Nanomaterials derived from metal–organic framewor

Nature Reviews Materials

3,

DOI: 10.1038/natrevmats.2017.75

Citation Report

#	Article	IF	CITATIONS
1	Atomically Dispersed Metal Sites in MOFâ€Based Materials for Electrocatalytic and Photocatalytic Energy Conversion. Angewandte Chemie - International Edition, 2018, 57, 9604-9633.	7.2	452
2	Atomar dispergierte Metallzentren in Metallâ€organischen Gerüststrukturen für die elektrokatalytische und photokatalytische Energieumwandlung. Angewandte Chemie, 2018, 130, 9750-9780.	1.6	58
3	Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362, 1-23.	9.5	737
4	ZIFâ€8 with Ferrocene Encapsulated: A Promising Precursor to Singleâ€Atom Fe Embedded Nitrogenâ€Doped Carbon as Highly Efficient Catalyst for Oxygen Electroreduction. Small, 2018, 14, e1704282.	5.2	202
5	Trapping [PMo ₁₂ O ₄₀] ^{3â^'} clusters into pre-synthesized ZIF-67 toward Mo _x Co _x C particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chemical Science, 2018, 9, 4746-4755.	3.7	189
6	Ultrahigh-content nitrogen-decorated nanoporous carbon derived from metal organic frameworks and its application in supercapacitors. Electrochimica Acta, 2018, 271, 599-607.	2.6	65
7	Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Materials Horizons, 2018, 5, 394-407.	6.4	452
8	Precursorâ€Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, 10280-10290.	1.7	9
9	Quasi-MOF: Exposing Inorganic Nodes to Guest Metal Nanoparticles for Drastically Enhanced Catalytic Activity. CheM, 2018, 4, 845-856.	5.8	165
10	Metal-organic framework derived Fe/Fe3C@N-doped-carbon porous hierarchical polyhedrons as bifunctional electrocatalysts for hydrogen evolution and oxygen-reduction reactions. Journal of Colloid and Interface Science, 2018, 524, 93-101.	5.0	83
11	Roomâ€Temperature Electrochemical Conversion of Metal–Organic Frameworks into Porous Amorphous Metal Sulfides with Tailored Composition and Hydrogen Evolution Activity. Advanced Functional Materials, 2018, 28, 1707244.	7.8	112
12	Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Materials, 2018, 13, 72-79.	9.5	83
13	Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochimica Acta, 2018, 263, 85-93.	2.6	121
14	Electrooxidation of Pd–Cu NP loaded porous carbon derived from a Cu-MOF. RSC Advances, 2018, 8, 1803-1807.	1.7	15
15	Metal–Organic Framework Derived Core–Shell Co/Co ₃ O ₄ @N-C Nanocomposites as High Performance Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2018, 57, 4620-4628.	1.9	86
16	MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chemical Communications, 2018, 54, 5268-5288.	2.2	237
17	N-Doped hierarchically porous carbon derived from heterogeneous core–shell ZIF-L(Zn)@ZIF-67 for supercapacitor application. New Journal of Chemistry, 2018, 42, 6719-6726.	1.4	53
18	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na–Se batteries. Journal of Materials Chemistry A, 2018, 6, 22790-22797.	5.2	62

	CITATION REF	PORT	
#	Article	IF	CITATIONS
19	A multidimensional In ₂ S ₃ –CuInS ₂ heterostructure for photocatalytic carbon dioxide reduction. Inorganic Chemistry Frontiers, 2018, 5, 3163-3169.	3.0	67
20	Fast Dehydrogenation of Formic Acid over Palladium Nanoparticles Immobilized in Nitrogen-Doped Hierarchically Porous Carbon. ACS Catalysis, 2018, 8, 12041-12045.	5.5	158
21	Scandium-organic frameworks: progress and prospects. Russian Chemical Reviews, 2018, 87, 1139-1167.	2.5	46
22	Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23521-23530.	5.2	61
23	A Metalâ€Organicâ€Frameworkâ€Derived gâ€C ₃ N ₄ /αâ€Fe ₂ O _{3Hybrid for Enhanced Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2019, 25, 2330-2336.}	b> 1.7	38
24	Self-assembly of POSS-Containing Materials. Springer Series on Polymer and Composite Materials, 2018, , 45-128.	0.5	3
25	Metal–Organic Framework-Derived Sea-Cucumber-like FeS ₂ @C Nanorods with Outstanding Pseudocapacitive Na-Ion Storage Properties. ACS Applied Energy Materials, 2018, 1, 6234-6241.	2.5	47
26	MOF-Derived CoP _{<i>x</i>} Nanoparticles Embedded in Nitrogen-Doped Porous Carbon Polyhedrons for Nanomolar Sensing of p-Nitrophenol. ACS Applied Nano Materials, 2018, 1, 5843-5853.	2.4	62
27	Insight into Fe(Salen) Encapsulated Co-Porphyrin Framework Derived Thin Film for Efficient Oxygen Evolution Reaction. Crystal Growth and Design, 2018, 18, 7150-7157.	1.4	18
28	Hollow Porous Heterometallic Phosphide Nanocubes for Enhanced Electrochemical Water Splitting. Small, 2018, 14, e1802442.	5.2	166
29	Bimetallic Hofmann-Type Metal–Organic Framework Nanoparticles for Efficient Electrocatalysis of Oxygen Evolution Reaction. ACS Applied Energy Materials, 0, , .	2.5	22
30	MoS2 supported on MOF-derived carbon with core-shell structure as efficient electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 20538-20545.	3.8	128
31	Trimetallic Sulfide Mesoporous Nanospheres as Superior Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1801839.	10.2	101
32	Polymer Brush Decorated MOF Nanoparticles Loaded with AlEgen, Anticancer Drug, and Supramolecular Glue for Regulating and In Situ Observing DOX Release. Macromolecular Bioscience, 2018, 18, e1800317.	2.1	15
33	Superlong Single-Crystal Metal–Organic Framework Nanotubes. Journal of the American Chemical Society, 2018, 140, 15393-15401.	6.6	230
34	Two-Dimensional NiSe ₂ /N-Rich Carbon Nanocomposites Derived from Ni-Hexamine Frameworks for Superb Na-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 34193-34201.	4.0	110
35	Metal Nanoparticle-Catalyzed Hydrogen Generation from Liquid Chemical Hydrides. Bulletin of the Chemical Society of Japan, 2018, 91, 1606-1617.	2.0	40
36	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384

