Lessons in PROTAC Design from Selective Degradation

Cell Chemical Biology 25, 78-87.e5 DOI: 10.1016/j.chembiol.2017.09.010

Citation Report

#	Article	IF	CITATIONS
1	Purification and characterization of two forms of a high-molecular-weight cysteine proteinase (porphypain) from Porphyromonas gingivalis. Journal of Bacteriology, 1994, 176, 4549-4557.	2.2	69
2	PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery. BioEssays, 2018, 40, e1700247.	2.5	151
3	Inducing protein-protein interactions with molecular glues. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2585-2592.	2.2	53
4	Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Bone, 2018, 112, 71-89.	2.9	10
5	Try Me: Promiscuous Inhibitors Still Allow for Selective Targeted Protein Degradation. Cell Chemical Biology, 2018, 25, 4-6.	5.2	16
6	Translation Termination Factor GSPT1 Is a Phenotypically Relevant Off-Target of Heterobifunctional Phthalimide Degraders. ACS Chemical Biology, 2018, 13, 553-560.	3.4	128
7	Kinase inhibitors: the road ahead. Nature Reviews Drug Discovery, 2018, 17, 353-377.	46.4	679
8	Proteolysis Targeting Chimeras (PROTACs) of Anaplastic Lymphoma Kinase (ALK). European Journal of Medicinal Chemistry, 2018, 151, 304-314.	5.5	165
9	The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology, 2018, 25, 67-77.e3.	5.2	422
10	Addressing Kinase-Independent Functions of Fak via PROTAC-Mediated Degradation. Journal of the American Chemical Society, 2018, 140, 17019-17026.	13.7	197
11	Enhancing Antiproliferative Activity and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion. Journal of the American Chemical Society, 2018, 140, 16428-16432.	13.7	126
12	Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562.	6.1	248
14	Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry, 2018, 57, 3564-3575.	2.5	261
15	Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Communications Biology, 2018, 1, 100.	4.4	249
16	Chemical Protein Degradation Approach and its Application to Epigenetic Targets. Chemical Record, 2018, 18, 1681-1700.	5.8	33
17	Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7285-E7292.	7.1	265
18	When Kinases Meet PROTACs. Chinese Journal of Chemistry, 2018, 36, 971-977.	4.9	27
19	Homo-PROTACs for the Chemical Knockdown of Cereblon. ACS Chemical Biology, 2018, 13, 2771-2782.	3.4	114

#	Article	IF	CITATIONS
20	Quantitative Live-Cell Kinetic Degradation and Mechanistic Profiling of PROTAC Mode of Action. ACS Chemical Biology, 2018, 13, 2758-2770.	3.4	194
21	Efficient Synthesis of Immunomodulatory Drug Analogues Enables Exploration of Structure–Degradation Relationships. ChemMedChem, 2018, 13, 1508-1512.	3.2	27
22	Plasticity in binding confers selectivity in ligand-induced protein degradation. Nature Chemical Biology, 2018, 14, 706-714.	8.0	391
23	Proteolysis Targeting Chimeras for the Selective Degradation of Mcl-1/Bcl-2 Derived from Nonselective Target Binding Ligands. Journal of Medicinal Chemistry, 2019, 62, 8152-8163.	6.4	75
24	Bifunctional chemical probes inducing protein–protein interactions. Current Opinion in Chemical Biology, 2019, 52, 145-156.	6.1	83
25	Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Cancer Research, 2019, 79, 4744-4753.	0.9	139
26	Development of Multifunctional Histone Deacetylase 6 Degraders with Potent Antimyeloma Activity. Journal of Medicinal Chemistry, 2019, 62, 7042-7057.	6.4	121
27	A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression InÂVivo. Cancer Cell, 2019, 36, 498-511.e17.	16.8	364
28	Discovery of a First-in-Class Mitogen-Activated Protein Kinase Kinase 1/2 Degrader. Journal of Medicinal Chemistry, 2019, 62, 10897-10911.	6.4	43
29	Targeted protein degradation: expanding the toolbox. Nature Reviews Drug Discovery, 2019, 18, 949-963.	46.4	541
30			
30	A novel strategy to block mitotic progression for targeted therapy. EBioMedicine, 2019, 49, 40-54.	6.1	33
31	A novel strategy to block mitotic progression for targeted therapy. EBioMedicine, 2019, 49, 40-54. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature Communications, 2019, 10, 131.	6.1 12.8	33 328
	Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature		
31	Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature Communications, 2019, 10, 131. Design and Characterization of SGK3-PROTAC1, an Isoform Specific SGK3 Kinase PROTAC Degrader. ACS	12.8	328
31 32	Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature Communications, 2019, 10, 131. Design and Characterization of SGK3-PROTAC1, an Isoform Specific SGK3 Kinase PROTAC Degrader. ACS Chemical Biology, 2019, 14, 2024-2034.	12.8 3.4	328 67
31 32 33	Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature Communications, 2019, 10, 131. Design and Characterization of SGK3-PROTAC1, an Isoform Specific SGK3 Kinase PROTAC Degrader. ACS Chemical Biology, 2019, 14, 2024-2034. The advent of directed protein degraders in drug discovery. Future Drug Discovery, 2019, 1, .	12.8 3.4 2.1	328 67 3
31 32 33 34	Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nature Communications, 2019, 10, 131. Design and Characterization of SGK3-PROTAC1, an Isoform Specific SGK3 Kinase PROTAC Degrader. ACS Chemical Biology, 2019, 14, 2024-2034. The advent of directed protein degraders in drug discovery. Future Drug Discovery, 2019, 1, . Targeting HDAC Complexes in Asthma and COPD. Epigenomes, 2019, 3, 19. A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular	12.8 3.4 2.1 1.8	328 67 3 32

#	Article	IF	CITATIONS
38	Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy. Expert Opinion on Drug Discovery, 2019, 14, 1237-1253.	5.0	16
39	Development of targeted protein degradation therapeutics. Nature Chemical Biology, 2019, 15, 937-944.	8.0	303
40	Cellular Resistance Mechanisms to Targeted Protein Degradation Converge Toward Impairment of the Engaged Ubiquitin Transfer Pathway. ACS Chemical Biology, 2019, 14, 2215-2223.	3.4	74
41	Development of Small Molecule Chimeras That Recruit AhR E3 Ligase to Target Proteins. ACS Chemical Biology, 2019, 14, 2822-2832.	3.4	71
42	Inducing the Degradation of Disease-Related Proteins Using Heterobifunctional Molecules. Molecules, 2019, 24, 3272.	3.8	9
43	Evolving Rules for Protein Degradation? Insights from the Zinc Finger Degrome. Biochemistry, 2019, 58, 861-864.	2.5	11
44	Bivalent Ligands for Protein Degradation in Drug Discovery. Computational and Structural Biotechnology Journal, 2019, 17, 160-176.	4.1	81
45	Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation. European Journal of Medicinal Chemistry, 2019, 166, 339-350.	5.5	26
46	Proteolysis-targeting chimeras for targeting protein for degradation. Future Medicinal Chemistry, 2019, 11, 723-741.	2.3	14
47	Cooperativity basis for small-molecule stabilization of protein–protein interactions. Chemical Science, 2019, 10, 2869-2874.	7.4	30
48	<i>In Silico</i> Modeling of PROTAC-Mediated Ternary Complexes: Validation and Application. Journal of Chemical Information and Modeling, 2019, 59, 1634-1644.	5.4	126
49	SPR-Measured Dissociation Kinetics of PROTAC Ternary Complexes Influence Target Degradation Rate. ACS Chemical Biology, 2019, 14, 361-368.	3.4	212
50	Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nature Chemical Biology, 2019, 15, 737-746.	8.0	282
51	Emerging modes-of-action in drug discovery. MedChemComm, 2019, 10, 1550-1568.	3.4	22
52	BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nature Chemical Biology, 2019, 15, 672-680.	8.0	335
53	Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. RSC Advances, 2019, 9, 16967-16976.	3.6	44
54	Targeting IRAK4 for Degradation with PROTACs. ACS Medicinal Chemistry Letters, 2019, 10, 1081-1085.	2.8	85
55	Targeted Degradation of a Hypoxia-Associated Non-coding RNA Enhances the Selectivity of a Small Molecule Interacting with RNA. Cell Chemical Biology, 2019, 26, 1180-1186.e5.	5.2	80

