O₂ Activation by Metal Surfaces: Implication Heterogeneous Catalysts

Chemical Reviews 118, 2816-2862

DOI: 10.1021/acs.chemrev.7b00217

Citation Report

#	Article	IF	CITATIONS
1	A full monolayer of superoxide: oxygen activation on the unmodified Ca ₃ Ru ₂ O ₇ (001) surface. Journal of Materials Chemistry A, 2018, 6, 5703-5713.	5.2	17
2	Oxygen reduction at platinum electrodes: The interplay between surface and surroundings properties. Current Opinion in Electrochemistry, 2018, 9, 166-172.	2.5	28
3	Liquid-phase catalysis by single-size palladium nanoclusters supported on strontium titanate: size-specific catalysts for Suzuki–Miyaura coupling. Catalysis Science and Technology, 2018, 8, 5827-5834.	2.1	6
4	Carbon Catalyzed Hydroxylation of Benzene with Dioxygen to Phenol over Surface Carbonyl Groups. ChemCatChem, 2019, 11, 1076-1085.	1.8	7
5	Quantum mechanical studies of fullâ€shell noble metal nanoclusters in water. International Journal of Quantum Chemistry, 2018, 118, e25709.	1.0	0
6	The Metal Type Governs Photocatalytic Reactive Oxygen Species Formation by Semiconductorâ€Metal Hybrid Nanoparticles. ChemCatChem, 2018, 10, 5119-5123.	1.8	15
7	Highly Efficient Acidic Oxygen Evolution Electrocatalysis Enabled by Porous Ir–Cu Nanocrystals with Three-Dimensional Electrocatalytic Surfaces. Chemistry of Materials, 2018, 30, 8571-8578.	3.2	75
8	Evaluating the Stability of Single-Atom Catalysts with High Chemical Activity. Journal of Physical Chemistry C, 2018, 122, 21919-21926.	1.5	20
9	Chemical Activity of the Peroxide/Oxide Redox Couple: Case Study of Ba ₅ Ru ₂ O ₁₁ in Aqueous and Organic Solvents. Chemistry of Materials, 2018, 30, 3882-3893.	3.2	8
10	Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. Journal of Physical Chemistry Letters, 2018, 9, 4146-4154.	2.1	67
11	Oxygen-Atom Vacancy Formation at Polyoxovanadate Clusters: Homogeneous Models for Reducible Metal Oxides. Journal of the American Chemical Society, 2018, 140, 8424-8428.	6.6	59
12	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
13	Promotion Effect of Methane Activation on Cu(111) by the Surface-Active Oxygen Species: A Combination of DFT and ReaxFF Study. Journal of Physical Chemistry C, 2018, 122, 17338-17346.	1.5	23
14	Theoretical Study of Propylene Epoxidation over Cu ₂ O(111) Surface: Activity of O ^{2–} , O [–] , and O ₂ [–] Species. Journal of Physical Chemistry C, 2018, 122, 21500-21513.	1.5	34
15	The progress of metal-free catalysts for the oxygen reduction reaction based on theoretical simulations. Journal of Materials Chemistry A, 2018, 6, 13489-13508.	5.2	82
16	Dynamic Behavior of Pd/P4VP Catalyst during the Aerobic Oxidation of 2-Propanol: A Simultaneous SAXS/XAS/MS Operando Study. ACS Catalysis, 2018, 8, 6870-6881.	5.5	13
17	Breaking the scaling relations for oxygen reduction reaction on nitrogen-doped graphene by tensile strain. Carbon, 2018, 139, 129-136.	5.4	23
18	Oxygen reduction reaction on gold in alkaline solutions – The inner or outer sphere mechanisms in the light of recent achievements. Current Opinion in Electrochemistry, 2019, 14, 180-185.	2.5	23

#	Article	IF	CITATIONS
19	Selective oxidation of CO in the presence of propylene over Ag/MCM-41 catalyst. Catalysis Today, 2019, 333, 245-250.	2.2	18
20	Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles. Catalysis Science and Technology, 2019, 9, 5173-5185.	2.1	33
21	Identification of active sites in CO oxidation over a Pd/Al ₂ O ₃ catalyst. Physical Chemistry Chemical Physics, 2019, 21, 18128-18137.	1.3	30
22	Realâ€Time Imaging of Nanoscale Redox Reactions over Bimetallic Nanoparticles. Advanced Functional Materials, 2019, 29, 1903242.	7.8	36
23	Structural and electronic feature evolution of Au-Pd bimetallic catalysts supported on graphene and SiO2 in H2 and O2. Journal of Catalysis, 2019, 376, 44-56.	3.1	6
24	Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine. Journal of Physical Chemistry Letters, 2019, 10, 3966-3971.	2.1	7
25	Chemisorption of aligned O2 on Ag(110). Journal of Chemical Physics, 2019, 151, 084702.	1.2	2
26	Adhesion Energies of Solvent Films to Pt(111) and Ni(111) Surfaces by Adsorption Calorimetry. ACS Catalysis, 2019, 9, 11819-11825.	5.5	14
27	Synergetic Photocatalytic Pure Water Splitting and Self-Supplied Oxygen Activation by 2-D WO ₃ /TiO ₂ Heterostructures. ACS Sustainable Chemistry and Engineering, 2019, 7, 19902-19909.	3.2	18
28	Engineering Surface Groups of Commercially Activated Carbon for Benzene Hydroxylation to Phenol with Dioxygen. Industrial & Engineering Chemistry Research, 2019, 58, 20226-20235.	1.8	11
29	Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts. ACS Catalysis, 2019, 9, 10727-10750.	5.5	104
31	Adsorption and Decomposition of Glycerol on Pristine and Oxygen Modified Au(111) Surfaces. Topics in Catalysis, 2019, 62, 1053-1066.	1.3	0
32	Polyoxometalate-Supported Aminocatalyst for the Photocatalytic Direct Synthesis of Imines from Alkenes and Amines. Inorganic Chemistry, 2019, 58, 12529-12533.	1.9	28
33	Improving the Oxygen Reduction Reaction Activity of FeN ₄ –Graphene via Tuning Electronic Characteristics. ACS Applied Energy Materials, 2019, 2, 6634-6641.	2.5	37
34	Atomic-Scale View of the Oxidation and Reduction of Supported Ultrathin FeO Islands. ACS Nano, 2019, 13, 11632-11641.	7.3	21
35	Lattice-Refined Transition-Metal Oxides via Ball Milling for Boosted Catalytic Oxidation Performance. ACS Applied Materials & Interfaces, 2019, 11, 36666-36675.	4.0	42
36	Catalytic activity of palladium-doped silver dilute nanoalloys for formate oxidation from a theoretical perspective. Physical Chemistry Chemical Physics, 2019, 21, 22598-22610.	1.3	44
37	What is the effect of Sn and Mo oxides on gold catalysts for selective oxidation of benzyl alcohol?. New Journal of Chemistry, 2019, 43, 2591-2599.	1.4	5