#	Article	IF	CITATIONS
37	An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu–C hybrid nanorod arrays for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 19176-19181.	5.2	65
38	Six Isomorphous Windowâ€Beam MOFs: Explore the Effects of Metal Ions on MOFâ€Derived Carbon for Supercapacitors. Chemistry - A European Journal, 2018, 24, 16160-16169.	1.7	40
39	Highly Nitrogenâ€Ðoped Porous Carbon Derived from Zeolitic Imidazolate Frameworkâ€8 for CO ₂ Capture. Chemistry - an Asian Journal, 2018, 13, 2069-2076.	1.7	39
40	Energy-Saving Synthesis of MOF-Derived Hierarchical and Hollow Co(VO ₃) ₂ -Co(OH) ₂ Composite Leaf Arrays for Supercapacitor Electrode Materials. ACS Applied Materials & Interfaces, 2018, 10, 18440-18444.	4.0	107
41	2D Znâ€Hexamine Coordination Frameworks and Their Derived Nâ€Rich Porous Carbon Nanosheets for Ultrafast Sodium Storage. Advanced Energy Materials, 2018, 8, 1800569.	10.2	150
42	Efficient gel route to embed phosphorus into MOF-derived porous FePx as anodes for high performance lithium-ion batteries. Energy Storage Materials, 2018, 14, 367-375.	9.5	43
43	First-principles design of bifunctional oxygen reduction and evolution catalysts through bimetallic centers in metal–organic frameworks. Catalysis Science and Technology, 2018, 8, 3666-3674.	2.1	21
44	A Polyoxometalate-Based Metal–Organic Framework-Derived FeP/MoP Hybrid Encapsulated in N/P Dual-Doped Carbon as Efficient Electrocatalyst for Hydrogen Evolution. Crystal Growth and Design, 2018, 18, 4265-4269.	1.4	29
45	Pomegranate-like molybdenum phosphide@phosphorus-doped carbon nanospheres coupled with carbon nanotubes for efficient hydrogen evolution reaction. Carbon, 2018, 139, 234-240.	5.4	55
46	From synthesis to applications: Metal–organic frameworks for an environmentally sustainable future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56.	3.2	33
47	The Development of Yolk–Shell‣tructured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability. Advanced Functional Materials, 2018, 28, 1801737.	7.8	78
48	ZIF-67 as Continuous Self-Sacrifice Template Derived NiCo ₂ O ₄ /Co,N-CNTs Nanocages as Efficient Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 10021-10029.	3.2	90
49	Kinetically controlled synthesis of MOF nanostructures: single-holed hollow core–shell ZnCoS@Co ₉ S ₈ /NC for ultra-high performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 14083-14090.	5.2	126
50	Derivatives of coordination compounds for rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 13999-14024.	5.2	58
51	Facile synthesis of metal-organic framework-derived Co3O4 with different morphologies coated graphene foam as integrated anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 768, 1049-1057.	2.8	86
52	Well-aligned metal–organic framework array-derived CoS ₂ nanosheets toward robust electrochemical water splitting. Materials Chemistry Frontiers, 2018, 2, 1732-1738.	3.2	41
53	Three-dimensionally hierarchical Co3O4/Carbon composites with high pseudocapacitance contribution for enhancing lithium storage. Electrochimica Acta, 2018, 283, 1269-1276.	2.6	34
54	Metal–Organophosphine Frameworkâ€Derived N,Pâ€Codoped Carbonâ€Confined Cu ₃ P Nanopaticles for Superb Naâ€lon Storage. Advanced Energy Materials, 2018, 8, 1801489.	10.2	92