#	Article	IF	CITATIONS
56	Pharmacological Modulation of Transcriptional Coregulators in Cancer. Trends in Pharmacological Sciences, 2019, 40, 388-402.	8.7	9
57	Acquired Resistance to BET-PROTACs (Proteolysis-Targeting Chimeras) Caused by Genomic Alterations in Core Components of E3 Ligase Complexes. Molecular Cancer Therapeutics, 2019, 18, 1302-1311.	4.1	190
58	Substrate selection by the proteasome through initiation regions. Protein Science, 2019, 28, 1222-1232.	7.6	26
59	Small molecule PROTACs in targeted therapy: An emerging strategy to induce protein degradation. European Journal of Medicinal Chemistry, 2019, 174, 159-180.	5.5	37
60	Molecular design opportunities presented by solventâ€exposed regions of target proteins. Medicinal Research Reviews, 2019, 39, 2194-2238.	10.5	28
61	Targeted protein degradation: elements of PROTAC design. Current Opinion in Chemical Biology, 2019, 50, 111-119.	6.1	363
62	Small-molecule PROTAC degraders of the Bromodomain and Extra Terminal (BET) proteins — A review. Drug Discovery Today: Technologies, 2019, 31, 43-51.	4.0	92
63	Targeted Protein Degradation for Kinase Selectivity. Cell Chemical Biology, 2019, 26, 307-308.	5.2	Ο
64	Development of a Potent Protein Degrader against Oncogenic BCR-ABL Protein. Chemical and Pharmaceutical Bulletin, 2019, 67, 165-172.	1.3	18
65	Emerging drug development technologies targeting ubiquitination for cancer therapeutics. , 2019, 199, 139-154.		52
66	A critical evaluation of the approaches to targeted protein degradation for drug discovery. Drug Discovery Today: Technologies, 2019, 31, 5-13.	4.0	37
67	Cereblon modulators: Low molecular weight inducers of protein degradation. Drug Discovery Today: Technologies, 2019, 31, 29-34.	4.0	77
68	Advanced proteomics approaches to unravel protein homeostasis. Drug Discovery Today: Technologies, 2019, 31, 99-108.	4.0	17
69	Cereblon versus VHL: Hijacking E3 ligases against each other using PROTACs. Bioorganic and Medicinal Chemistry, 2019, 27, 2466-2479.	3.0	97
70	Highly Selective PTK2 Proteolysis Targeting Chimeras to Probe Focal Adhesion Kinase Scaffolding Functions. Journal of Medicinal Chemistry, 2019, 62, 2508-2520.	6.4	99
71	PROTAC-Mediated Degradation of Bruton's Tyrosine Kinase Is Inhibited by Covalent Binding. ACS Chemical Biology, 2019, 14, 342-347.	3.4	122
72	PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future. Drug Discovery Today: Technologies, 2019, 31, 15-27.	4.0	458
73	Epigenetic drugs and their molecular targets in testicular germ cell tumours. Nature Reviews Urology, 2019, 16, 245-259.	3.8	34

#	Article	IF	CITATIONS
74	Triazol: a privileged scaffold for proteolysis targeting chimeras. Future Medicinal Chemistry, 2019, 11, 2919-2973.	2.3	32
75	Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein. Journal of Medicinal Chemistry, 2019, 62, 11280-11300.	6.4	133
76	PROTACs: great opportunities for academia and industry. Signal Transduction and Targeted Therapy, 2019, 4, 64.	17.1	367
77	A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nature Medicine, 2019, 25, 1938-1947.	30.7	348
78	Homolog-Selective Degradation as a Strategy to Probe the Function of CDK6 in AML. Cell Chemical Biology, 2019, 26, 300-306.e9.	5.2	188
79	Identification and characterization of cancer vulnerabilities via targeted protein degradation. Drug Discovery Today: Technologies, 2019, 31, 81-90.	4.0	25
80	Monitoring and deciphering protein degradation pathways inside cells. Drug Discovery Today: Technologies, 2019, 31, 61-68.	4.0	45
81	HIP1R targets PD-L1 to lysosomal degradation to alter T cell–mediated cytotoxicity. Nature Chemical Biology, 2019, 15, 42-50.	8.0	189
82	A novel cereblon modulator for targeted protein degradation. European Journal of Medicinal Chemistry, 2019, 166, 65-74.	5.5	37
83	MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Research, 2019, 79, 251-262.	0.9	223
84	Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel–Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. Journal of Medicinal Chemistry, 2019, 62, 699-726.	6.4	230
85	Degradation of proteins by PROTACs and other strategies. Acta Pharmaceutica Sinica B, 2020, 10, 207-238.	12.0	196
86	Application of protein knockdown strategy targeting β-sheet structure to multiple disease-associated polyglutamine proteins. Bioorganic and Medicinal Chemistry, 2020, 28, 115175.	3.0	20
87	Development and Characterization of a Wee1 Kinase Degrader. Cell Chemical Biology, 2020, 27, 57-65.e9.	5.2	68
88	Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110795.	5.0	30
89	Discovery of Potent and Selective Epidermal Growth Factor Receptor (EGFR) Bifunctional Small-Molecule Degraders. Journal of Medicinal Chemistry, 2020, 63, 1216-1232.	6.4	111
90	Exploring Targeted Degradation Strategy for Oncogenic KRASG12C. Cell Chemical Biology, 2020, 27, 19-31.e6.	5.2	182
91	Structureâ€Based Design of a Macrocyclic PROTAC. Angewandte Chemie - International Edition, 2020, 59, 1727-1734.	13.8	150

#	Article	IF	CITATIONS
92	Targeted protein degradation in antibacterial drug discovery?. Progress in Biophysics and Molecular Biology, 2020, 152, 10-14.	2.9	14
93	Targeted protein degradation: current and future challenges. Current Opinion in Chemical Biology, 2020, 56, 35-41.	6.1	74
94	Assessing the Cell Permeability of Bivalent Chemical Degraders Using the Chloroalkane Penetration Assay. ACS Chemical Biology, 2020, 15, 290-295.	3.4	60
95	Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126877.	2.2	70
96	Structureâ€Based Design of a Macrocyclic PROTAC. Angewandte Chemie, 2020, 132, 1744-1751.	2.0	13
97	Design, synthesis, and biological evaluation of small molecule PROTACs for potential anticancer effects. Medicinal Chemistry Research, 2020, 29, 334-340.	2.4	15
98	Design and characterization of cereblon-mediated androgen receptor proteolysis-targeting chimeras. European Journal of Medicinal Chemistry, 2020, 208, 112769.	5.5	44
99	Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC). European Journal of Medicinal Chemistry, 2020, 208, 112800.	5.5	49
100	PRosettaC: Rosetta Based Modeling of PROTAC Mediated Ternary Complexes. Journal of Chemical Information and Modeling, 2020, 60, 4894-4903.	5.4	110
101	PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nature Chemical Biology, 2020, 16, 1179-1188.	8.0	73
102	Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). European Journal of Medicinal Chemistry, 2020, 207, 112750.	5.5	12
103	Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). Journal of Medicinal Chemistry, 2020, 63, 14382-14403.	6.4	53
104	Discovery of First-In-Class Potent and Selective Tropomyosin Receptor Kinase Degraders. Journal of Medicinal Chemistry, 2020, 63, 14562-14575.	6.4	29
105	Specific bindingâ€induced modulation of the XCL1 metamorphic equilibrium. Biopolymers, 2020, 112, e23402.	2.4	1
106	Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discovery Today, 2020, 25, 1793-1800.	6.4	108
107	Chimera induced protein degradation: PROTACs and beyond. European Journal of Medicinal Chemistry, 2020, 206, 112494.	5.5	10
108	PROTAC: A Novel Technology for Drug Development**. ChemistrySelect, 2020, 5, 13232-13247.	1.5	5
109	Photoactive Bifunctional Degraders: Precision Tools To Regulate Protein Stability. Journal of Medicinal Chemistry, 2020, 63, 15483-15493.	6.4	10

#	Article	IF	CITATIONS
110	Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell, 2020, 183, 1714-1731.e10.	28.9	163
111	Understanding and Improving the Membrane Permeability of VH032-Based PROTACs. ACS Medicinal Chemistry Letters, 2020, 11, 1732-1738.	2.8	83
112	Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. Journal of Hematology and Oncology, 2020, 13, 103.	17.0	69
113	PROteolysis TArgetting Chimeras (PROTACs) Strategy Applied to Kinases: Recent Advances. Advanced Therapeutics, 2020, 3, 2000148.	3.2	2
114	Selective Modulation of Dynamic Protein Complexes. Cell Chemical Biology, 2020, 27, 986-997.	5.2	21
115	PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chemical Biology, 2020, 27, 998-1014.	5.2	242
116	Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets. Cancer Biology and Medicine, 2020, 17, 583-598.	3.0	6
117	Could PROTACs Protect Us From COVID-19?. Drug Discovery Today, 2020, 25, 1894-1896.	6.4	21
118	Proteolysis targeting chimeras (PROTACs) in cancer therapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 189.	8.6	36
119	The peptide PROTAC modality: a novel strategy for targeted protein ubiquitination. Theranostics, 2020, 10, 10141-10153.	10.0	64
120	Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biology, 2020, 18, 103.	3.8	39
121	Efficient Targeted Degradation via Reversible and Irreversible Covalent PROTACs. Journal of the American Chemical Society, 2020, 142, 11734-11742.	13.7	122
122	Development of CDK2 and CDK5 Dual Degrader TMXâ€2172. Angewandte Chemie, 2020, 132, 13969-13974.	2.0	2
123	Beute für das Proteasom: Gezielter Proteinabbau aus medizinalchemischer Perspektive. Angewandte Chemie, 2020, 132, 15576-15595.	2.0	6
124	Prey for the Proteasome: Targeted Protein Degradation—A Medicinal Chemist's Perspective. Angewandte Chemie - International Edition, 2020, 59, 15448-15466.	13.8	102
125	Assays and technologies for developing proteolysis targeting chimera degraders. Future Medicinal Chemistry, 2020, 12, 1155-1179.	2.3	29
126	PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics. Oncogene, 2020, 39, 4909-4924.	5.9	139
127	Site-specific ubiquitination affects protein energetics and proteasomal degradation. Nature Chemical Biology, 2020, 16, 866-875.	8.0	29