#	Article	IF	CITATIONS
38	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	5.2	128
39	Theoretical Insights into Propene Epoxidation on Au ₇ /Anatase TiO _{2–<i>x</i>} (001) Catalysts: Effect of the Interface and Reaction Atmosphere. Journal of Physical Chemistry C, 2019, 123, 3568-3578.	1.5	5
40	Simulations of interfacial processes: recent advances in force field development. Current Opinion in Chemical Engineering, 2019, 23, 138-145.	3.8	13
41	A Bimetallic Pure Inorganic Framework for Highly Efficient and Selective Photocatalytic Oxidation of Cyclohexene to 2-Cyclohexen-1-ol. Catalysis Letters, 2019, 149, 3048-3057.	1.4	3
42	Steps on Pt stereodynamically filter sticking of O ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13862-13866.	3.3	21
43	Dynamics of dissociative chemisorption of O2 on Cu(100) surface: A theoretical study. Surface Science, 2019, 688, 45-50.	0.8	7
44	Surface and morphology structure evolution of metal phosphide for designing overall water splitting electrocatalyst. Journal of Catalysis, 2019, 374, 51-59.	3.1	31
45	Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor. Journal of Hazardous Materials, 2019, 369, 611-620.	6.5	121
46	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
47	K Atom Promotion of O ₂ Chemisorption on Au(111) Surface. Journal of the American Chemical Society, 2019, 141, 4438-4444.	6.6	31
49	Mechanism of oxide-catalyzed selective oxidation: A computational perspective. Annual Reports in Computational Chemistry, 2019, 15, 287-333.	0.9	5
50	Re- and Cs-Copromoted Silver Catalysts for Ethylene Epoxidation: A Theoretical Study. Journal of Structural Chemistry, 2019, 60, 1713-1724.	0.3	6
51	Solid-to-liquid phase transitions of sub-nanometer clusters enhance chemical transformation. Nature Communications, 2019, 10, 5400.	5.8	25
52	Co ₃ O ₄ –CuCoO ₂ Nanomesh: An Interface-Enhanced Substrate that Simultaneously Promotes CO Adsorption and O ₂ Activation in H ₂ Purification. ACS Applied Materials & Interfaces, 2019, 11, 6042-6053.	4.0	55
53	The nature of electrophilic oxygen: Insights from periodic density functional theory investigations. Surface Science, 2019, 679, 188-195.	0.8	11
54	Oxygen adsorption on spontaneously reconstructed Au(511). Surface Science, 2019, 679, 296-303.	0.8	5
55	NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate. Catalysis Today, 2020, 355, 804-814.	2.2	31
56	Sustainable and Practical Access to Epoxides: Metal-Free Aerobic Epoxidation of Olefins Mediated by Peroxy Radical Generated In Situ. ACS Sustainable Chemistry and Engineering, 2020, 8, 1178-1184.	3.2	12

#	Article	IF	CITATIONS
57	Au-Ru/TiO2 prepared by deposition-precipitation with urea: Relevant synthesis parameters to obtain bimetallic particles. Applied Catalysis B: Environmental, 2020, 264, 118503.	10.8	17
58	Switching a Plasmon-Driven Reaction Mechanism from Charge Transfer to Adsorbate Electronic Excitation Using Surface Ligands. Journal of Physical Chemistry C, 2020, 124, 22711-22720.	1.5	14
59	Probing the surface chemistry for reverse water gas shift reaction on Pt(1 1 1) using ambient pressure X-ray photoelectron spectroscopy. Journal of Catalysis, 2020, 391, 123-131.	3.1	11
60	Effect of Ag on toluene oxidation over Ag supported wire-like MnO2 catalysts. Surfaces and Interfaces, 2020, 21, 100657.	1.5	8
61	Oxygen-atom vacancy formation and reactivity in polyoxovanadate clusters. Chemical Communications, 2020, 56, 13477-13490.	2.2	22
62	Solvation-Enhanced Oxygen Activation at Gold/Titania Nanocatalysts. ACS Catalysis, 2020, 10, 8530-8534.	5.5	9
63	Spin Polarization-Induced Facile Dioxygen Activation in Boron-Doped Graphitic Carbon Nitride. ACS Applied Materials & Interfaces, 2020, 12, 52741-52748.	4.0	15
64	O ₂ activation by core–shell Ru ₁₃ @Pt ₄₂ particles in comparison with Pt ₅₅ particles: a DFT study. RSC Advances, 2020, 10, 36090-36100.	1.7	3
65	Electrochemical oxygen reduction for H ₂ O ₂ production: catalysts, pH effects and mechanisms. Journal of Materials Chemistry A, 2020, 8, 24996-25016.	5.2	94
66	Combining Benzyl Alcohol Oxidation Saturation Kinetics and Hammett Studies as Mechanistic Tools for Examining Supported Metal Catalysts. ACS Catalysis, 2020, 10, 10207-10215.	5.5	25
67	DFT Calculations of the Adsorption States of O2 on OH/H2O-Covered Pt(111). Electrocatalysis, 2020, 11, 612-617.	1.5	11
68	Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nature Communications, 2020, 11, 2312.	5.8	31
69	Synthesis of Pdâ^'Rh Bimetallic Nanoparticles with Different Morphologies in Reverse Micelles and Characterization of Their Catalytic Properties. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 63-74.	0.3	3
70	Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chemical Reviews, 2020, 120, 6247-6287.	23.0	71
71	Production of H2O2 during Au/C catalyzed aerobic oxidation of 1,2-propanediol. Applied Catalysis A: General, 2020, 599, 117616.	2.2	2
72	Atypical Oxygen-Bearing Copper Boosts Ethylene Selectivity toward Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 11417-11427.	6.6	250
73	A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 2020, 10, 7495-7511.	5.5	254
74	Surface Modification for Promoting Durable, Efficient, and Selective Electrocatalysts. ChemElectroChem, 2020, 7, 2345-2363.	1.7	26