#	Article	IF	CITATIONS
55	Thermal-exfoliated synthesis of N-rich carbon-based nanosheets from layered bulk crystals of a metal–hexamine framework. Chemical Communications, 2018, 54, 9825-9828.	2.2	24
56	Key Singleâ€Atom Electrocatalysis in Metal—Organic Framework (MOF)â€Derived Bifunctional Catalysts. ChemSusChem, 2018, 11, 3473-3479.	3.6	71
57	Metal/covalent–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 15905-15926.	5.2	258
58	Strategically Designed Zeolitic Imidazolate Frameworks for Controlling the Degree of Graphitization. Bulletin of the Chemical Society of Japan, 2018, 91, 1474-1480.	2.0	38
59	Metal–Organicâ€Frameworkâ€Derived Co ₃ S ₄ Hollow Nanoboxes for the Selective Reduction of Nitroarenes. ChemSusChem, 2018, 11, 3131-3138.	3.6	40
60	Few‣ayered WS ₂ Nanoplates Confined in Co, Nâ€Đoped Hollow Carbon Nanocages: Abundant WS ₂ Edges for Highly Sensitive Gas Sensors. Advanced Functional Materials, 2018, 28, 1802575.	7.8	93
61	MOF-Derived Cu@Cu2O Nanocatalyst for Oxygen Reduction Reaction and Cycloaddition Reaction. Nanomaterials, 2018, 8, 138.	1.9	62
62	Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR. ACS Catalysis, 2018, 8, 7879-7888.	5.5	394
63	MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors. Materials Chemistry Frontiers, 2018, 2, 1692-1699.	3.2	48
64	CoZn-ZIF-derived ZnCo ₂ O ₄ -framework for the synthesis of alcohols from glycerol. Green Chemistry, 2018, 20, 4299-4307.	4.6	25
65	Bimetallic MOFâ€Derived FeCoâ€₽/C Nanocomposites as Efficient Catalysts for Oxygen Evolution Reaction. Small Methods, 2018, 2, 1800214.	4.6	147
66	Carbon‣upported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Advanced Materials, 2018, 30, e1801995.	11.1	479
67	Hierarchically porous adamantane-shaped carbon nanoframes. Journal of Materials Chemistry A, 2018, 6, 18906-18911.	5.2	29
68	Metal–Organic Framework Nanoparticles. Advanced Materials, 2018, 30, e1800202.	11.1	539
69	Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications. ACS Applied Materials & Interfaces, 2018, 10, 20540-20549.	4.0	46
70	Exploring Feâ€N _{<i>x</i>} for Peroxide Reduction: Templateâ€Free Synthesis of Feâ€N _{<i>x</i>} Traumatized Mesoporous Carbon Nanotubes as an ORR Catalyst in Acidic and Alkaline Solutions. Chemistry - A European Journal, 2018, 24, 10630-10635.	1.7	79
71	Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Applied Surface Science, 2018, 455, 403-409.	3.1	108
72	Air and moisture stable covalently-bonded tin(<scp>ii</scp>) coordination polymers. Dalton Transactions, 2018, 47, 8013-8022.	1.6	20

#	Article	IF	CITATIONS
73	Uniformly self-decorated Co ₃ O ₄ nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal–organic framework hybrid as an oxygen evolution electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 12106-12114.	5.2	36
74	Self-template construction of nanoporous carbon nanorods from a metal–organic framework for supercapacitor electrodes. RSC Advances, 2018, 8, 20655-20660.	1.7	13
75	Lewis-Basic Lanthanide Metal-Organic Framework-Derived Versatile Multi-Active-Site Synergistic Catalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2018, 10, 22023-22030.	4.0	39
76	PVP-assisted transformation of a metal–organic framework into Co-embedded N-enriched meso/microporous carbon materials as bifunctional electrocatalysts. Chemical Communications, 2018, 54, 7519-7522.	2.2	160
77	Metal–Organic Frameworks for Energy. Advanced Energy Materials, 2019, 9, 1801307.	10.2	160
78	Core-shell materials for advanced batteries. Chemical Engineering Journal, 2019, 355, 208-237.	6.6	156
79	Recent Advances of MOFs and MOFâ€Đerived Materials in Thermally Driven Organic Transformations. Chemistry - A European Journal, 2019, 25, 2161-2178.	1.7	81
80	Inorganic Perovskite-Induced Synergy on Highly Selective Pd-Catalyzed Hydrogenation of Cinnamaldehyde. ACS Applied Materials & Interfaces, 2019, 11, 32994-33005.	4.0	26
81	Levulinic Acid Derived Reusable Cobalt-Nanoparticles-Catalyzed Sustainable Synthesis of γ-Valerolactone. ACS Sustainable Chemistry and Engineering, 2019, 7, 14756-14764.	3.2	42
82	Highly efficient removal of both cationic and anionic dyes from wastewater with a water-stable and eco-friendly Fe-MOF via host-guest encapsulation. Journal of Cleaner Production, 2019, 239, 117767.	4.6	75
83	In Situ Synthesis and Performance of Aluminum Fumarate Metal–Organic Framework Monolithic Adsorbent for Water Adsorption. Industrial & Engineering Chemistry Research, 2019, 58, 15712-15720.	1.8	19
84	Fabrication of Magnetic Pd/MOF Hollow Nanospheres with Double-Shell Structure: Toward Highly Efficient and Recyclable Nanocatalysts for Hydrogenation Reaction. ACS Applied Materials & Interfaces, 2019, 11, 32251-32260.	4.0	74
85	Core–shell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 2514-2520.	3.0	113
86	Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chemical Society Reviews, 2019, 48, 5016-5032.	18.7	178
87	Stable Iron Hydroxide Nanosheets@Cobaltâ€Metal–Organic–Framework Heterostructure for Efficient Electrocatalytic Oxygen Evolution. ChemSusChem, 2019, 12, 4623-4628.	3.6	46
88	Phosphateâ€Mediated Immobilization of Highâ€Performance AuPd Nanoparticles for Dehydrogenation of Formic Acid at Room Temperature. Advanced Functional Materials, 2019, 29, 1903341.	7.8	68
89	A Perspective on Recent Advances in 2D Stanene Nanosheets. Advanced Materials Interfaces, 2019, 6, 1900752.	1.9	54
90	Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons. ACS	5.5	52