#	Article	IF	CITATIONS
128	Development of CDK2 and CDK5 Dual Degrader TMXâ€2172. Angewandte Chemie - International Edition, 2020, 59, 13865-13870.	13.8	47
129	A Cell-Based Target Engagement Assay for the Identification of Cereblon E3ÂUbiquitin Ligase Ligands and Their Application in HDAC6 Degraders. Cell Chemical Biology, 2020, 27, 866-876.e8.	5.2	51
130	Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1. European Journal of Medicinal Chemistry, 2020, 199, 112377.	5.5	63
131	Scaffold hopping enables direct access to more potent PROTACs with <i>in vivo</i> activity. Chemical Communications, 2020, 56, 6890-6892.	4.1	19
132	An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 1025-1044.	5.0	44
133	Ibrutinib Resistance Mechanisms and Treatment Strategies for B-Cell Lymphomas. Cancers, 2020, 12, 1328.	3.7	65
134	Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nature Structural and Molecular Biology, 2020, 27, 605-614.	8.2	111
135	A Nimbolide-Based Kinase Degrader Preferentially Degrades Oncogenic BCR-ABL. ACS Chemical Biology, 2020, 15, 1788-1794.	3.4	67
136	Fluorophosphonateâ€Based Degrader Identifies Degradable Serine Hydrolases by Quantitative Proteomics. ChemBioChem, 2020, 21, 2916-2920.	2.6	3
137	Optimal linker length for small molecule PROTACs that selectively target p381 [±] and p381 ² for degradation. European Journal of Medicinal Chemistry, 2020, 201, 112451.	5.5	41
138	The application of ubiquitin ligases in the PROTAC drug design. Acta Biochimica Et Biophysica Sinica, 2020, 52, 776-790.	2.0	13
139	Cell-Based Ligand Discovery for the ENL YEATS Domain. ACS Chemical Biology, 2020, 15, 895-903.	3.4	28
140	PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes. Chemical Communications, 2020, 56, 4476-4479.	4.1	75
141	Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127106.	2.2	41
142	Proteolysis targeting chimeras (PROTACs) for epigenetics research. Current Opinion in Chemical Biology, 2020, 57, 8-16.	6.1	46
143	Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Seminars in Cancer Biology, 2020, 67, 53-60.	9.6	9
144	Critical Assessment of Targeted Protein Degradation as a Research Tool and Pharmacological Modality. Trends in Pharmacological Sciences, 2020, 41, 305-317.	8.7	56
145	How We Think about Targeting RNA with Small Molecules. Journal of Medicinal Chemistry, 2020, 63, 8880-8900.	6.4	109

#	Article	IF	CITATIONS
146	Discovery of Selective Small Molecule Degraders of BRAF-V600E. Journal of Medicinal Chemistry, 2020, 63, 4069-4080.	6.4	43
147	Toward Development of the Male Pill: A Decade of Potential Non-hormonal Contraceptive Targets. Frontiers in Cell and Developmental Biology, 2020, 8, 61.	3.7	15
148	Design and synthesis of selective degraders of EGFRL858R/T790M mutant. European Journal of Medicinal Chemistry, 2020, 192, 112199.	5.5	59
149	PTPs: Degrading the Undruggable. Journal of Medicinal Chemistry, 2020, 63, 7508-7509.	6.4	Ο
150	Targeted Degradation of Oncogenic KRAS ^{G12C} by VHL-Recruiting PROTACs. ACS Central Science, 2020, 6, 1367-1375.	11.3	232
151	A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nature Communications, 2020, 11, 3233.	12.8	68
152	Progress toward the development of the small molecule equivalent of small interfering RNA. Current Opinion in Chemical Biology, 2020, 56, 63-71.	6.1	13
153	Discovery of the first potent proteolysis targeting chimera (PROTAC) degrader of indoleamine 2,3-dioxygenase 1. Acta Pharmaceutica Sinica B, 2020, 10, 1943-1953.	12.0	47
154	bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5791-5800.	7.1	76
155	Characterization of cereblon-dependent targeted protein degrader by visualizing the spatiotemporal ternary complex formation in cells. Scientific Reports, 2020, 10, 3088.	3.3	4
156	Light-induced control of protein destruction by opto-PROTAC. Science Advances, 2020, 6, eaay5154.	10.3	139
157	Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140405.	2.3	39
158	PROTACs: A novel strategy for cancer therapy. Seminars in Cancer Biology, 2020, 67, 171-179.	9.6	95
159	Strategies to Target ISG15 and USP18 Toward Therapeutic Applications. Frontiers in Chemistry, 2019, 7, 923.	3.6	33
160	Hi-JAK-ing the ubiquitin system: The design and physicochemical optimisation of JAK PROTACs. Bioorganic and Medicinal Chemistry, 2020, 28, 115326.	3.0	42
161	Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell, 2020, 181, 102-114.	28.9	567
162	Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Molecular Cell, 2020, 77, 446-460.	9.7	140
163	Proteolysisâ€ŧargeting chimeras in drug development: A safety perspective. British Journal of Pharmacology, 2020, 177, 1709-1718.	5.4	105

#	Article	IF	CITATIONS
165	Design, Synthesis, and Biological Evaluation of Proteolysis Targeting Chimeras (PROTACs) for the Dual Degradation of IGF-1R and Src. Molecules, 2020, 25, 1948.	3.8	15
166	Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nature Communications, 2020, 11, 1996.	12.8	141
167	Small-molecule PROTACs: novel agents for cancer therapy. Future Medicinal Chemistry, 2020, 12, 915-938.	2.3	19
168	PROTACs and Other Chemical Protein Degradation Technologies for the Treatment of Neurodegenerative Disorders. Angewandte Chemie - International Edition, 2021, 60, 3346-3354.	13.8	44
169	PROTACs and Other Chemical Protein Degradation Technologies for the Treatment of Neurodegenerative Disorders. Angewandte Chemie, 2021, 133, 3386-3394.	2.0	3
170	E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS Discovery, 2021, 26, 484-502.	2.7	154
171	PROTACs to address the challenges facing small molecule inhibitors. European Journal of Medicinal Chemistry, 2021, 210, 112993.	5.5	69
172	Hybrid Quinazoline 1,3,5â€Triazines as Epidermal Growth Factor Receptor (EGFR) Inhibitors with Anticancer Activity: Design, Synthesis, and Computational Study. ChemMedChem, 2021, 16, 822-838.	3.2	11
173	A kinetic proofreading model for bispecific protein degraders. Journal of Pharmacokinetics and Pharmacodynamics, 2021, 48, 149-163.	1.8	22
174	Recent advances in synthetic and medicinal chemistry of phosphotyrosine and phosphonate-based phosphotyrosine analogues. RSC Medicinal Chemistry, 2021, 12, 8-23.	3.9	16
175	CDK Family PROTAC Profiling Reveals Distinct Kinetic Responses and Cell Cycle–Dependent Degradation of CDK2. SLAS Discovery, 2021, 26, 560-569.	2.7	21
176	Construction of an IMiD-based azide library as a kit for PROTAC research. Organic and Biomolecular Chemistry, 2021, 19, 166-170.	2.8	21
177	Effects of MTX-23, a Novel PROTAC of Androgen Receptor Splice Variant-7 and Androgen Receptor, on CRPC Resistant to Second-Line Antiandrogen Therapy. Molecular Cancer Therapeutics, 2021, 20, 490-499.	4.1	55
178	Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS Discovery, 2021, 26, 474-483.	2.7	22
179	Traceless Staudinger ligation enabled parallel synthesis of proteolysis targeting chimera linker variants. Chemical Communications, 2021, 57, 1026-1029.	4.1	17
180	Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. European Journal of Medicinal Chemistry, 2021, 210, 112981.	5.5	114
181	Discovery of a Napabucasin PROTAC as an Effective Degrader of the E3 Ligase ZFP91. Journal of Medicinal Chemistry, 2021, 64, 1626-1648.	6.4	27
182	Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Journal of Biological Chemistry, 2021, 296, 100647.	3.4	126

#	ARTICLE	IF	CITATIONS
183	Mechanistic and Structural Features of PROTAC Ternary Complexes. Methods in Molecular Biology, 2021, 2365, 79-113.	0.9	32
184	Kinetic Detection of E3:PROTAC:Target Ternary Complexes Using NanoBRET Technology in Live Cells. Methods in Molecular Biology, 2021, 2365, 151-171.	0.9	8
185	MST and TRIC Technology to Reliably Study PROTAC Binary and Ternary Binding in Drug Development. Methods in Molecular Biology, 2021, 2365, 115-133.	0.9	5
186	Allosteric Modulation. , 2021, , .		0
187	A Tale of Two Tails: Efficient Profiling of Protein Degraders by Specific Functional and Target Engagement Readouts. SLAS Discovery, 2021, 26, 534-546.	2.7	21
188	Pan RAS-binding compounds selected from a chemical library by inhibiting interaction between RAS and a reduced affinity intracellular antibody. Scientific Reports, 2021, 11, 1712.	3.3	6
189	PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. Progress in Medicinal Chemistry, 2021, 60, 67-190.	10.4	23
190	Protein Ligand Interactions Using Surface Plasmon Resonance. Methods in Molecular Biology, 2021, 2365, 3-20.	0.9	9
191	Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Advances, 2021, 11, 612-636.	3.6	7
192	Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins. Cell Reports, 2021, 34, 108532.	6.4	54
194	An In Vitro Pull-down Assay of the E3 Ligase:PROTAC:Substrate Ternary Complex to Identify Effective PROTACs. Methods in Molecular Biology, 2021, 2365, 135-150.	0.9	2
195	General Stepwise Approach to Optimize a TR-FRET Assay for Characterizing the BRD/PROTAC/CRBN Ternary Complex. ACS Pharmacology and Translational Science, 2021, 4, 941-952.	4.9	11
196	The Vital Role of Proteomics in Characterizing Novel Protein Degraders. SLAS Discovery, 2021, 26, 518-523.	2.7	12
197	Mutant-selective degradation by BRAF-targeting PROTACs. Nature Communications, 2021, 12, 920.	12.8	71
198	Expanding the role of proteasome homeostasis in Parkinson's disease: beyond protein breakdown. Cell Death and Disease, 2021, 12, 154.	6.3	28
199	Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. Journal of Medicinal Chemistry, 2021, 64, 2576-2607.	6.4	91
200	Proteolytic Targeting Chimeras with Specificity for Plasma Membrane and Intracellular Estrogen Receptors. Molecular Pharmaceutics, 2021, 18, 1455-1469.	4.6	14
201	Rationalizing PROTAC-Mediated Ternary Complex Formation Using Rosetta. Journal of Chemical Information and Modeling, 2021, 61, 1368-1382.	5.4	77