#	Article	IF	CITATIONS
75	Singleâ€Molecule Study of a Plasmonâ€Induced Reaction for a Strongly Chemisorbed Molecule. Angewandte Chemie - International Edition, 2020, 59, 7960-7966.	7.2	37
76	Metal-free activation of molecular oxygen by covalent triazine frameworks for selective aerobic oxidation. Science Advances, 2020, 6, eaaz2310.	4.7	58
77	Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024.		129
78	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	5.8	418
79	Regulating the Catalytic Dynamics Through a Crystal Structure Modulation of Bimetallic Catalyst. Advanced Energy Materials, 2020, 10, 1903225.	10.2	21
80	Singleâ€Molecule Study of a Plasmonâ€Induced Reaction for a Strongly Chemisorbed Molecule. Angewandte Chemie, 2020, 132, 8034-8040.	1.6	2
81	Developing Scaling Relationships for Molecular Electrocatalysis through Studies of Fe-Porphyrin-Catalyzed O ₂ Reduction. Accounts of Chemical Research, 2020, 53, 1056-1065.	7.6	65
82	Density Functional Theory Investigation of Oxidation Intermediates on Gold and Gold–Silver Surfaces. Journal of Physical Chemistry C, 2020, 124, 8843-8853.	1.5	9
83	Dynamics Studies of O ₂ Collision on Pt(111) Using a Global Potential Energy Surface. Journal of Physical Chemistry C, 2020, 124, 10573-10583.	1.5	7
84	Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Research, 2020, 13, 1544-1551.	5.8	89
85	The role of oxygenated species in the catalytic self-coupling of MeOH on O pre-covered Au(111). Faraday Discussions, 2021, 229, 251-266.	1.6	7
86	Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Applied Catalysis B: Environmental, 2021, 282, 119589.	10.8	74
87	Four-Electron Reduction of Dioxygen on a Metal Surface: Models of Dissociative and Associative Mechanisms in a Homogeneous System. Inorganic Chemistry, 2021, 60, 1550-1560.	1.9	1
88	Intrinsic property and catalytic performance of single and double metal atoms incorporated g-C3N4 for O2 activation: A DFT insight. Applied Surface Science, 2021, 541, 148671.	3.1	21
89	Hotâ€Electronâ€Induced Photothermal Catalysis for Energyâ€Dependent Molecular Oxygen Activation. Angewandte Chemie, 2021, 133, 4922-4928.	1.6	9
90	Hotâ€Electronâ€Induced Photothermal Catalysis for Energyâ€Dependent Molecular Oxygen Activation. Angewandte Chemie - International Edition, 2021, 60, 4872-4878.	7.2	42
91	High-Pressure Scanning Tunneling Microscopy. Chemical Reviews, 2021, 121, 962-1006.	23.0	21
92	Multilayer adsorption of methanol on platinum at low temperatures. Applied Surface Science, 2021, 535, 147717.	3.1	4

ARTICLE IF CITATIONS # Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters 93 23.0 361 with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648. Stabilization and activation of molecular oxygen at biomimetic tetrapyrroles on surfaces: from UHV 94 2.2 to near-ambient pressure. Nanoscale Advances, 2021, 3, 1319-1330. Insights into oxygen activation on metal clusters for catalyst design. Journal of Materials Chemistry 95 5.2 4 A, 2021, 9, 11726-11733. Reductive silylation of polyoxovanadate surfaces using Mashima's reagent. Inorganic Chemistry 96 3.0 Frontiers, 2021, 8, 4507-4516. Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions. 97 5.5 65 ACS Catalysis, 2021, 11, 1179-1188. Factors controlling oxophilicity and carbophilicity of transition metals and main group metals. Journal of Materials Chemistry A, 2021, 9, 22325-22333. 5.2 From nanoparticle to single-atom catalyst; electrocatalytic reduction of carbon dioxide., 2021,, 99 1 111-153. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. 100 1.3 Physical Chemistry Chemical Physics, 2021, 23, 8962-9048. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nature 101 5.8 138 Communications, 2021, 12, 1218. Interface atom mobility and charge transfer effects on CuO and Cu2O formation on Cu3Pd(111) and 1.6 Cu3Pt(111). Scientific Reports, 2021, 11, 3906. Specific adsorption of phosphate species on Ag (111) and Ag (100) electrodes and their effect at low 103 0 2.9 overpotentials of the hydrogen evolution reaction. Applied Surface Science Advances, 2021, 3, 100041. Gas-Phase Anionic Metal Clusters are Model Systems for Surface Oxidation: Kinetics of the Reactions of $\langle i \rangle M \langle i \rangle \langle sub \rangle \langle i \rangle n \langle i \rangle \langle sub \rangle \langle sup \rangle \hat{a} \in \langle sup \rangle$ with O $\langle sub \rangle 2 \langle sub \rangle (M = V, Cr, Co, Ni; \langle i \rangle n \langle i \rangle = 1 \hat{a} \in (15)$. Journal of Physical Chemistry A, 2021, 125, 2069-2076. 1.1 Elucidating the Influence of the d-Band Center on the Synthesis of Isobutanol. Catalysts, 2021, 11, 406. 105 1.6 1 Formaldehyde Oxidation over Co@N-Doped Carbon at Room Temperature: Tunable Co Size and Intensified Surface Electron Density. ACS ES&T Engineering, 2021, 1, 917-927. 3.7 14 Unveiling the Nature of Room-Temperature O₂ Activation and O₂^{•–} Enrichment on MgO-Loaded Porous Carbons with Efficient 107 5.553 H₂S Oxidation. ACS Catalysis, 2021, 11, 5974-5983. ION-EXCHANGE MODELING OF DIVALENT CATION ADSORPTION ON SWy-3 MONTMORILLONITE. Clays and Clay Minerals, 2021, 69, 167-187. Synthesis of Ag–Ni–Fe–P Multielemental Nanoparticles as Bifunctional Oxygen Reduction/Evolution 109 7.3 45 Reaction Electrocatalysts. ACS Nano, 2021, 15, 7131-7138. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen 16.1 474 peroxide. Nature Catalysis, 2021, 4, 374-384.