#	Article	IF	CITATIONS
91	Sizeâ€Related Electrochemical Performance in Active Carbon Nanostructures: A MOFsâ€Derived Carbons Case Study. Advanced Science, 2019, 6, 1901517.	5.6	34
92	Effect of thermolysis condition on characteristics and nonsteroidal anti-inflammatory drugs (NSAIDs) absorbability of Fe-MIL-88B-derived mesoporous carbons. Journal of Environmental Chemical Engineering, 2019, 7, 103356.	3.3	35
93	A novel Cu-nanowire@Quasi-MOF <i>via</i> mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air. Materials Chemistry Frontiers, 2019, 3, 2363-2373.	3.2	42
94	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	6.6	68
95	Porous ceramic nanofibers as new catalysts toward heterogeneous reactions. Composites Communications, 2019, 15, 168-178.	3.3	39
96	Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. Journal of Materials Chemistry A, 2019, 7, 18499-18509.	5.2	64
97	Yolk-shell-structured zinc-cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage. Nano Energy, 2019, 64, 103899.	8.2	93
98	Nitrogen-doped porous carbon-based fluorescence sensor for the detection of ZIKV RNA sequences: fluorescence image analysis. Talanta, 2019, 205, 120091.	2.9	21
99	A strategy of two-step tandem catalysis towards direct N-alkylation of nitroarenes with ethanol via facile fabricated novel Co-based catalysts derived from coordination polymers. Journal of Catalysis, 2019, 376, 106-118.	3.1	18
100	Nitrogen-doped porous carbon sponge-confined ZnO quantum dots for metal collector-free lithium ion battery. Journal of Electroanalytical Chemistry, 2019, 848, 113275.	1.9	10
101	Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties. ACS Nano, 2019, 13, 7800-7810.	7.3	143
102	Metal-Organic Framework Composites for Catalysis. Matter, 2019, 1, 57-89.	5.0	308
103	Novel ZnCdS Quantum Dots Engineering for Enhanced Visible-Light-Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 13805-13814.	3.2	66
104	MOF-Derived Isolated Fe Atoms Implanted in N-Doped 3D Hierarchical Carbon as an Efficient ORR Electrocatalyst in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2019, 11, 25976-25985.	4.0	196
105	ZIF-67 Derived Hollow Structured Co3O4 Nanocatalysts: Tunable Synthetic Strategy Induced Enhanced Catalytic Performance. Catalysis Letters, 2019, 149, 3058-3065.	1.4	12
106	Microâ€Blooming: Hierarchically Porous Nitrogenâ€Đoped Carbon Flowers Derived from Metalâ€Organic Mesocrystals. Small, 2019, 15, e1901986.	5.2	40
107	High stability of ultra-small and isolated gold nanoparticles in metal–organic framework materials. Journal of Materials Chemistry A, 2019, 7, 17536-17546.	5.2	41
108	Heterogeneously Chemo/Enzyme-Functionalized Porous Polymeric Catalysts of High-Performance for Efficient Biodiesel Production. ACS Catalysis, 2019, 9, 10990-11029.	5.5	88

	CITATION	Report	
#	Article	IF	CITATIONS
109	Facile Exfoliation of Singleâ€Crystalline Copper Alkylphosphates to Singleâ€Layer Nanosheets and Enhanced Supercapacitance. Angewandte Chemie - International Edition, 2019, 58, 16844-16849.	7.2	18
110	Co/Co ₃ O ₄ Nanoparticles Coupled with Hollow Nanoporous Carbon Polyhedrons for the Enhanced Electrochemical Sensing of Acetaminophen. ACS Sustainable Chemistry and Engineering, 2019, 7, 18582-18592.	3.2	62
111	MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors. Electrochimica Acta, 2019, 328, 135103.	2.6	86
112	Two-dimensional transition-metal dichalcogenides for electrochemical hydrogen evolution reaction. FlatChem, 2019, 18, 100140.	2.8	39
113	Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1964-1988.	5.2	165
114	A New Threeâ€dimensional Metalâ€organic Framework based on Dinuclear Rare Earth Cluster and Olsalazine. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1267-1270.	0.6	8
115	Ag2S decorated nanocubes with enhanced near-infrared photothermal and photodynamic properties for rapid sterilization. Colloids and Interface Science Communications, 2019, 33, 100201.	2.0	44
116	Redox Tuning in Crystalline and Electronic Structure of Bimetal–Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance. Advanced Materials, 2019, 31, e1905744.	11.1	158
117	Facile Exfoliation of Singleâ€Crystalline Copper Alkylphosphates to Single‣ayer Nanosheets and Enhanced Supercapacitance. Angewandte Chemie, 2019, 131, 17000-17005.	1.6	6
118	Subnano Amorphous Fe-Based Clusters with High Mass Activity for Efficient Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 41432-41439.	4.0	18
119	General Synthesis of Mixed Semiconducting Metal Oxide Hollow Spheres with Tunable Compositions for Low-Temperature Chemiresistive Sensing. ACS Applied Materials & Interfaces, 2019, 11, 35060-35067.	4.0	29
120	Ordered Macro–Microporous Metal–Organic Framework Single Crystals and Their Derivatives for Rechargeable Aluminum-Ion Batteries. Journal of the American Chemical Society, 2019, 141, 14764-14771.	6.6	226
121	Sb ₂ S ₃ Nanoparticles Anchored or Encapsulated by the Sulfur-Doped Carbon Sheet for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 33966-33977.	4.0	44
122	MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochimica Acta, 2019, 323, 134826.	2.6	154
123	Tuning Protein Frameworks via Auxiliary Supramolecular Interactions. ACS Nano, 2019, 13, 10343-10350.	7.3	40
124	Solvothermal synthesis of CuCoO ₂ nanoplates using zeolitic imidazolate framework-67 (ZIF-67) as a co-derived precursor. New Journal of Chemistry, 2019, 43, 15233-15239.	1.4	18
125	Controllable synthesis of polyhedral Au@Co3O4 electrode for high performance supercapacitors. Materials Letters, 2019, 255, 126534.	1.3	15
126	Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors. Nanoscale, 2019, 11, 2492-2500.	2.8	62