#	ARTICLE	IF	CITATIONS
202	Targeting Bromodomain and Extraterminal Proteins for Drug Discovery: From Current Progress to Technological Development. Journal of Medicinal Chemistry, 2021, 64, 2419-2435.	6.4	74
204	Exploiting Folding and Degradation Machineries To Target Undruggable Proteins: What Can a Computational Approach Tell Us?. ChemMedChem, 2021, 16, 1593-1599.	3.2	4
205	Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nature Chemical Biology, 2021, 17, 567-575.	8.0	76
206	LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nature Chemical Biology, 2021, 17, 937-946.	8.0	211
207	The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Molecular Neurobiology, 2021, 58, 3252-3269.	4.0	27
208	Tackling Drug Resistance in EGFR Exon 20 Insertion Mutant Lung Cancer. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 301-317.	0.7	11
209	Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chemical Biology, 2021, 28, 283-299.	5.2	15
210	Cancer therapies based on targeted protein degradation — lessons learned with lenalidomide. Nature Reviews Clinical Oncology, 2021, 18, 401-417.	27.6	69
211	A Method for Determining the Kinetics of Small-Molecule-Induced Ubiquitination. SLAS Discovery, 2021, 26, 547-559.	2.7	13
212	Recent Advances in the Design and Development of Anticancer Molecules based on PROTAC Technology. Current Medicinal Chemistry, 2021, 28, 1304-1327.	2.4	8
214	Fast-acting chemical tools to delineate causality in transcriptional control. Molecular Cell, 2021, 81, 1617-1630.	9.7	44
215	Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chemical Biology, 2021, 28, 559-566.e15.	5.2	84
216	From Conception to Development: Investigating PROTACs Features for Improved Cell Permeability and Successful Protein Degradation. Frontiers in Chemistry, 2021, 9, 672267.	3.6	77
217	Transforming targeted cancer therapy with PROTACs: A forward-looking perspective. Current Opinion in Pharmacology, 2021, 57, 175-183.	3.5	36
218	A cell-based screening method using an intracellular antibody for discovering small molecules targeting the translocation protein LMO2. Science Advances, 2021, 7, .	10.3	8
219	PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance. Current Cancer Drug Targets, 2021, 21, 306-325.	1.6	4
220	Advances in targeting â€`undruggable' transcription factors with small molecules. Nature Reviews Drug Discovery, 2021, 20, 669-688.	46.4	152
221	Proteolysis Targeting Chimeras for BTK Efficiently Inhibit B-Cell Receptor Signaling and Can Overcome Ibrutinib Resistance in CLL Cells. Frontiers in Oncology, 2021, 11, 646971.	2.8	7

#	Article	IF	CITATIONS
222	Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Communications Biology, 2021, 4, 640.	4.4	21
223	Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer. Oncogene, 2021, 40, 3917-3928.	5.9	27
224	An Exploration of Chemical Properties Required for Cooperative Stabilization of the 14-3-3 Interaction with NF-κB—Utilizing a Reversible Covalent Tethering Approach. Journal of Medicinal Chemistry, 2021, 64, 8423-8436.	6.4	15
225	Development of Alectinib-Based PROTACs as Novel Potent Degraders of Anaplastic Lymphoma Kinase (ALK). Journal of Medicinal Chemistry, 2021, 64, 9120-9140.	6.4	33
226	Advancing targeted protein degradation for cancer therapy. Nature Reviews Cancer, 2021, 21, 638-654.	28.4	251
227	Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40, 4079-4093.	5.9	76
228	Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Current Opinion in Chemical Biology, 2021, 62, 119-129.	6.1	5
229	Native mass spectrometry and gas-phase fragmentation provide rapid and in-depth topological characterization of a PROTAC ternary complex. Cell Chemical Biology, 2021, 28, 1528-1538.e4.	5.2	12
230	The rise of covalent proteolysis targeting chimeras. Current Opinion in Chemical Biology, 2021, 62, 24-33.	6.1	45
231	Targeting Protein Kinases Degradation by PROTACs. Frontiers in Chemistry, 2021, 9, 679120.	3.6	28
232	Research progress of MEK1/2 inhibitors and degraders in the treatment of cancer. European Journal of Medicinal Chemistry, 2021, 218, 113386.	5.5	29
233	Unifying Catalysis Framework to Dissect Proteasomal Degradation Paradigms. ACS Central Science, 2021, 7, 1117-1125.	11.3	15
234	Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry, 2021, 64, 8042-8052.	6.4	87
235	Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. European Journal of Medicinal Chemistry, 2021, 219, 113425.	5.5	36
236	Discovery of Highly Potent and Selective IRAK1 Degraders to Probe Scaffolding Functions of IRAK1 in ABC DLBCL. Journal of Medicinal Chemistry, 2021, 64, 10878-10889.	6.4	12
237	Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chemical Biology, 2021, 28, 1014-1031.	5.2	62
238	Design, Synthesis, and Evaluation of VHL-Based EZH2 Degraders to Enhance Therapeutic Activity against Lymphoma. Journal of Medicinal Chemistry, 2021, 64, 10167-10184.	6.4	50
239	A biphenyl inhibitor of eIF4E targeting an internal binding site enables the design of cell-permeable PROTAC-degraders. European Journal of Medicinal Chemistry, 2021, 219, 113435.	5.5	15

#	Article	IF	CITATIONS
240	Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Frontiers in Cell and Developmental Biology, 2021, 9, 678077.	3.7	18
241	Perspectives on the development of first-in-class protein degraders. Future Medicinal Chemistry, 2021, 13, 1203-1226.	2.3	7
242	Chemo-proteomics exploration of HDAC degradability by small molecule degraders. Cell Chemical Biology, 2021, 28, 1514-1527.e4.	5.2	41
243	The PROTACtable genome. Nature Reviews Drug Discovery, 2021, 20, 789-797.	46.4	112
244	Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology, 2021, 28, 934-951.	5.2	115
245	Optical control of targeted protein degradation. Cell Chemical Biology, 2021, 28, 969-986.	5.2	34
246	Reversible Covalent PROTACs: Novel and Efficient Targeted Degradation Strategy. Frontiers in Chemistry, 2021, 9, 691093.	3.6	5
247	Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chemical Biology, 2021, 28, 1048-1060.	5.2	34
248	Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery?. ACS Infectious Diseases, 2021, 7, 2050-2067.	3.8	11
249	A proteomic platform to identify off-target proteins associated with therapeutic modalities that induce protein degradation or gene silencing. Scientific Reports, 2021, 11, 15856.	3.3	7
250	Biochemical perspectives on targeting KMT2 methyltransferases in cancer. Trends in Pharmacological Sciences, 2021, 42, 688-699.	8.7	10
251	Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovascular & Hematological Disorders Drug Targets, 2021, 21, 7-22.	0.7	3
252	Improved methods for targeting epigenetic reader domains of acetylated and methylated lysine. Current Opinion in Chemical Biology, 2021, 63, 132-144.	6.1	14
253	Folate-Guided Protein Degradation by Immunomodulatory Imide Drug-Based Molecular Glues and Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry, 2021, 64, 12273-12285.	6.4	37
254	Reviewing the toolbox for degrader development in oncology. Current Opinion in Pharmacology, 2021, 59, 43-51.	3.5	4
255	The rise and rise of protein degradation: Opportunities and challenges ahead. Drug Discovery Today, 2021, 26, 2889-2897.	6.4	41
256	INK4 Tumor Suppressor Proteins Mediate Resistance to CDK4/6 Kinase Inhibitors. Cancer Discovery, 2022, 12, 356-371.	9.4	68
257	Structural Characterization of Degrader-Induced Ternary Complexes Using Hydrogen–Deuterium Exchange Mass Spectrometry and Computational Modeling: Implications for Structure-Based Design. ACS Chemical Biology, 2021, 16, 2228-2243.	3.4	32