#	Article	IF	CITATIONS
111	Metal Oxo-Fluoride Molecules OnMF2 (M = Mn and Fe; n = 1–4) and O2MnF: Matrix Infrared Spectra and Quantum Chemistry. Inorganic Chemistry, 2021, 60, 7687-7696.	1.9	3
112	Electron donation of non-oxide supports boosts O2 activation on nano-platinum catalysts. Nature Communications, 2021, 12, 2741.	5.8	72
113	Atomically precise noble metal clusters (Ag10, Au10, Pd10 and Pt10) on alumina support: A comprehensive DFT study for oxidative catalysis. Applied Surface Science, 2021, 547, 149160.	3.1	7
114	Experimental and theoretical studies of reaction pathways of direct propylene epoxidation on model catalyst surfaces. Surface Science Reports, 2021, 76, 100524.	3.8	14
115	Spectroscopically clean Au nanoparticles for catalytic decomposition of hydrogen peroxide. Scientific Reports, 2021, 11, 9709.	1.6	6
116	Catalysis of core-shell nanoparticle M@Pt (M Co and Ni) for oxygen reduction reaction and its electronic structure in comparison to Pt nanoparticle. Journal of Catalysis, 2021, 397, 13-26.	3.1	13
117	Binding of Oxygen on Single-Atom Sites on Au/Pd(100) Alloys with High Gold Coverages. Journal of Physical Chemistry C, 2021, 125, 9715-9729.	1.5	3
119	Selective hydrogen combustion over Rh-Sn/Al2O3 catalysts during propane dehydrogenation. Korean Journal of Chemical Engineering, 2021, 38, 1197-1204.	1.2	2
120	Surface oxygen Vacancies on Reduced Co ₃ O ₄ (100): Superoxide Formation and Ultraâ€Lowâ€Temperature CO Oxidation. Angewandte Chemie - International Edition, 2021, 60, 16514-16520.	7.2	43
121	Surface oxygen Vacancies on Reduced Co ₃ O ₄ (100): Superoxide Formation and Ultraâ€Lowâ€Temperature CO Oxidation. Angewandte Chemie, 2021, 133, 16650-16656.	1.6	12
122	Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nature Communications, 2021, 12, 3375.	5.8	163
123	Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts, 2021, 11, 714.	1.6	19
124	Inhibitory effect of Zn ²⁺ on the chainâ€initiation process of cumene oxidation. International Journal of Quantum Chemistry, 2021, 121, e26780.	1.0	11
125	Effects of bromide adsorption on the direct synthesis of H2O2 on Pd nanoparticles: Formation rates, selectivities, and apparent barriers at steady-state. Journal of Catalysis, 2021, 399, 24-40.	3.1	20
126	Regeneration of Active Surface Alloys during Cyclic Oxidation and Reduction: Oxidation of H2 on Pd/Ag(111). Journal of Physical Chemistry Letters, 2021, 12, 6752-6759.	2.1	5
127	Gold Nanoclusters as Electrocatalysts: Atomic Level Understanding from Fundamentals to Applications. Chemistry of Materials, 2021, 33, 7595-7612.	3.2	36
128	Catalytic Functionalization of Hexagonal Boron Nitride for Oxidation and Epoxidation Reactions by Molecular Oxygen. Journal of Physical Chemistry C, 2021, 125, 19219-19228.	1.5	2
129	Simultaneous oxidation of toluene and ethyl acetate by dielectric barrier discharge combined with Fe, Mn and Mo catalysts. Science of the Total Environment, 2021, 782, 146931.	3.9	13

#	Article	IF	CITATIONS
130	Adjacent single-atom irons boosting molecular oxygen activation on MnO2. Nature Communications, 2021, 12, 5422.	5.8	114
131	Towards the understanding of promoting effects of Re, Cs and Cl promoters for silver catalysts of ethylene epoxidation: A computational study. Catalysis Today, 2021, 375, 585-590.	2.2	11
132	The reactivity of O2 with copper cluster anions Cuâ~ (nÂ=Â7â~20): Leveling effect of spin accommodation. Chinese Chemical Letters, 2022, 33, 995-1000.	4.8	7
133	Small-sized biomass-derived hydrothermal carbon with enriched oxygen groups quickens benzene hydroxylation to phenol with dioxygen. Applied Catalysis A: General, 2021, 626, 118356.	2.2	4
134	High-performance single-atom Ni catalyst loaded graphyne for H2O2 green synthesis in aqueous media. Journal of Colloid and Interface Science, 2021, 599, 58-67.	5.0	12
135	Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Applied Catalysis B: Environmental, 2021, 295, 120290.	10.8	52
136	First-principles study of interfacial effects toward oxygen reduction reaction of palladium/La1-xSrxCo1-yFeyO3-δ cathodes in solid oxide fuel cells. Applied Surface Science, 2021, 562, 150218.	3.1	6
137	Ultrafast dynamics of recombinative desorption of molecular oxygen from the single crystal Pd(1 1 0) surface. Chemical Physics, 2021, 551, 111332.	0.9	1
138	Oxidation kinetics of transition metals exposed to molecular and atomic oxygen. Materialia, 2021, 20, 101203.	1.3	7
139	Distinct photocatalytic charges separation pathway on CuOx modified rutile and anatase TiO2 under visible light. Applied Catalysis B: Environmental, 2022, 300, 120735.	10.8	14
140	Density Functional Theory Study of Oxygen Reduction on Graphene and Platinum Surfaces of Pt–Graphene Hybrids. ACS Applied Nano Materials, 2021, 4, 1067-1075.	2.4	11
141	Theoretical Investigation into the Key Role of Ru in the Epoxidation of Propylene over Cu ₂ O(111). Journal of Physical Chemistry C, 2020, 124, 28500-28509.	1.5	8
142	Ideal design of air electrode—A step closer toward robust rechargeable Zn–air battery. APL Materials, 2020, 8, .	2.2	27
143	Organocatalytic epoxidation and allylic oxidation of alkenes by molecular oxygen. Green Chemistry, 2021, 23, 9172-9178.	4.6	9
144	Low temperature oxidation of CO using alkali- and alkaline-earth metal-modified ceria-supported metal catalysts: a review. Bulletin of Materials Science, 2021, 44, 1.	0.8	3
145	Oxygen-Induced and pH-Induced Direct Current Artifacts on Invasive Platinum/Iridium Electrodes for Electrocorticography. Neurocritical Care, 2021, 35, 146-159.	1.2	7
146	Dissociation Mechanism of a Single O ₂ Molecule Chemisorbed on Ag(110). Journal of Physical Chemistry Letters, 2021, 12, 9868-9873.	2.1	3
148	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	7.1	66