#	Article	IF	Citations
127	TiO ₂ and Co Nanoparticleâ€Decorated Carbon Polyhedra as Efficient Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Small, 2019, 15, e1804533.	5.2	67
128	Nitrogen and oxygen dual-doped porous carbon derived from natural ficus microcarpas as host for high performance lithium-sulfur batteries. Materials Research Bulletin, 2019, 113, 70-76.	2.7	26
129	Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control. Molecular Systems Design and Engineering, 2019, 4, 49-64.	1.7	30
130	From ZIF nanoparticles to hierarchically porous carbon: toward very high surface area and high-performance supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2019, 6, 32-39.	3.0	14
131	Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks. Journal of Materials Chemistry A, 2019, 7, 647-656.	5.2	43
132	A 2D metal–organic framework/Ni(OH) ₂ heterostructure for an enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 3599-3605.	2.8	131
133	An efficient carbon-based ORR catalyst from low-temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. Journal of Materials Chemistry A, 2019, 7, 3544-3551.	5.2	112
134	Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4259-4290.	5.2	249
135	Polydopamine-assisted construction of cobalt phosphide encapsulated in N-doped carbon porous polyhedrons for enhanced overall water splitting. Carbon, 2019, 145, 694-700.	5.4	82
136	Facile synthesis of MOF-derived hollow NiO microspheres integrated with graphene foam for improved lithium-storage properties. Journal of Alloys and Compounds, 2019, 784, 869-876.	2.8	76
137	New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts, 2019, 9, 133.	1.6	56
138	Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. CheM, 2019, 5, 786-804.	5.8	555
139	Flexible, Porous, and Metal–Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery. Nano-Micro Letters, 2019, 11, 8.	14.4	76
140	Unraveling the relationship between the morphologies of metal–organic frameworks and the properties of their derived carbon materials. Dalton Transactions, 2019, 48, 7211-7217.	1.6	23
141	Multi-layered zeolitic imidazolate framework based self-templated synthesis of nitrogen-doped hollow porous carbon dodecahedrons as robust substrates for supercapacitors. New Journal of Chemistry, 2019, 43, 2171-2178.	1.4	15
142	Lowâ€Dimensional Metalâ€Organic Frameworks and their Diverse Functional Roles in Catalysis. ChemCatChem, 2019, 11, 3138-3165.	1.8	22
143	A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€Ion Batteries. Advanced Science, 2019, 6, 1900162.	5.6	90
144	Synergistic effect of metal-organic framework-derived boron and nitrogen heteroatom-doped three-dimensional porous carbons for precious-metal-free catalytic reduction of nitroarenes. Applied Catalysis B: Environmental, 2019, 257, 117888.	10.8	96

#	Article	IF	Citations
145	Iron-based nanoparticles embedded in a graphitic layer of carbon architectures as stable heterogeneous Friedel–Crafts acylation catalysts. Catalysis Science and Technology, 2019, 9, 3812-3819.	2.1	13
146	Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Applied Catalysis B: Environmental, 2019, 257, 117855.	10.8	244
147	Amorphous (Fe)Ni-MOF-derived hollow (bi)metal/oxide@N-graphene polyhedron as effectively bifunctional catalysts in overall alkaline water splitting. Electrochimica Acta, 2019, 318, 430-439.	2.6	55
148	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	5.2	47
149	Hollow-Structural Ag/Co ₃ O ₄ Nanocatalyst for CO Oxidation: Interfacial Synergistic Effect. ACS Applied Nano Materials, 2019, 2, 3480-3489.	2.4	60
150	Cooperation in Cu-MOF-74-Derived Cu–Cu2O–C Nanocomposites To Enable Efficient Visible-Light-Initiated Phenylacetylene Coupling. Inorganic Chemistry, 2019, 58, 7997-8002.	1.9	40
151	MOF confined in macroporous-mesoporous-TiO2 for light-boosting electrocatalytical oxygen production. Materials Today Energy, 2019, 13, 125-133.	2.5	15
152	A dual metal organic framework based on copper-iron clusters integrated sulphur doped graphene as a porous material for supercapacitor with remarkable performance characteristics. Journal of Colloid and Interface Science, 2019, 553, 328-340.	5.0	37
153	Synthesis of Cu2O microspheres with hollow and solid morphologies and their gas sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113564.	1.3	22
154	Metal-Organic Frameworks for Chemiresistive Sensors. CheM, 2019, 5, 1938-1963.	5.8	419
155	Ammonia borane dehydrogenation and selective hydrogenation of functionalized nitroarene over a porous nickel–cobalt bimetallic catalyst. RSC Advances, 2019, 9, 14580-14585.	1.7	22
156	Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176, 108488.	3.7	167
157	Hollow carbon polyhedra derived from room temperature synthesized iron-based metal-organic frameworks for supercapacitors. Journal of Power Sources, 2019, 429, 9-16.	4.0	28
158	Ultralong Cycle Life Li–O ₂ Battery Enabled by a MOF-Derived Ruthenium–Carbon Composite Catalyst with a Durable Regenerative Surface. ACS Applied Materials & Interfaces, 2019, 11, 20091-20097.	4.0	46
159	Deciphering the Relations between Pore Structure and Adsorption Behavior in Metal–Organic Frameworks: Unexpected Lessons from Argon Adsorption on Copper–Benzene-1,3,5-tricarboxylate. Journal of the American Chemical Society, 2019, 141, 8397-8401.	6.6	30
160	Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications. Methods in Microbiology, 2019, 46, 227-254.	0.4	35
161	Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture. Chemical Engineering Journal, 2019, 372, 1028-1037.	6.6	41
162	Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Materials, 2019, 23, 757-771.	9.5	100