#	Article	IF	CITATIONS
258	Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation. Journal of the American Chemical Society, 2021, 143, 15073-15083.	13.7	66
259	Designed, synthesized and biological evaluation of proteolysis targeting chimeras (PROTACs) as AR degraders for prostate cancer treatment. Bioorganic and Medicinal Chemistry, 2021, 45, 116331.	3.0	10
260	Recent Developments in PROTACâ€Mediated Protein Degradation: From Bench to Clinic. ChemBioChem, 2022, 23, .	2.6	105
262	A strategy to assess the cellular activity of E3 ligase components against neo-substrates using electrophilic probes. Cell Chemical Biology, 2022, 29, 57-66.e6.	5.2	9
264	Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs That Enable Degradation. Molecules, 2021, 26, 5606.	3.8	3
265	PROTACs technology for targeting non-oncoproteins: Advances and perspectives. Bioorganic Chemistry, 2021, 114, 105109.	4.1	19
267	Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation. European Journal of Medicinal Chemistry, 2021, 223, 113645.	5.5	23
268	Indomethacin-based PROTACs as pan-coronavirus antiviral agents. European Journal of Medicinal Chemistry, 2021, 226, 113814.	5.5	46
269	Synthesis and structure-activity relationships of targeted protein degraders for the understudied kinase NEK9. Current Research in Chemical Biology, 2021, 1, 100008.	2.9	3
270	Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology, 2021, 2, 725-742.	4.1	118
277	STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers. Life Science Alliance, 2020, 3, e202000725.	2.8	19
278	Development of PROTACs to address clinical limitations associated with BTK-targeted kinase inhibitors. , 2020, 1, 131-152.		13
279	Current strategies for the design of PROTAC linkers: a critical review. Exploration of Targeted Anti-tumor Therapy, 2020, 1, .	0.8	140
280	Translating PROTAC chemical series optimization into functional outcomes underlying BRD7 and BRD9 protein degradation. Current Research in Chemical Biology, 2021, 1, 100009.	2.9	11
281	Targeting STK33: from inhibition to degradation. Future Medicinal Chemistry, 2022, 14, 127-129.	2.3	0
282	Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nature Chemical Biology, 2021, 17, 1157-1167.	8.0	108
285	Chapter 6. Structure-based PROTAC Design. RSC Drug Discovery Series, 2020, , 115-134.	0.3	0
288	Targeted Protein Degradation: "The Gold Rush is On!". Technology Transfer and Entrepreneurship, 2020, 7, 4-16.	0.1	2

#	Article	IF	CITATIONS
289	Preclinical and Clinical Advances of Targeted Protein Degradation as a Novel Cancer Therapeutic Strategy: An Oncologist Perspective. Targeted Oncology, 2021, 16, 1-12.	3.6	4
290	VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives. European Journal of Medicinal Chemistry, 2022, 227, 113906.	5.5	27
291	Senolytics Target Senescent Cells and Improve Aging and Age-Related Diseases. Healthy Ageing and Longevity, 2020, , 63-84.	0.2	0
292	Targeted Protein Degradation Chemical Probes. Chemical Biology, 2020, , 150-181.	0.2	0
293	Structural and Biophysical Principles of Degrader Ternary Complexes. RSC Drug Discovery Series, 2020, , 14-54.	0.3	1
294	An Efficient Approach Toward Drugging Undruggable Targets. RSC Drug Discovery Series, 2020, , 167-183.	0.3	0
296	Inhibitors, PROTACs and Molecular Glues as Diverse Therapeutic Modalities to Target Cyclin-Dependent Kinase. Cancers, 2021, 13, 5506.	3.7	17
297	Selection for constrained peptides that bind to a single target protein. Nature Communications, 2021, 12, 6343.	12.8	16
299	Potential application of proteolysis targeting chimera (PROTAC) modification technology in natural products for their targeted protein degradation. Food Science and Human Wellness, 2022, 11, 199-207.	4.9	4
300	A novel Cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. Bioorganic Chemistry, 2022, 119, 105505.	4.1	13
301	Molecular Strategies to Target Protein Aggregation in Huntington's Disease. Frontiers in Molecular Biosciences, 2021, 8, 769184.	3.5	21
302	Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. International Journal of Molecular Sciences, 2021, 22, 12858.	4.1	23
303	Design, Synthesis, and Biological Evaluation of HDAC Degraders with CRBN E3 Ligase Ligands. Molecules, 2021, 26, 7241.	3.8	8
304	Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity,. Nature Communications, 2021, 12, 6896.	12.8	56
305	Targeted protein degradation at the host–pathogen interface. Molecular Microbiology, 2022, 117, 670-681.	2.5	12
306	Design, Synthesis, and Evaluation of Potent, Selective, and Bioavailable AKT Kinase Degraders. Journal of Medicinal Chemistry, 2021, 64, 18054-18081.	6.4	27
308	The chemical biology of ubiquitin. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130079.	2.4	3
309	P53(ï"Cp44), an Endogenous Human p53 Fragment Generated via M-Calpain-Mediated Cleavage Beyond Degradation. Gastroenterology Pancreatology and Hepatobilary Disorders, 2019, 3, 01-06.	0.0	Ο

#	Article	IF	Citations
310	Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs. Journal of Biological Chemistry, 2022, 298, 101653.	3.4	37
311	Design, Synthesis, and Biological Evaluation of Novel EGFR PROTACs Targeting Del19/T790M/C797S Mutation. ACS Medicinal Chemistry Letters, 2022, 13, 278-283.	2.8	23
313	Designing HDAC-PROTACs: lessons learned so far. Future Medicinal Chemistry, 2022, 14, 143-166.	2.3	22
314	Importance of Three-Body Problems and Protein–Protein Interactions in Proteolysis-Targeting Chimera Modeling: Insights from Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 523-532.	5.4	19
315	Strategies for designing proteolysis targeting chimaeras (PROTACs). Medicinal Research Reviews, 2022, 42, 1280-1342.	10.5	48
316	HDAC Inhibitors: Innovative Strategies for Their Design and Applications. Molecules, 2022, 27, 715.	3.8	31
318	PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 2022, 21, 181-200.	46.4	912
320	Degraders: The Ultimate Weapon Against Amplified Driver Kinases in Cancer. Molecular Pharmacology, 2022, 101, 191-200.	2.3	5
321	The Ubiquitination-Dependent and -Independent Functions of Cereblon in Cancer and Neurological Diseases. Journal of Molecular Biology, 2022, 434, 167457.	4.2	5
322	Discovery of novel potent covalent inhibitor-based EGFR degrader with excellent in vivo efficacy. Bioorganic Chemistry, 2022, 120, 105605.	4.1	25
323	Recent advances in induced proximity modalities. Current Opinion in Chemical Biology, 2022, 67, 102107.	6.1	13
324	A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein–protein and protein–ligand binding potencies. Scientific Reports, 2022, 12, 2024.	3.3	19
325	Targeted Degradation of PCNA Outperforms Stoichiometric Inhibition to Result in Programed Cell Death. SSRN Electronic Journal, 0, , .	0.4	0
326	Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators. Biological Chemistry, 2022, 403, 391-402.	2.5	5
327	Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharmaceutica Sinica B, 2022, 12, 2990-3005.	12.0	16
329	Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Annual Review of Biochemistry, 2022, 91, 295-319.	11.1	41
330	Targeted protein degraders march towards the clinic for neurodegenerative diseases. Ageing Research Reviews, 2022, 78, 101616.	10.9	19
331	Selective degradation of PARP2 by PROTACs via recruiting DCAF16 for triple-negative breast cancer. European Journal of Medicinal Chemistry, 2022, 236, 114321.	5.5	11

#	Article	IF	CITATIONS
332	Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases. Bioorganic and Medicinal Chemistry Letters, 2022, 64, 128636.	2.2	10
333	The clinical advances of proteolysis targeting chimeras in oncology. Exploration of Targeted Anti-tumor Therapy, 0, , 511-521.	0.8	17
334	Design, Synthesis, and Evaluation of Trivalent PROTACs Having a Functionalization Site with Controlled Orientation. Bioconjugate Chemistry, 2022, 33, 142-151.	3.6	16
335	Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. Journal of Medicinal Chemistry, 2021, 64, 18082-18101.	6.4	61
336	Identification of ligand linkage vectors for the development of p300/CBP degraders. RSC Medicinal Chemistry, 2022, 13, 726-730.	3.9	4
337	Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Molecular Cancer, 2022, 21, 99.	19.2	89
339	HJM-561, a Potent, Selective, and Orally Bioavailable EGFR PROTAC that Overcomes Osimertinib-Resistant EGFR Triple Mutations. Molecular Cancer Therapeutics, 2022, 21, 1060-1066.	4.1	22
340	Molecular glues: enhanced protein-protein interactions and cell proteome editing. Medicinal Chemistry Research, 2022, 31, 1068-1087.	2.4	10
341	ARV-771 Acts as an Inducer of Cell Cycle Arrest and Apoptosis to Suppress Hepatocellular Carcinoma Progression. Frontiers in Pharmacology, 2022, 13, .	3.5	5
342	Exploring the Role of Ubiquitin–Proteasome System in Parkinson's Disease. Molecular Neurobiology, 2022, 59, 4257-4273.	4.0	24
343	Targeting IRAK3 for Degradation to Enhance IL-12 Pro-inflammatory Cytokine Production. ACS Chemical Biology, 2022, 17, 1315-1320.	3.4	4
344	Target and tissue selectivity of PROTAC degraders. Chemical Society Reviews, 2022, 51, 5740-5756.	38.1	57
345	Cobalt atalyzed C(sp ²)â^'O Bond Formation by Directing Group Assisted Câ^'H Activation. European Journal of Organic Chemistry, 2022, 2022, .	2.4	6
346	Selectivity through Targeted Protein Degradation (TPD). Journal of Medicinal Chemistry, 2022, 65, 8113-8126.	6.4	15
347	PROTACs: past, present and future. Chemical Society Reviews, 2022, 51, 5214-5236.	38.1	180
348	Discovery of a Potent and Selective Degrader for USP7. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
349	Exploring the genetic space of the <scp>DNA</scp> damage response for cancer therapy through <scp>CRISPR</scp> â€based screens. Molecular Oncology, 2022, 16, 3778-3791.	4.6	5
350	Azobenzene Photoswitches in Proteolysis Targeting Chimeras: Photochemical Control Strategies and Therapeutic Benefits. ChemistrySelect, 2022, 7, .	1.5	11