#	Article	IF	CITATIONS
149	Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. Catalysis Reviews - Science and Engineering, 2023, 65, 239-425.	5.7	26
150	Constructing Pd/ferroelectric Bi4Ti3O12 nanoflake interfaces for O2 activation and boosting NO photo-oxidation. Applied Catalysis B: Environmental, 2022, 302, 120876.	10.8	19
151	Plasmonic O ₂ dissociation and spillover expedite selective oxidation of primary C–H bonds. Chemical Science, 2021, 12, 15308-15317.	3.7	8
152	Model Ag/CeO2 catalysts for soot combustion: Roles of silver species and catalyst stability. Chemical Engineering Journal, 2022, 430, 132802.	6.6	12
153	Achieving flexible large-scale reactivity tuning by controlling the phase, thickness and support of two-dimensional ZnO. Chemical Science, 2021, 12, 15284-15290.	3.7	3
154	Gas Sensing by Metal and Nonmetal Co-Doped Graphene on a Ni Substrate. Journal of Physical Chemistry C, 2021, 125, 24079-24095.	1.5	10
155	Technological risks and durability issues for the Proton Exchange Membrane Fuel Cell technology. , 2022, , 279-314.		1
156	Reinvestigating oxygen adsorption on Ag(111) by using strongly constrained and appropriately normed semi-local density functional with the revised Vydrov van Voorhis van der Waals force correction. Journal of Chemical Physics, 2021, 155, 234704.	1.2	6
157	BiVO ₄ Microparticles Decorated with Cu@Au Core-Shell Nanostructures for Photocatalytic H ₂ O ₂ Production. ACS Applied Nano Materials, 2021, 4, 13158-13166.	2.4	21
158	Computational and experimental insights into reactive forms of oxygen species on dynamic Ag surfaces under ethylene epoxidation conditions. Journal of Catalysis, 2022, 405, 445-461.	3.1	12
159	A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nature Communications, 2021, 12, 6806.	5.8	81
160	Activity origin of boron doped carbon cluster for thermal catalytic oxidation: Coupling effects of dopants and edges. Journal of Colloid and Interface Science, 2022, 613, 47-56.	5.0	11
161	The synergetic effect of an aqua ligand and metal site on the performance of single-atom catalysts in H2O2 synthesis: a density functional theory study. Physical Chemistry Chemical Physics, 2022, 24, 3905-3917.	1.3	1
162	Using Palladium and Gold Palladium Nanoparticles Decorated with Molybdenum Oxide for Versatile Hydrogen Peroxide Electroproduction on Graphene Nanoribbons. ACS Applied Materials & Interfaces, 2022, 14, 6777-6793.	4.0	13
163	Synergistic Effect of Coordination Fields and Hydrosolvents on the Single-Atom Catalytic Property in H ₂ O ₂ Synthesis: A Density Functional Theory Study. Journal of Physical Chemistry C, 2022, 126, 2349-2364.	1.5	9
164	Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.	1.4	2
165	Bimetallic Synergy on Iridium–Gold Catalysts for the CO Oxidation Reaction. Journal of Physical Chemistry C, 2022, 126, 1742-1750.	1.5	4
166	Effects of potassium on propylene epoxidation by molecular oxygen on Cu ₂ O (111): a DFT study. Catalysis Science and Technology, 2022, 12, 1487-1498.	2.1	2

#	Article	IF	CITATIONS
167	Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nature Communications, 2022, 13, 685.	5.8	82
168	Understanding Electrochemical Reaction Mechanisms of Precious Metals Au and Ru as Cathode Catalysts in Li-CO ₂ Batteries. SSRN Electronic Journal, 0, , .	0.4	0
169	Nickel Single Atoms Anchored on Ultrathin Carbon Nitride for Selective Hydrogen Peroxide Generation with Enhanced Photocatalytic Activity. SSRN Electronic Journal, 0, , .	0.4	0
170	Oxygen and Chlorine Dual Vacancies Enable Photocatalytic O ₂ Dissociation into Monatomic Reactive Oxygen on BiOCl for Refractory Aromatic Pollutant Removal. Environmental Science & Technology, 2022, 56, 3587-3595.	4.6	79
171	Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. Advanced Science, 2022, 9, e2106043.	5.6	36
172	Dissociation of Single O ₂ Molecules on Ag(110) by Electrons, Holes, and Localized Surface Plasmons. Chemical Record, 2022, , e202200011.	2.9	1
173	Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. Journal of the American Chemical Society, 2022, 144, 4942-4951.	6.6	67
174	Nature and Reactivity of Oxygen Species on/in Silver Catalysts during Ethylene Oxidation. ACS Catalysis, 2022, 12, 4375-4381.	5.5	17
175	Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews, 2022, 122, 8758-8808.	23.0	50
176	Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene. Nature Communications, 2022, 13, 1796.	5.8	18
177	Engineering Pt@MnOx/γ-Al2O3 catalyst with enhanced Pt-MnOx interface to boost plasma catalytic oxidation of o-xylene. Journal of Environmental Chemical Engineering, 2022, 10, 107493.	3.3	13
178	Selective detection of sub-1-ppb level isoprene using Pd-coated In2O3 thin film integrated in portable gas chromatography. Applied Surface Science, 2022, 586, 152827.	3.1	12
179	Speeding up low-temperature SCR with reactants-coupling dual catalytic sites. Chemical Engineering Journal, 2022, 440, 135832.	6.6	21
180	Insights into enhanced O3 adsorption on Ti/ anatase TiO2 (1 0 1) surfaces by positive electric Fields: A theoretical exploration. Chemical Engineering Journal, 2022, 440, 135665.	6.6	8
181	Oxidation Dynamics of Supported Catalytic Cu Clusters: Coupling to Fluxionality. ACS Catalysis, 2022, 12, 818-827.	5.5	7
182	Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: a review. Environmental Chemistry Letters, 2022, 20, 3905-3925.	8.3	17
183	Computational Study of Noble Metal CHA Zeolites: NO Adsorption and Sulfur Resistance. Journal of Physical Chemistry C, 2022, 126, 7022-7035.	1.5	5
184	Identifying Luminol Electrochemiluminescence at the Cathode via Single-Atom Catalysts Tuned Oxygen Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 7741-7749.	6.6	90