#	Article	IF	CITATIONS
163	Structural Engineering of Lowâ€Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Advanced Science, 2019, 6, 1802373.	5.6	214
164	Removal of La(III) ions from aqueous solution by Lanthanide MOF; characterization, synthesizing and process conditions study. Environmental Nanotechnology, Monitoring and Management, 2019, 12, 100216.	1.7	8
165	Metalâ€Organicâ€Frameworkâ€Derived Nitrogenâ€Doped Hybrid Nickelâ€Ironâ€5ulfide Architectures on Carbon Cloth as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2741-2747.	1.7	20
166	Microwave-assisted hydrothermal synthesis of MOFs-derived bimetallic CuCo-N/C electrocatalyst for efficient oxygen reduction reaction. Journal of Alloys and Compounds, 2019, 795, 462-470.	2.8	31
167	Fabrication of a Spherical Superstructure of Carbon Nanorods. Advanced Materials, 2019, 31, e1900440.	11.1	116
168	A Single-Crystal Open-Capsule Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7906-7916.	6.6	179
169	Structuring Ru nanoparticles on magnetic nitrogen doped carbon induces excellent photocatalytic activity for oxidation of alcohols under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 159-170.	2.0	13
170	Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coordination Chemistry Reviews, 2019, 391, 69-89.	9.5	58
171	Capture and "self-release―of circulating tumor cells using metal–organic framework materials. Nanoscale, 2019, 11, 8293-8303.	2.8	25
172	Creating Coordination Mismatch in MOFs: Tuning from Pore Structure of the Derived Supported Catalysts to Their Catalytic Performance. Industrial & Engineering Chemistry Research, 2019, 58, 5543-5551.	1.8	26
173	Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs. Applied Catalysis B: Environmental, 2019, 250, 337-346.	10.8	113
174	Tailoring three-dimensional porous cobalt phosphides templated from bimetallic metal–organic frameworks as precious metal-free catalysts towards the dehydrogenation of ammonia-borane. Journal of Materials Chemistry A, 2019, 7, 8277-8283.	5.2	36
175	Plasma modification of a Ni based metal–organic framework for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8129-8135.	5.2	32
176	Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coordination Chemistry Reviews, 2019, 388, 293-309.	9.5	104
177	Bi-metal–organic frameworks type II heterostructures for enhanced photocatalytic styrene oxidation. Nanoscale, 2019, 11, 7554-7559.	2.8	28
178	Rapid, Roomâ€Temperature and Templateâ€Free Synthesis of Metalâ€Organic Framework Nanowires in Alcohol. ChemCatChem, 2019, 11, 2058-2062.	1.8	16
179	Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicalsâ€Based Advanced Oxidation Process in Water Purification. Small, 2019, 15, e1900744.	5.2	170
180	Template strategies with MOFs. Coordination Chemistry Reviews, 2019, 387, 415-435.	9.5	260

#	Article	IF	CITATIONS
181	Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews, 2019, 388, 63-78.	9.5	235
182	Trimetallic signal amplification aptasensor for TSP-1 detection based on Ce-MOF@Au and AuPtRu nanocomposites. Biosensors and Bioelectronics, 2019, 132, 302-309.	5.3	33
183	Construction of Highâ€Nuclear Cu x S y Nanocrystalline Catalyst from Highâ€Nuclear Copper Cluster. ChemistrySelect, 2019, 4, 3459-3464.	0.7	0
184	Metalâ^'organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. Journal of Hazardous Materials, 2019, 373, 367-376.	6.5	202
185	Oriented Transformation of Co‣DH into 2D/3D ZIFâ€67 to Achieve Co–N–C Hybrids for Efficient Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803918.	10.2	260
186	Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordination Chemistry Reviews, 2019, 388, 172-201.	9.5	192
187	Metal–Organic Framework (MOF)â€Derived Carbonâ€Mediated Interfacial Reaction for the Synthesis of CeO ₂ â^'MnO ₂ Catalysts. Chemistry - A European Journal, 2019, 25, 6621-6627.	1.7	25
188	Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 388, 268-292.	9.5	242
189	Metal–Organic Coordination Strategy for Obtaining Metalâ€Decorated Moâ€Based Complexes: Multiâ€dimensional Structural Evolution and Highâ€Rate Lithiumâ€Ion Battery Applications. Chemistry - A European Journal, 2019, 25, 8813-8819.	1.7	16
190	Zeolitic imidazolate framework-derived Co ₃ S ₄ @Co(OH) ₂ nanoarrays as self-supported electrodes for asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 1398-1404.	3.0	57
191	A novel route for the generation of Co/CoZn/CoNi layered double hydroxides at ambient temperature. Inorganic Chemistry Frontiers, 2019, 6, 1415-1421.	3.0	12
192	Hierarchically Porous Carbons Derived from Metal–Organic Framework/Chitosan Composites for Highâ€Performance Supercapacitors. Chemistry - an Asian Journal, 2019, 14, 3583-3589.	1.7	19
193	Metastable iron(iii) oxide polymorphs derived from Fe/Mn bimetallic coordination polymer particles in confined space: SiO2 shell effect on crystal phase transition. CrystEngComm, 2019, 21, 2849-2853.	1.3	4
194	Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: Electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosensors and Bioelectronics, 2019, 135, 22-29.	5.3	160
195	Solvent-Free Synthesis of ZIFs: A Route toward the Elusive Fe(II) Analogue of ZIF-8. Journal of the American Chemical Society, 2019, 141, 7173-7180.	6.6	76
196	Synthesis of metal-organic framework-derived cobalt disulfide with high-performance oxygen reduction reaction catalytic properties. Journal of Electroanalytical Chemistry, 2019, 840, 27-34.	1.9	19
197	A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11143-11149.	5.2	59
198	Synergistic Coupling of Anionic Ligands To Optimize the Electronic and Catalytic Properties of Metal–Organic Framework-Converted Oxygen-Evolving Catalysts. ACS Applied Energy Materials, 2019, 2, 2138-2148.	2.5	31