#	Article	IF	CITATIONS
351	Rapid and specific degradation of endogenous proteins in mouse models using auxin-inducible degrons. ELife, 0, 11, .	6.0	15
352	Discovery of a Potent and Selective Degrader for USP7. Angewandte Chemie, 0, , .	2.0	1
353	Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound Listening. International Journal of Molecular Sciences, 2022, 23, 6630.	4.1	8
354	COVID-19 Therapies: Protease Inhibitions and Novel Degrader Strategies. Frontiers in Drug Discovery, 0, 2, .	2.8	2
355	The importance of cellular degradation kinetics for understanding mechanisms in targeted protein degradation. Chemical Society Reviews, 2022, 51, 6210-6221.	38.1	12
356	Enriching Proteolysis Targeting Chimeras with a Second Modality: When Two Are Better Than One. Journal of Medicinal Chemistry, 2022, 65, 9507-9530.	6.4	14
357	Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Seminars in Cancer Biology, 2022, 86, 269-279.	9.6	7
358	Key Considerations in Targeted Protein Degradation Drug Discovery and Development. Frontiers in Chemistry, 0, 10, .	3.6	7
360	Scrutinizing the Therapeutic Potential of PROTACs in the Management of Alzheimer's Disease. Neurochemical Research, 2023, 48, 13-25.	3.3	7
361	Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood–Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2. Journal of the American Chemical Society, 2022, 144, 16930-16952.	13.7	52
362	The synthesis of PROTAC molecule and new target KAT6A identification of CDK9 inhibitor iCDK9. Chinese Chemical Letters, 2023, 34, 107741.	9.0	5
364	Cellular senescence: a key therapeutic target in aging and diseases. Journal of Clinical Investigation, 2022, 132, .	8.2	115
365	Recent Developments in Medicinal Chemistry and Therapeutic Potential of Anti-Cancer PROTACs-Based Molecules. Current Medicinal Chemistry, 2023, 30, 1576-1622.	2.4	1
366	The mechanism of action and clinical value of PROTACs: A graphical review. Cellular Signalling, 2022, 99, 110446.	3.6	3
367	Chemistries of bifunctional PROTAC degraders. Chemical Society Reviews, 2022, 51, 7066-7114.	38.1	73
368	Prospect of ULK1 modulators in targeting regulatory T cells. Bioorganic Chemistry, 2022, 129, 106141.	4.1	1
369	Methods to characterize and discover molecular degraders in cells. Chemical Society Reviews, 2022, 51, 7115-7137.	38.1	3
370	Discovery of Novel VEGFR-2-PROTAC Degraders Based on the Localization of Lysine Residues via Recruiting VHL for the Treatment of Gastric Cancer. SSRN Electronic Journal, 0, , .	0.4	0

		CITATION REPORT		
#	Article		IF	CITATIONS
371	Proteolysis-targeting chimeras (PROTACs) as novel biotechnology for cancer therapy. ,	, 2022, , 71-88.		1
372	Modulation of FLT3-ITD and CDK9 in Acute Myeloid Leukaemia Cells by Novel Proteoly Chimera (PROTAC). SSRN Electronic Journal, 0, , .	sis Targeting	0.4	Ο
373	PROTAC degraders as chemical probes for studying target biology and target validatio Society Reviews, 2022, 51, 7971-7993.	n. Chemical	38.1	28
374	The drug efflux pump MDR1 promotes intrinsic and acquired resistance to PROTACs in Science Signaling, 2022, 15, .	ı cancer cells.	3.6	24
375	MDM2-BCL-XL PROTACs enable degradation of BCL-XL and stabilization of p53. , 2022	2, 1, .		4
376	Development of an N-Terminal BRD4 Bromodomain-Targeted Degrader. ACS Medicinal Letters, 2022, 13, 1621-1627.	Chemistry	2.8	4
377	Developing HDAC4-Selective Protein Degraders To Investigate the Role of HDAC4 in H Disease Pathology. Journal of Medicinal Chemistry, 2022, 65, 12445-12459.	untington's	6.4	14
378	PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras. B 36, 609-623.	ioDrugs, 2022,	4.6	9
379	Light-Activating PROTACs in Cancer: Chemical Design, Challenges, and Applications. A (Switzerland), 2022, 12, 9674.	pplied Sciences	2.5	7
380	Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site Engage DCAF1. Journal of the American Chemical Society, 2022, 144, 18688-18699.	e-Specifically	13.7	44
381	Proteolysis Targeting Chimeras (PROTACs): A Perspective on Integral Membrane Prote ACS Pharmacology and Translational Science, 2022, 5, 849-858.	in Degradation.	4.9	18
382	PROTACs: The Future of Leukemia Therapeutics. Frontiers in Cell and Developmental B	iology, 0, 10, .	3.7	3
383	Discovery of novel VEGFR-2-PROTAC degraders based on the localization of lysine resider recruiting VHL for the treatment of gastric cancer. European Journal of Medicinal Chen 244, 114821.	lues via nistry, 2022,	5.5	5
384	Design and characterization of PROTAC degraders specific to protein N-terminal methy European Journal of Medicinal Chemistry, 2022, 244, 114830.	vltransferase 1.	5.5	9
385	Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. Jour Chemistry, 2022, 65, 13533-13560.	nal of Medicinal	6.4	12
386	Recent Advances in PROTAC Technology Toward New Therapeutic Modalities. Chemist Biodiversity, 2022, 19, .	ry and	2.1	2
387	Predicting the structural basis of targeted protein degradation by integrating molecula simulations with structural mass spectrometry. Nature Communications, 2022, 13, .	ar dynamics	12.8	27
388	Modulation of FLT3-ITD and CDK9 in acute myeloid leukaemia cells by novel proteolysi chimera (PROTAC). European Journal of Medicinal Chemistry, 2022, 243, 114792.	s targeting	5.5	12

#	Article	IF	Citations
389	Applications of covalent chemistry in targeted protein degradation. Chemical Society Reviews, 2022, 51, 9243-9261.	38.1	14
390	Emerging degrader technologies engaging lysosomal pathways. Chemical Society Reviews, 2022, 51, 8832-8876.	38.1	35
391	Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery. Pharmaceuticals, 2022, 15, 1322.	3.8	3
392	Proteolysis Targeting Chimeras (PROTACs) Based on Promiscuous Kinase Inhibitor Synergistically Induce Cancer Cell Apoptosis Through Multiple Mechanisms. ChemistrySelect, 2022, 7, .	1.5	1
393	PROTAC: A Novel Drug Delivery Technology for Targeting Proteins in Cancer Cells. Current Drug Discovery Technologies, 2023, 20, .	1.2	1
394	Targeted degradation of PCNA outperforms stoichiometric inhibition to result in programed cell death. Cell Chemical Biology, 2022, 29, 1601-1615.e7.	5.2	6
395	PROTACting the kinome with covalent warheads. Drug Discovery Today, 2023, 28, 103417.	6.4	3
396	Sunitinib-based Proteolysis Targeting Chimeras (PROTACs) reduced the protein levels of FLT-3 and c-KIT in leukemia cell lines. Bioorganic and Medicinal Chemistry Letters, 2022, 78, 129041.	2.2	2
397	A bibliometric analysis of PROTAC from 2001 to 2021. European Journal of Medicinal Chemistry, 2022, 244, 114838.	5.5	26
398	Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nature Communications, 2022, 13, .	12.8	22
399	Modeling the Effect of Cooperativity in Ternary Complex Formation and Targeted Protein Degradation Mediated by Heterobifunctional Degraders. ACS Bio & Med Chem Au, 2023, 3, 74-86.	3.7	10
400	Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy. European Journal of Medicinal Chemistry, 2023, 245, 114900.	5.5	9
401	High-potency PD-1/PD-L1 degradation induced by Peptide-PROTAC in human cancer cells. Cell Death and Disease, 2022, 13, .	6.3	17
402	A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules. Nature Cell Biology, 2022, 24, 1766-1775.	10.3	5
407	The importance of controls in targeted protein degradation: Determining mechanism. Methods in Enzymology, 2022, , .	1.0	0
408	Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomedicine and Pharmacotherapy, 2023, 158, 114112.	5.6	16
409	Design and characterization of a heterobifunctional degrader of KEAP1. Redox Biology, 2023, 59, 102552.	9.0	13
410	Synthesis of SNIPERs against BCR-ABL with kinase inhibitors and a method to evaluate their growth inhibitory activity derived from BCR-ABL degradation. Methods in Enzymology, 2022, , .	1.0	0