		15	0
#	ARTICLE Adsorption Structure and Reactivity of a Putative Asymmetric Molecular Conductor;	IF	CITATIONS
185	4-Isocyanophenyl Disulfide on Au(111). Journal of Physical Chemistry C, 2022, 126, 6601-6611.	1.5	3
186	Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte. Chemical Engineering Journal, 2022, 443, 136456.	6.6	11
187	Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion. Nano Research, 2022, 15, 7042-7051.	5.8	37
188	Highly Efficient Oxygen-Activated Self-Cleaning Membranes Prepared by Grafting a Metal–Organic Framework-Derived Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 20930-20942.	4.0	4
189	Synthesis of Pure Thiophene–Sulfur-Doped Graphene for an Oxygen Reduction Reaction with High Performance. Journal of Physical Chemistry Letters, 2022, 13, 4350-4356.	2.1	5
190	Adatom Bonding Sites in a Nickelâ€Fe3O4(001) Singleâ€Atom Model Catalyst and O2 Reactivity Unveiled by Surface Action Spectroscopy with Infrared Freeâ€electron Laser Light. Angewandte Chemie, 0, , .	1.6	2
191	In Situ Prepared NRCPFs as Highly Active Photo Platforms for in Situ Bond Formation Between Aryldiazonium Salts and Heteroarenes. Photochemistry and Photobiology, 2022, 98, 748-753.	1.3	11
192	Adatom Bonding Sites in a Nickelâ€Fe ₃ O ₄ (001) Singleâ€Atom Model Catalyst and O ₂ Reactivity Unveiled by Surface Action Spectroscopy with Infrared Freeâ€Electron Laser Light. Angewandte Chemie - International Edition, 2022, 61, e202202561.	7.2	6
193	Nondissociative activation of O2 for SO2 oxidation on metal-free N-doped carbocatalyst. Surface Science, 2022, 723, 122116.	0.8	1
194	Steering the Reaction Pathways of Terminal Alkynes by Introducing Oxygen Species: From C–C Coupling to C–H Activation. Journal of the American Chemical Society, 2022, 144, 10282-10290.	6.6	3
195	Reactive oxygen species on transition metal-based catalysts for sustainable environmental applications. Journal of Materials Chemistry A, 2022, 10, 19184-19210.	5.2	16
196	The Electron Transport Regulation in Carbon Dots/In ₂ O ₃ Electrocatalyst Enable 100% Selectivity for Oxygen Reduction to Hydrogen Peroxide. Advanced Functional Materials, 2022, 32, .	7.8	27
197	The Role of Steps on Silver Nanoparticles in Electrocatalytic Oxygen Reduction. Catalysts, 2022, 12, 576.	1.6	9
198	Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced photocatalytic activity. Chemical Engineering Journal, 2022, 446, 137379.	6.6	32
199	Atomic-Scale Observation of Sequential Oxidation Process on Co(0001). Journal of Physical Chemistry Letters, 2022, 13, 5131-5136.	2.1	2
200	Boosting Holes Generation and O2 Activation by Bifunctional Nicop Modified Bi4o5br2 for Efficient Photocatalytic Aerobic Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
201	Oxidation at the sub-nanoscale: oxygen adsorption on graphene-supported size-selected Ag clusters. Journal of Materials Chemistry A, 0, , .	5.2	3
202	Oxygen vacancies in a catalyst for VOCs oxidation: synthesis, characterization, and catalytic effects. Journal of Materials Chemistry A, 2022, 10, 14171-14186.	5.2	110

