A comparative transcriptomic approach to understandi

Plant Molecular Biology 96, 103-118 DOI: 10.1007/s11103-017-0682-9

Citation Report

#	Article	IF	CITATIONS
1	Cork Oak Young and Traumatic Periderms Show PCD Typical Chromatin Patterns but Different Chromatin-Modifying Genes Expression. Frontiers in Plant Science, 2018, 9, 1194.	3.6	23
2	The transcriptome of potato tuber phellogen reveals cellular functions of cork cambium and genes involved in periderm formation and maturation. Scientific Reports, 2019, 9, 10216.	3.3	29
3	Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food and Energy Security, 2019, 8, e00163.	4.3	13
4	Tissueâ€specific study across the stem reveals the chemistry and transcriptome dynamics of birch bark. New Phytologist, 2019, 222, 1816-1831.	7.3	56
5	The development of the periderm: the final frontier between a plant and its environment. Current Opinion in Plant Biology, 2020, 53, 10-14.	7.1	47
6	Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak. Tree Physiology, 2020, 40, 129-141.	3.1	21
7	Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork. Scientific Reports, 2020, 10, 8011.	3.3	19
8	Potato Periderm is the First Layer of Defence against Biotic and Abiotic Stresses: a Review. Potato Research, 2021, 64, 131-146.	2.7	15
9	Mass spectrometryâ€based forest tree metabolomics. Mass Spectrometry Reviews, 2021, 40, 126-157.	5.4	25
10	Cork cells in cork oak periderms undergo programmed cell death and proanthocyanidin deposition. Tree Physiology, 2021, 41, 1701-1713.	3.1	5
12	Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation. Scientific Reports, 2021, 11, 12053.	3.3	13
13	Peridermal fruit skin formation in Actinidia sp. (kiwifruit) is associated with genetic loci controlling russeting and cuticle formation. BMC Plant Biology, 2021, 21, 334.	3.6	9
14	Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC Plant Biology, 2021, 21, 409.	3.6	3
15	microRNA-Mediated Regulation of Plant Vascular Development and Secondary Growth. Concepts and Strategies in Plant Sciences, 2020, , 143-168.	0.5	1
16	CorkOakDB—The Cork Oak Genome Database Portal. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	9
17	Translational profile of developing phellem cells in <i>Arabidopsis thaliana</i> roots. Plant Journal, 2022, 110, 899-915.	5.7	9
18	Spatiotemporal development of suberized barriers in cork oak taproots. Tree Physiology, 2022, 42, 1269-1285.	3.1	4
26	Effect of climate on cork-ring width and density of Quercus suber L. in Southern Portugal. Trees - Structure and Function, 2022, 36, 1711-1720.	1.9	6

#	Article	IF	CITATIONS
27	Potato Periderm Development and Tuber Skin Quality. Plants, 2022, 11, 2099.	3.5	3
28	Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. International Journal of Molecular Sciences, 2022, 23, 9980.	4.1	12
29	Cork Development: What Lies Within. Plants, 2022, 11, 2671.	3.5	7
30	Beyond width and density: stable carbon and oxygen isotopes in cork-rings provide insights of physiological responses to water stress in <i>Quercus suber</i> L. PeerJ, 0, 10, e14270.	2.0	1
31	Differential distribution of phytochemicals in Scutellariae Radix and Scutellariae Amoenae Radix using microscopic mass spectrometry imaging. Arabian Journal of Chemistry, 2023, 16, 104590.	4.9	0
33	Periderm differentiation: a cellular and molecular approach to cork oak. Trees - Structure and Function, 2023, 37, 627-639.	1.9	1
34	Quercus suber L. Genetic Resources: Variability and Strategies for Its Conservation. Forests, 2023, 14, 1925.	2.1	0
35	Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. Plant Science, 2023, 337, 111874.	3.6	Ο

CITATION REPORT