#	Article	IF	CITATIONS
411	PROTAC: targeted drug strategy. Principles and limitations. Russian Chemical Bulletin, 2022, 71, 2310-2334.	1.5	8
413	DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nature Communications, 2022, 13, .	12.8	23
420	Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS Bio & Med Chem Au, 2023, 3, 32-45.	3.7	6
421	Machine Learning Modeling of Protein-intrinsic Features Predicts Tractability of Targeted Protein Degradation. Genomics, Proteomics and Bioinformatics, 2022, 20, 882-898.	6.9	8
422	A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. Journal of Medicinal Chemistry, 2022, 65, 16128-16154.	6.4	10
423	Cell-Permeable PROTAC Degraders against KEAP1 Efficiently Suppress Hepatic Stellate Cell Activation through the Antioxidant and Anti-Inflammatory Pathway. ACS Pharmacology and Translational Science, 2023, 6, 76-87.	4.9	13
424	Targeted Protein Degradation: Clinical Advances in the Field of Oncology. International Journal of Molecular Sciences, 2022, 23, 15440.	4.1	8
425	An overview of PROTACs: a promising drug discovery paradigm. Molecular Biomedicine, 2022, 3, .	4.4	35
426	Targeted Protein Degradation: Design Considerations for PROTAC Development. Current Protocols, 2022, 2, .	2.9	6
427	Targeted protein degradation as an antiviral approach. Antiviral Research, 2023, 210, 105480.	4.1	4
428	Design, synthesis and biological evaluation of KRASG12C-PROTACs. Bioorganic and Medicinal Chemistry, 2023, 78, 117153.	3.0	7
429	Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Development Research, 2023, 84, 337-394.	2.9	6
430	A Mechanistic Pharmacodynamic Modeling Framework for the Assessment and Optimization of Proteolysis Targeting Chimeras (PROTACs). Pharmaceutics, 2023, 15, 195.	4.5	6
431	Annual review of KRAS inhibitors in 2022. European Journal of Medicinal Chemistry, 2023, 249, 115124.	5.5	15
432	Building bioorthogonal click-release capable artificial receptors on cancer cell surface for imaging, drug targeting and delivery. Acta Pharmaceutica Sinica B, 2023, 13, 2736-2746.	12.0	8
433	Integrating Protein Interaction Surface Prediction with a Fragment-Based Drug Design: Automatic Design of New Leads with Fragments on Energy Surfaces. Journal of Chemical Information and Modeling, 2023, 63, 343-353.	5.4	1
434	Exploring PROTAC Cooperativity with Coarse-Grained Alchemical Methods. Journal of Physical Chemistry B, 2023, 127, 446-455.	2.6	4
435	Discovery of novel exceptionally potent and orally active c-MET PROTACs for the treatment of tumors with MET alterations. Acta Pharmaceutica Sinica B, 2023, 13, 2715-2735.	12.0	4

#	Article	IF	CITATIONS
436	Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. Journal of the American Chemical Society, 2023, 145, 2711-2732.	13.7	8
437	A two-faced selectivity solution to target SMARCA2 for cancer therapy. Nature Communications, 2023, 14, .	12.8	1
438	Synthesis and Biological Activity of a VHL-Based PROTAC Specific for p381±. Cancers, 2023, 15, 611.	3.7	4
439	A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo. Nature Chemical Biology, 2023, 19, 703-711.	8.0	16
440	HiBiT-SpyTag: A Minimal Tag for Covalent Protein Capture and Degrader Development. ACS Chemical Biology, 2023, 18, 933-941.	3.4	5
441	Targeted protein degradation in cancers: Orthodox PROTACs and beyond. Innovation(China), 2023, 4, 100413.	9.1	4
442	Recent Advances in PROTAC-Based Antiviral Strategies. Vaccines, 2023, 11, 270.	4.4	13
443	Development of Human Carbonic Anhydrase II Heterobifunctional Degraders. Journal of Medicinal Chemistry, 2023, 66, 2789-2803.	6.4	7
444	Ternary complex dissociation kinetics contribute to mutant-selective EGFR degradation. Cell Chemical Biology, 2023, 30, 175-187.e15.	5.2	4
445	Protein degraders enter the clinic — a new approach to cancer therapy. Nature Reviews Clinical Oncology, 2023, 20, 265-278.	27.6	100
446	Advancing Strategies for Proteolysis-Targeting Chimera Design. Journal of Medicinal Chemistry, 2023, 66, 2308-2329.	6.4	17
447	Delivering on the promise of protein degraders. Nature Reviews Drug Discovery, 2023, 22, 410-427.	46.4	16
448	Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. Journal of Medicinal Chemistry, 2023, 66, 3135-3172.	6.4	6
450	Structural-based design of HD-TAC7 PROteolysis TArgeting chimeras (PROTACs) candidate transformations to abrogate SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, 2023, 41, 14566-14581.	3.5	2
451	Mapping the energy landscape of PROTAC-mediated protein-protein interactions. Computational and Structural Biotechnology Journal, 2023, 21, 1885-1892.	4.1	2
452	RAS degraders: The new frontier for RAS-driven cancers. Molecular Therapy, 2023, 31, 1904-1919.	8.2	6
453	Establishment and validation of a sensitive LC–MS/MS method for the quantification of KRAS ^{G12C} protein PROTAC molecule LCâ€2 in rat plasma and its application to <i>in vivo</i> pharmacokinetic studies of LCâ€2 PEGylated liposomes. Biomedical Chromatography, 0, , .	1.7	0
454	PROTAC-Mediated Selective Degradation of Cytosolic Soluble Epoxide Hydrolase Enhances ER Stress Reduction. ACS Chemical Biology, 2023, 18, 884-896.	3.4	1

#	Article	IF	CITATIONS
455	High Accuracy Prediction of PROTAC Complex Structures. Journal of the American Chemical Society, 2023, 145, 7123-7135.	13.7	8
456	Biophysical and Computational Approaches to Study Ternary Complexes: A â€~Cooperative Relationship' to Rationalize Targeted Protein Degradation. ChemBioChem, 2023, 24, .	2.6	8
457	Process Development for the Synthesis of BI 1702135 : A Concise Design Enabled by Selective Acylation of a 2-Aminobenzimidazole Intermediate. Organic Process Research and Development, 2023, 27, 788-797.	2.7	2
458	Proteolysis Targeting Chimera (PROTAC) as a promising novel therapeutic modality for the treatment of tripleâ€negative breast cancer (TNBC). Drug Development Research, 2023, 84, 629-653.	2.9	3
459	Bifunctional robots inducing targeted protein degradation. European Journal of Medicinal Chemistry, 2023, 255, 115384.	5.5	2
460	Targeting of SOS1: from SOS1 Activators to Proteolysis Targeting Chimeras. Current Pharmaceutical Design, 2023, 29, 1741-1746.	1.9	4
461	Lenalidomide Stabilizes Protein–Protein Complexes by Turning Labile Intermolecular H-Bonds into Robust Interactions. Journal of Medicinal Chemistry, 2023, 66, 6037-6046.	6.4	1
462	Modulation of IRAK enzymes as a therapeutic strategy against SARS-CoV-2 induced cytokine storm. Clinical and Experimental Medicine, 0, , .	3.6	0
463	New Therapeutic Chemical Modalities: Compositions, Modes-of-action, and Drug Discovery. , 2023, , 911-961.		0
465	Development and Characterization of Selective FAK Inhibitors and PROTACs with <i>In Vivo</i> Activity. ChemBioChem, 2023, 24, .	2.6	2
467	Current advances of small molecule E3 ligands for proteolysis-targeting chimeras design. European Journal of Medicinal Chemistry, 2023, 256, 115444.	5.5	7
468	PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules, 2023, 28, 4014.	3.8	8
469	Novel Medicinal Chemistry Strategies Targeting CDK5 for Drug Discovery. Journal of Medicinal Chemistry, 2023, 66, 7140-7161.	6.4	6
470	Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	13
471	PROTACs: A novel strategy for cancer drug discovery and development. MedComm, 2023, 4, .	7.2	4
472	Uncovering the Kinetic Characteristics and Degradation Preference of PROTAC Systems with Advanced Theoretical Analyses. Jacs Au, 2023, 3, 1775-1789.	7.9	1
473	Epigenetic markers and therapeutic targets for metastasis. Cancer and Metastasis Reviews, 0, , .	5.9	0
474	Physicochemical Property Determinants of Oral Absorption for PROTAC Protein Degraders. Journal of Medicinal Chemistry, 2023, 66, 8281-8287.	6.4	12

		CITATION REPORT		
#	Article		IF	CITATIONS
475	Chemically induced degradation of epigenetic targets. Chemical Society Reviews, 2023, 52	, 4313-4342.	38.1	2
476	Bioorthogonal PROTAC Prodrugs Enabled by On-Target Activation. Journal of the American Society, 2023, 145, 14155-14163.	Chemical	13.7	18
477	The rise of targeting chimeras (TACs): next-generation medicines that preempt cellular ever Medicinal Chemistry Research, 0, , .	ıts.	2.4	0
478	Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating no cell lung cancer resistance: a critical review. RSC Advances, 2023, 13, 18825-18853.	on-small	3.6	5
479	Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kin Underlying Catalytic Efficiency. Journal of Medicinal Chemistry, 2023, 66, 6239-6250.	ietics	6.4	5
480	Stimuli-activatable PROTACs for precise protein degradation and cancer therapy. Science Bo 2023, 68, 1069-1085.	ulletin,	9.0	9
481	Discovery of a Selective and Orally Bioavailable FGFR2 Degrader for Treating Gastric Cancer of Medicinal Chemistry, 2023, 66, 7438-7453.	. Journal	6.4	4
482	Exosomeâ€mediated PROTACs delivery to target viral infections. Drug Development Resear 1031-1036.	ch, 2023, 84,	2.9	10
483	Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog inhibitor-1. Nature Communications, 2023, 14, .	g pathway	12.8	1
484	Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes. Journa Medicinal Chemistry, 2023, 66, 9297-9312.	al of	6.4	15
485	Reversible Assembly of Proteolysis Targeting Chimeras. ACS Chemical Biology, 2023, 18, 15	582-1593.	3.4	3
486	Discovery and Characterization of PROTACs Targeting Tissue Transglutaminase (TG2). Journ Medicinal Chemistry, 2023, 66, 9445-9465.	nal of	6.4	1
487	MET-Targeting Anticancer Drugs—De Novo Design and Identification by Drug Repurposin 591-623.	g. , 2023, 2,		2
488	Exploitation of Proximity-Mediated Effects in Drug Discovery: An Update of Recent Research Highlights in Perturbing Pathogenic Proteins and Correlated Issues. Journal of Medicinal Cho 2023, 66, 10122-10149.	n emistry,	6.4	2
489	Central Nervous System Targeted Protein Degraders. Biomolecules, 2023, 13, 1164.		4.0	1
490	PROTAC chemical probes for histone deacetylase enzymes. RSC Chemical Biology, 2023, 4,	623-634.	4.1	1
491	Delivering on Cell‧elective Protein Degradation Using Chemically Tailored PROTACs. Che 2023, 24, .	mBioChem,	2.6	1
492	Revolutionizing viral disease treatment: PROTACs therapy could be the ultimate weapon of Journal of Medical Virology, 2023, 95, .	the future.	5.0	8