#	Article	IF	CITATIONS
203	Understanding the electrochemical reaction mechanisms of precious metals Au and Ru as cathode catalysts in Li–CO ₂ batteries. Journal of Materials Chemistry A, 2022, 10, 14028-14040.	5.2	10
204	Optimizing Oxygen and Intermediate HOO [*] Adsorption of Cu–Pd Alloy Cocatalyst for Boosting Photocatalytic H ₂ O ₂ Production of BiVO ₄ . Advanced Sustainable Systems, 2022, 6, .	2.7	16
205	Low-temperature aerobic oxidation of thiophenic sulfides over atomic Mo hosted by cobalt hydroxide sub-nanometer sheets. CheM, 2022, 8, 2460-2471.	5.8	26
206	Composition Engineering of Amorphous Nickel Boride Nanoarchitectures Enabling Highly Efficient Electrosynthesis of Hydrogen Peroxide. Advanced Materials, 2022, 34, .	11.1	48
207	Adsorption and Diffusion of Oxygen on Pure and Partially Oxidized Metal Surfaces in Ultrahigh Resolution. Nano Letters, 2022, 22, 5392-5400.	4.5	4
208	Temperature-resolved surface infrared spectroscopy of CO on Rh(111) and (2 × 1)-O/Rh(111). Journal o Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	of 0.9	0
209	Theoretical Study of Oxygen Adsorption on a Metal (Ni, Rh, Pd, Pt)-Doped Au(111) Surface. International Journal of Electrochemical Science, 0, , ArticleID:220717.	0.5	1
210	Enhancing Efficiency of Solvent-Free Oxidation of Aromatic Alcohols with Atmospheric Oxygen by Poss-Based Cationic Polymer Backbone Paired Heteropolyanions. SSRN Electronic Journal, 0, , .	0.4	0
211	Interstitial Atomic Bi Chargeâ€Alternating Processor Boosts Twofold Molecular Oxygen Activation Enabling Rapid Catalytic Oxidation Reactions at Room Temperature. Advanced Functional Materials, 2022, 32, .	7.8	16
212	Engineering the surface delocalized electrons facilitates the ring-opening for deep toluene oxidation. Journal of Catalysis, 2022, 413, 417-424.	3.1	6
213	Spectroscopic Evidence for the Involvement of Interfacial Sites in O–O Bond Activation over Gold Catalysts. ACS Catalysis, 2022, 12, 9549-9558.	5.5	8
214	Probing Copper and Copper–Gold Alloy Surfaces with Space-Quantized Oxygen Molecular Beam. Jacs Au, 0, , .	3.6	2
215	Adsorption and Activation of O ₂ on Small Gold Oxide Clusters: the Reactivity Dominated by Site-Specific Factors. Journal of Physical Chemistry A, 2022, 126, 5594-5603.	1.1	2
216	Oxygen-vacancy-induced O2 activation and electron-hole migration enhance photothermal catalytic toluene oxidation. Cell Reports Physical Science, 2022, 3, 101011.	2.8	62
217	A sensitive humidity sensor at low pressure with SnO2 QDs. Sensors and Actuators A: Physical, 2022, 346, 113835.	2.0	10
218	Boosting holes generation and O2 activation by bifunctional NiCoP modified Bi4O5Br2 for efficient photocatalytic aerobic oxidation. Applied Catalysis B: Environmental, 2023, 320, 121978.	10.8	30
219	Revealing the activity origin of oxygen-doped amorphous carbon material for SO2 catalytic oxidation: A descriptor considering dynamic electron transfer during O2 activation. Carbon, 2023, 201, 37-48.	5.4	11
220	Bringing the promises of microreactors and gold catalysis to lignocellulosic biomass valorization: A study on oxidative transformation of furfural. Chemical Engineering Journal, 2023, 452, 138903.	6.6	5

#	Article	IF	CITATIONS
221	Density functional theory based computational investigations on the stability of highly active trimetallic PtPdCu nanoalloys for electrochemical oxygen reduction. Faraday Discussions, 0, , .	1.6	1
222	Au ₃ -Decorated graphene as a sensing platform for O ₂ adsorption and desorption kinetics. Nanoscale, 2022, 14, 12437-12446.	2.8	2
223	Innovative green oxidation of amines to imines under atmospheric oxygen. Organic and Biomolecular Chemistry, 2022, 20, 9503-9521.	1.5	9
224	Pt nanoparticles under oxidizing conditions $\hat{a} \in $ implications of particle size, adsorption sites and oxygen coverage on stability. Nanoscale Advances, 0, , .	2.2	1
225	The role of MnO2 crystal facets in aluminothermic reaction of MnO2/nAl composite. Chemical Engineering Journal, 2023, 452, 139332.	6.6	7
226	Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. Electrochemical Energy Reviews, 2022, 5, .	13.1	24
227	Atomically dispersed scandium Lewis acid sites on carbon nitride for efficient photocatalytic hydrogen peroxide production. Science China Materials, 2023, 66, 672-678.	3.5	7
228	Activity of Ir(100) and IrO ₂ (110) for the Catalytic Oxidation of Methane. Journal of Physical Chemistry C, 2022, 126, 15156-15166.	1.5	7
229	Spin and alignment effects in O ₂ chemisorption on Fe(110), Ni(111), and Co(0001) films grown on W(110). Journal of Chemical Physics, 2022, 157, 124703.	1.2	0
230	Surface Boronizing Can Weaken the Excitonic Effects of BiOBr Nanosheets for Efficient O ₂ Activation and Selective NO Oxidation under Visible Light Irradiation. Environmental Science & Technology, 2022, 56, 14478-14486.	4.6	61
231	Surface-Dominated HfO ₂ Nanorod-Based Memristor Exhibiting Highly Linear and Symmetrical Conductance Modulation for High-Precision Neuromorphic Computing. ACS Applied Materials & Interfaces, 2022, 14, 44550-44560.	4.0	14
232	Termolecular Eley–Rideal pathway for efficient <scp>CO</scp> oxidation on phosphoreneâ€supported singleâ€atom cobalt catalyst. Bulletin of the Korean Chemical Society, 2022, 43, 1254-1261.	1.0	5
233	Edge-confined under-coordinated Cu atoms on Ru nanosheets enable efficient CH4 activation. Chem Catalysis, 2022, 2, 2118-2120.	2.9	2
234	Nonlinear Optical Responses from Au Surfaces as a Function of Temperature and Atmospheric Composition. Journal of Physical Chemistry C, 2022, 126, 17275-17282.	1.5	0
235	Electrochemical CO ₂ Reduction in the Presence of Impurities: Influences and Mitigation Strategies. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
236	Electrochemical CO ₂ Reduction in the Presence of Impurities: Influences and Mitigation Strategies. Angewandte Chemie, 2022, 134, .	1.6	2
237	Looking beyond Adsorption Energies to Understand Interactions at Surface using Machine Learning. ChemistrySelect, 2022, 7, .	0.7	1
238	Significant boosting effect of single atom Pt towards the ultrasonic generation of H2O2: A two-way catalytic mechanism. Applied Catalysis B: Environmental, 2023, 323, 122143.	10.8	9