#	Article	IF	CITATIONS
199	Chemical Approaches to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1804863.	11.1	90
200	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	11.1	370
201	Copper-Based SURMOFs for Nitric Oxide Generation: Hemocompatibility, Vascular Cell Growth, and Tissue Response. ACS Applied Materials & amp; Interfaces, 2019, 11, 7872-7883.	4.0	42
202	Hollow Multiâ€Shelled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 5266-5271.	7.2	102
203	<i>In situ</i> synthesized low-PtCo@porous carbon catalyst for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 6543-6551.	5.2	59
204	Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Research, 2019, 12, 1267-1278.	5.8	30
205	Progress and challenges of graphene oxide/metal-organic composites. Coordination Chemistry Reviews, 2019, 387, 262-272.	9.5	99
206	Rational shape control of porous Co3O4 assemblies derived from MOF and their structural effects on n-butanol sensing. Journal of Hazardous Materials, 2019, 371, 352-361.	6.5	96
207	Nanoscale Laser Metallurgy and Patterning in Air Using MOFs. Journal of the American Chemical Society, 2019, 141, 5481-5489.	6.6	61
208	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	9.5	298
209	Metal–Organic Framework (MOF)â€Derived Nanoporous Carbon Materials. Chemistry - an Asian Journal, 2019, 14, 1331-1343.	1.7	123
210	Hollow Multi‧helled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie, 2019, 131, 5320-5325.	1.6	15
211	Two-Dimensional Excitonic Metal–Organic Framework: Design, Synthesis, Regulation, and Properties. Inorganic Chemistry, 2019, 58, 3145-3155.	1.9	17
212	Reusable Nickel Nanoparticles atalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie - International Edition, 2019, 58, 5064-5068.	7.2	94
213	Reusable Nickel Nanoparticles atalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie, 2019, 131, 5118-5122.	1.6	32
214	Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization and energy-related applications. Nano Today, 2019, 29, 100796.	6.2	64
215	Single crystal polyoxoniobate derived NbO/Cu nanocrystalline@N-doped carbon loaded onto reduced graphene oxide enabling high rate and high capacity Li/Na storage. Journal of Materials Chemistry A, 2019, 7, 26513-26523.	5.2	10
216	Single atom electrocatalysts supported on graphene or graphene-like carbons. Chemical Society Reviews, 2019, 48, 5207-5241.	18.7	441

#	Article	IF	CITATIONS
217	Manganese oxides with hierarchical structures derived from coordination polymers and their enhanced catalytic activity at low temperature for selective catalytic reduction of NO _x . Dalton Transactions, 2019, 48, 16395-16401.	1.6	7
218	A dual factor activated metal–organic framework hybrid nanoplatform for photoacoustic imaging and synergetic photo-chemotherapy. Nanoscale, 2019, 11, 20630-20637.	2.8	39
219	Metal–organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production. Inorganic Chemistry Frontiers, 2019, 6, 3456-3467.	3.0	92
220	Electronically conductive metal–organic framework-based materials. APL Materials, 2019, 7, .	2.2	66
221	Designing of Ultrafine PdNPs Immobilized Pyridinic‫i>NDoped Carbon and Evaluation of its Catalytic Potential for Konevenagel Condensation, Synthesis of 4 <i>H‫/i>pyran Derivatives and Nitroreduction. ChemistrySelect, 2019, 4, 12689-12700.</i>	0.7	12
222	Appraisal of Cu(<scp>ii</scp>) adsorption by graphene oxide and its modelling <i>via</i> artificial neural network. RSC Advances, 2019, 9, 30240-30248.	1.7	15
223	Porous N-Doped Carbon-Encapsulated CoNi Alloy Nanoparticles Derived from MOFs as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2019, 11, 1957-1968.	4.0	118
224	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
225	Metal–Organic Gelâ€Đerived Fe <i>_x</i> O <i>_y</i> /Nitrogenâ€Đoped Carbon Films for Enhanced Lithium Storage. Small, 2019, 15, e1804058.	5.2	31
226	Porous nitrogen/halogen dual-doped nanocarbons derived from imidazolium functionalized cationic metal-organic frameworks for highly efficient oxygen reduction reaction. Science China Materials, 2019, 62, 671-680.	3.5	30
227	In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen. Chemical Engineering Journal, 2019, 359, 254-264.	6.6	157
228	In situ derived Ni2P/Ni encapsulated in carbon/g-C3N4 hybrids from metal–organic frameworks/g-C3N4 for efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 72-81.	10.8	130
229	SiO ₂ -Encompassed Co@N-Doped Porous Carbon Assemblies as Recyclable Catalysts for Efficient Hydrolysis of Ammonia Borane. Langmuir, 2019, 35, 671-677.	1.6	40
230	Highly Active Cobalt/Tungsten Carbide@Nâ€Doped Porous Carbon Nanomaterials Derived from Metalâ€Organic Frameworks as Bifunctional Catalysts for Overall Water Splitting. Energy Technology, 2019, 7, 1800969.	1.8	40
231	Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. Journal of Energy Storage, 2019, 21, 632-646.	3.9	271
232	Encoding Metal–Cation Arrangements in Metal–Organic Frameworks for Programming the Composition of Electrocatalytically Active Multimetal Oxides. Journal of the American Chemical Society, 2019, 141, 1766-1774.	6.6	32
233	Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting. Carbon, 2019, 145, 201-208.	5.4	70
234	Nanosheet-like Co ₃ (OH) ₂ (HPO ₄) ₂ as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3083-3091.	3.2	39