		CITATION REPORT		
#	Article		IF	CITATIONS
493	PROTAC targeting cyclophilin A controls virus-induced cytokine storm. IScience, 2023,	26, 107535.	4.1	1
495	Reevaluation of bromodomain ligands targeting <scp>BAZ2A</scp> . Protein Science, 2	023, 32, .	7.6	0
496	Elucidation of genome-wide understudied proteins targeted by PROTAC-induced degrad interpretable machine learning. PLoS Computational Biology, 2023, 19, e1010974.	lation using	3.2	0
497	<scp>PROTAC</scp> for agriculture: learning from human medicine to generate new bi weed control solutions. Pest Management Science, 2024, 80, 262-266.	otechnological	3.4	Ο
498	Targeted Strategies for Degradation of Key Transmembrane Proteins in Cancer. BioTech	ι, 2023, 12, 57.	2.6	0
499	Targeted Protein Degradation: Advances, Challenges, and Prospects for Computational Journal of Chemical Information and Modeling, 2023, 63, 5408-5432.	Methods.	5.4	3
500	The ubiquitin codes in cellular stress responses. Protein and Cell, 0, , .		11.0	5
501	Proximity-inducing modalities: the past, present, and future. Chemical Society Reviews, 5485-5515.	2023, 52,	38.1	5
502	Structural and functional annotation of solute carrier transporters: implication for drug discovery. Expert Opinion on Drug Discovery, 2023, 18, 1099-1115.		5.0	5
503	The mechanisms of multidrug resistance of breast cancer and research progress on rela agents. Bioorganic and Medicinal Chemistry, 2023, 95, 117486.	ted reversal	3.0	Ο
504	HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene Chemical Biology, 2023, , .	regulation. Cell	5.2	0
505	Discovery of SMD-3040 as a Potent and Selective SMARCA2 PROTAC Degrader with Str Antitumor Activity. Journal of Medicinal Chemistry, 2023, 66, 10761-10781.	rong <i>in vivo</i>	6.4	3
506	Expanding PROTACtable genome universe of E3 ligases. Nature Communications, 2023	, 14, .	12.8	6
507	Targeted protein degradation: A promising approach for cancer treatment. Journal of Ph Analysis, 2023, , .	harmaceutical	5.3	Ο
508	Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic t technologies. Acta Pharmaceutica Sinica B, 2023, , .	agging	12.0	0
510	Recent advances in the molecular design and applications of proteolysis targeting chim multi-specific antiviral modality. , 2023, 2, .	era-based		1
511	Proactive and reactive roles of TGF-β in cancer. Seminars in Cancer Biology, 2023, 95, 1	.20-139.	9.6	6
512	Which Small Molecule? Selecting Chemical Probes for Use in Cancer Research and Targ Cancer Discovery, 2023, 13, 2150-2165.	et Validation.	9.4	2

#	Article	IF	CITATIONS
513	Proteomic approaches advancing targeted protein degradation. Trends in Pharmacological Sciences, 2023, 44, 786-801.	8.7	6
515	The 17 th EFMC Short Course on Medicinal Chemistry on Small Molecule Protein Degraders. ChemMedChem, 2023, 18, .	3.2	2
516	Discovery of highly potent and selective KRASG12C degraders by VHL-recruiting PROTACs for the treatment of tumors with KRASG12C-Mutation. European Journal of Medicinal Chemistry, 2023, 261, 115857.	5.5	1
517	Discovery of a selective TC-PTP degrader for cancer immunotherapy. Chemical Science, 2023, 14, 12606-12614.	7.4	2
518	The next generation of EGFR inhibitors: a patenting perspective of PROTACs based EGFR degraders. Expert Opinion on Therapeutic Patents, 2023, 33, 477-492.	5.0	0
519	Regulation of eDHFR-tagged proteins with trimethoprim PROTACs. Nature Communications, 2023, 14, .	12.8	2
520	A TRIM21-based bioPROTAC highlights the therapeutic benefit of HuR degradation. Nature Communications, 2023, 14, .	12.8	1
521	Current strategic trends in drug discovery: the present as prologue. Expert Opinion on Drug Discovery, 2024, 19, 147-159.	5.0	0
522	Revolutionizing Drug Targeting Strategies: Integrating Artificial Intelligence and Structure-Based Methods in PROTAC Development. Pharmaceuticals, 2023, 16, 1649.	3.8	0
523	Integrated Direct-to-Biology Platform for the Nanoscale Synthesis and Biological Evaluation of PROTACs. Journal of Medicinal Chemistry, 2023, 66, 15437-15452.	6.4	1
524	The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Medicinal Research Reviews, 2024, 44, 632-685.	10.5	0
525	PIM1 targeted degradation prevents the emergence of chemoresistance in prostate cancer. Cell Chemical Biology, 2024, 31, 326-337.e11.	5.2	1
526	RECENT ADVANCES IN THE DISCOVERY OF CYCLIN-DEPENDENT KINASE 2 (CDK2) SELECTIVE INHIBITORS. Medicinal Chemistry Reviews, 0, , 283-311.	0.1	0
527	A high affinity pan-PI3K binding module supports selective targeted protein degradation of PI3Kα. Chemical Science, 0, , .	7.4	0
529	Targeted Protein Degradation of Histone Deacetylases by Hydrophobically Tagged Inhibitors. ACS Medicinal Chemistry Letters, 0, , .	2.8	0
530	TACâ€ŧics for Leveraging Proximity Biology in Drug Discovery. ChemBioChem, 2024, 25, .	2.6	0
531	Catalytic Protein Inhibitors. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
532	Catalytic Protein Inhibitors. Angewandte Chemie, 2024, 136, .	2.0	0

#	Article	IF	CITATIONS
533	Direct degradation and stabilization of proteins: New horizons in treatment of nonalcoholic steatohepatitis. Biochemical Pharmacology, 2024, 220, 115989.	4.4	0
534	Selective and Potent PROTAC Degraders of c-Src Kinase. ACS Chemical Biology, 0, , .	3.4	1
535	Perspectives of autophagy-tethering compounds (ATTECs) in drug discovery. , 2024, 1, 100004.		0
537	PROTACs Targeting BRM (SMARCA2) Afford Selective <i>In Vivo</i> Degradation over BRG1 (SMARCA4) and Are Active in BRG1 Mutant Xenograft Tumor Models. Journal of Medicinal Chemistry, 2024, 67, 1262-1313.	6.4	0
538	From PROTAC to TPD: Advances and Opportunities in Targeted Protein Degradation. Pharmaceuticals, 2024, 17, 100.	3.8	0
539	Drugging Protein Tyrosine Phosphatases through Targeted Protein Degradation. ChemMedChem, 2024, 19, .	3.2	0
540	Recent advances in the development of deubiquitinases inhibitors as antitumor agents. European Journal of Medicinal Chemistry, 2024, 266, 116161.	5.5	0
541	Generation of tau dephosphorylation-targeting chimeras for the treatment of Alzheimer's disease and related tauopathies. Science Bulletin, 2024, 69, 1137-1152.	9.0	0
542	Highâ€Throughput Miniaturized Synthesis of PROTAC‣ike Molecules. Small, 0, , .	10.0	0
543	Discovery and Characterization of Active CBP/EP300 Degraders Targeting the HAT Domain. ACS Medicinal Chemistry Letters, 2024, 15, 355-361.	2.8	0
544	A close-up shot of protein-protein docking, from experiment to theory and reverse with the PROTAC performers. Journal of Biomolecular Structure and Dynamics, 0, , 1-8.	3.5	0
545	Discovery and Preclinical Pharmacology of NX-2127, an Orally Bioavailable Degrader of Bruton's Tyrosine Kinase with Immunomodulatory Activity for the Treatment of Patients with B Cell Malignancies. Journal of Medicinal Chemistry, 2024, 67, 2321-2336.	6.4	0
546	Targeting SWI/SNF Complexes in Cancer: Pharmacological Approaches and Implications. Epigenomes, 2024, 8, 7.	1.8	0
547	The cyclimids: Degron-inspired cereblon binders for targeted protein degradation. Cell Chemical Biology, 2024, , .	5.2	0
549	Small molecule and PROTAC molecule experiments in vitro and in vivo, focusing on mouse PD-L1 and human PD-L1 differences as targets. Biomedicine and Pharmacotherapy, 2024, 172, 116257.	5.6	0
550	Chemical rewiring of ubiquitination by degraders and their selectivity routes. Nature Structural and Molecular Biology, 2024, 31, 205-207.	8.2	0
551	Targeted protein degradation directly engaging lysosomes or proteasomes. Chemical Society Reviews, 2024, 53, 3253-3272.	38.1	0
552	Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Molecular Cell, 2024, 84, 1304-1320.e16.	9.7	0

554	Application of PROTACs in target identification and validation. , 2024, 3, .		0
556	Optimization of Potent Ligands for the E3 Ligase DCAF15 and Evaluation of Their Use in Heterobifunctional Degraders. Journal of Medicinal Chemistry, 2024, 67, 5538-5566.	6.4	0

ARTICLE

#