#	Article	IF	CITATIONS
239	Enhancing efficiency of solvent-free oxidation of aromatic alcohols with atmospheric oxygen by POSS-based cationic polymer backbone paired heteropolyanions. Molecular Catalysis, 2022, 532, 112735.	1.0	3
240	Catalytic Activity of 1D Chains of Gold Oxide on a Stepped Gold Surface from Density Functional Theory. Physical Chemistry Chemical Physics, 0, , .	1.3	Ο
241	Insight into synergistic effects of oxygen and nitrogen dual-dopants in carbon catalysts on selective catalytic reduction of NOx with NH3: A combined computational and experimental verification. Chemical Engineering Journal, 2023, 454, 140098.	6.6	10
242	Ab Initio Investigation of the Adsorption and Dissociation of O2 on Cu-Skin Cu3Au(111) Surface. Catalysts, 2022, 12, 1407.	1.6	2
243	Structure and stability of Au, Au2 and Au8 cluster on Ni(111) supported h-BN sheet: Role of size and support towards oxygen bond activation. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115561.	1.3	1
244	Selective spin injection of g-SiC6 monolayer for dioxygen activation. Applied Surface Science, 2023, 613, 155911.	3.1	Ο
245	Visible-light-driven g-C3N4-doped Co catalyzed oxidation of benzylic hydroxylation of alkyl aromatic hydrocarbons. Chemical Engineering Science, 2023, 267, 118365.	1.9	3
246	Assessment of Quality Criteria of Shot Blasting Cleaning of the Inner Surfaces of Chemically Resistant Containers. Lecture Notes in Mechanical Engineering, 2023, , 98-107.	0.3	Ο
247	Lowâ€Coordinated Pd Site within Amorphous Palladium Selenide for Active, Selective, and Stable H ₂ O ₂ Electrosynthesis. Advanced Materials, 2023, 35, .	11.1	17
248	Resolving the Oxygen Species on Ozone Activated AgAu Alloy Catalysts for Oxidative Methanol Coupling. Journal of Physical Chemistry C, 2022, 126, 21568-21575.	1.5	1
249	Heterogeneous selective oxidation over supported metal catalysts: From nanoparticles to single atoms. Applied Catalysis B: Environmental, 2023, 325, 122384.	10.8	20
250	Chemical Tuning of Metal Nanocatalysts Interface for ORR Electrocatalysis. Advanced Materials Interfaces, 0, , 2202219.	1.9	1
251	Stability enhancement for silver catalyst in ethylene epoxidation by support treatment. Catalysis Communications, 2023, 178, 106669.	1.6	0
252	A Zn-based catalyst with high oxygen reduction activity and anti-poisoning property for stable seawater batteries. Journal of Chemical Physics, 2023, 158, 141101.	1.2	1
253	External oxidant-free remediation of antibiotics: Activation of oxygen molecules to generate hydroxyl radicals using Co-Fe3S4 nanoflowers. Chemical Engineering Journal, 2023, 463, 142465.	6.6	3
254	Theoretical investigation on oxygen source for selective oxidation of glycerol at Au/CeO2â^ and Pt/CeO2â^ interfaces. Fuel, 2023, 342, 127884.	3.4	4
255	Superior efficiency hydrogen peroxide production in acidic media through epoxy group adjacent to Co-O/C active centers on carbon black. Chemical Engineering Journal, 2023, 465, 142691.	6.6	3
256	Simultaneous polarization engineering and selectivity regulation achieved using polymeric carbon nitride for promoting NOx photo-oxidation. Applied Catalysis B: Environmental, 2023, 330, 122582.	10.8	5

#	Article	IF	CITATIONS
257	Promotional effects of Ag on catalytic combustion of cyclohexane over PdAg/Ti-SBA-15. Journal of Catalysis, 2023, 421, 77-87.	3.1	6
258	Direction regulation of interface carrier transfer and enhanced photocatalytic oxygen activation over Z-scheme Bi4V2O11/Ag/AgCl for water purification. Journal of Colloid and Interface Science, 2023, 641, 695-706.	5.0	5
259	Bismuth Manganese Catalysts for Soot Oxidation in Diesel Engine Exhaust: Effect of Preparation Methods on Active Oxygen Species. ChemistrySelect, 2023, 8, .	0.7	0
260	Computational screening of chemically active metal center in coordinated dipyridyl tetrazine network. Journal of Physics Condensed Matter, 2023, 35, 154001.	0.7	0
261	Metal–oxide interactions modulating the activity of active oxygen species on atomically dispersed silver catalysts. Chemical Communications, 2023, 59, 3854-3857.	2.2	1
262	Pt@TiO /TiO2 as a highly effective and stable recipe for C3H8 and C3H6 combustion. Fuel, 2023, 343, 128014.	3.4	1
263	Dualâ€Atomicâ€Site Catalysts for Molecular Oxygen Activation in Heterogeneous Thermoâ€fElectroâ€catalysis. Angewandte Chemie, 0, , .	1.6	0
264	Dualâ€Atomicâ€Site Catalysts for Molecular Oxygen Activation in Heterogeneous Thermoâ€∤Electroâ€catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
265	Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chemical Reviews, 2023, 123, 4855-4933.	23.0	62
266	Quenching-Induced Defect-Rich Platinum/Metal Oxide Catalysts Promote Catalytic Oxidation. Environmental Science & Technology, 2023, 57, 5831-5840.	4.6	9
267	Improved redox synthesis of Mn–Co bimetallic oxide catalysts using citric acid and their toluene oxidation activity. RSC Advances, 2023, 13, 11069-11080.	1.7	1
268	Heterostructure-strengthened metal-support interaction of single-atom Pd catalysts enabling efficient oxygen activation for CO and VOC oxidation. Applied Catalysis B: Environmental, 2023, 332, 122753.	10.8	6
269	Functionalized graphitic carbon nitride based catalysts in solar-to-chemical conversion for hydrogen peroxide production. Chemical Engineering Journal, 2023, 466, 142931.	6.6	7
270	Synergetic modulation of molecular oxygen activation and surface acidity/basicity on defective M/UiO-66m (M = Pt, Pd) for advanced oxidation of gaseous formaldehyde at room temperature. Applied Catalysis B: Environmental, 2023, 333, 122789.	10.8	10
279	Shape control with atomic precision: anisotropic nanoclusters of noble metals. Nanoscale Horizons, 2023, 8, 991-1013.	4.1	9
283	Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS Nano, 2023, 17, 13017-13043.	7.3	34
309	Advances in heterogeneous single-cluster catalysis. Nature Reviews Chemistry, 2023, 7, 754-767.	13.8	10
310	Metal Oxides for Future Electrochemical Energy Storage Devices: Batteries and Supercapacitors. Progress in Optical Science and Photonics, 2023, , 291-330.	0.3	Ο

#	Article	IF	CITATIONS
311	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	4.6	3
354	Application of 1D/2D carbon material supported metal nanoclusters for electrochemical conversion. Catalysis Science and Technology, 2024, 14, 1462-1479.	2.1	0