maximizing the consumption of renewable energy. Energy Conversion and Management, 2022, 258, 115561.	9.2	16
40	Optimal Scheduling of Combined Heat and Power Units with Distributed Heat Pumps. , 2021, , .		0
41	Open-Source Modelling and Simulation of a District Heating and Electricity Energy System. , 2022, , .		0
42	The Effect of Al_2 O_3 Addition on Solidification Process of Phase Change Material: A Case Study on Heating of Automobile Cabin in Cold Climate Conditions. International Journal of Automotive Science and Technology, 2022, 6, 275-283.	1.0	1
43	Study of combined heat and power plant integration with thermal energy storage for operational flexibility. Applied Thermal Engineering, 2023, 219, 119537.	6.0	16
44	Dynamics and control of large-scale fluidized bed plants for renewable heat and power generation. Applied Thermal Engineering, 2023, 219, 119591.	6.0	1
45	Flexibility provision by combined heat and power plants – An evaluation of benefits from a plant and system perspective. Energy Conversion and Management: X, 2022, 16, 100318.	1.6	1
46	Optimal Multi-Mode Flexibility Operation of CHP Units with Electrode Type Electric Boilers: A Case Study. Energies, 2022, 15, 9337.	3.1	0
47	Improve the flexibility provided by combined heat and power plants (CHPs) – a review of potential technologies. E-Prime, 2021, 1, 100023.	2.0	3
48	Cogeneration Plants Design Optimization by Integrating Them with Renewable Energy Towards Sustainable Energy and Environmental Security. , 2023, , .		0
49	Influence of the transient operation of a large-scale thermal energy storage system on the flexibility provided by CHP plants. E-Prime, 2023, , 100160.	2.0	0
50	Numerical investigation on the transient gas–liquid flow in the rapid switching process of pump turbine. Energy Science and Engineering, 2023, 11, 2710-2724.	4.0	1
51	Off-design characteristics of a novel integrated system of coal-fired cogeneration unit and compressed air energy storage. Journal of Energy Storage, 2023, 69, 107944.	8.1	2
52	Artificial Intelligence Application to Flexibility Provision in Energy Management System: A Survey. EAI/Springer Innovations in Communication and Computing, 2023, , 55-78.	1.1	0
53	Performance Simulation of a Coal-Fired Power Plant Integrated with S-CO2 Brayton Cycle for Operational Flexibility Enhancement. International Journal of Energy Research, 2023, 2023, 1-21.	4.5	0
54	Pricing method of electric-thermal heterogeneous shared energy storage service. Energy, 2023, 281, 128275.	8.8	4

CITATION REPORT

#	Article	IF	CITATIONS
55	How national decarbonisation scenarios can affect building refurbishment strategies. Energy, 2023, 283, 128634.	8.8	2
56	Aggregator Index for 24-Hour Energy Flexibility Evaluation in an ADN Including PHEVs. IEEE Access, 2024, 12, 16105-16116.	4.2	1
58	Thermodynamic and techno-economic analysis of a novel compressed air energy storage system coupled with coal-fired power unit. Energy, 2024, 292, 130591.	8.8	0