#	Article	IF	CITATIONS
235	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	7.1	104
236	Structure regulation of amino acids derived nitrogen doped porous carbon nanosheet through facile solid state assembly method. Microporous and Mesoporous Materials, 2019, 277, 36-44.	2.2	9
237	Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Materials, 2019, 21, 97-106.	9.5	128
238	Synthesis of the crystalline porous copper oxide architectures derived from metal-organic framework for electrocatalytic oxidation and sensitive detection of glucose. Journal of Industrial and Engineering Chemistry, 2019, 70, 330-337.	2.9	25
239	MOF-derived carbonaceous materials enriched with nitrogen: Preparation and applications in adsorption and catalysis. Materials Today, 2019, 25, 88-111.	8.3	180
240	Enhanced ethanol gas-sensing property based on hollow MoO3 microcages. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 106, 170-175.	1.3	34
241	NiTe2/N-doped graphitic carbon nanosheets derived from Ni-hexamine coordination frameworks for Na-ion storage. Chemical Engineering Journal, 2019, 359, 1659-1667.	6.6	58
242	Gram-Scale Preparation of 2D Transition Metal Hydroxide/Oxide Assembled Structures for Oxygen Evolution and Zn-Air Battery. ACS Applied Energy Materials, 2019, 2, 579-586.	2.5	32
243	Semisacrificial Template Growth of Selfâ€6upporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Advanced Functional Materials, 2019, 29, 1807418.	7.8	224
244	Puffing Up Energetic Metal–Organic Frameworks to Large Carbon Networks with Hierarchical Porosity and Atomically Dispersed Metal Sites. Angewandte Chemie, 2019, 131, 1997-2001.	1.6	64
245	Puffing Up Energetic Metal–Organic Frameworks to Large Carbon Networks with Hierarchical Porosity and Atomically Dispersed Metal Sites. Angewandte Chemie - International Edition, 2019, 58, 1975-1979.	7.2	237
246	Improving CO2 electroreduction over ZIF-derived carbon doped with Fe-N sites by an additional ammonia treatment. Catalysis Today, 2019, 330, 252-258.	2.2	35
247	Synthesis, Crystal Structures, and Photocatalytic Activity of Two Nickel(II) Coordination Polymers with Flexible Bis(benzimidazol-1-yl)alkane and Polycarboxylate Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1099-1109.	1.9	2
248	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
249	Investigating the Impact of Ultrasonic Irradiation Power, Concentrations of Reactant, and Reaction Period on Morphology of Novel Nano Hg(II) Metal–Organic Coordination Polymer. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1090-1098.	1.9	1
250	Metal-organic-framework-derived formation of Co–N-doped carbon materials for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2020, 40, 137-143.	7.1	74
251	An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for Allâ€pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution. Small, 2020, 16, e1900550.	5.2	132
252	Hierarchical bimetal embedded in carbon nanoflower electrocatalysts derived from metal-organic frameworks for efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 813, 152192.	2.8	27

#	Article	IF	CITATIONS
253	Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance. Chemical Engineering Journal, 2020, 382, 122996.	6.6	84
254	New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. CheM, 2020, 6, 19-40.	5.8	511
255	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 4662-4678.	1.6	114
256	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 4634-4650.	7.2	457
257	Production of Hydrogen Peroxide by Photocatalytic Processes. Angewandte Chemie - International Edition, 2020, 59, 17356-17376.	7.2	615
258	Metalâ€Organic Frameworkâ€Templated Hollow Co ₃ O ₄ /C with Controllable Oxygen Vacancies for Efficient Oxygen Evolution Reaction. ChemNanoMat, 2020, 6, 107-112.	1.5	13
259	Structure-induced hollow Co3O4 nanoparticles with rich oxygen vacancies for efficient CO oxidation. Science China Materials, 2020, 63, 267-275.	3.5	18
260	A turn-on fluorescence probe Eu3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine. Talanta, 2020, 208, 120438.	2.9	69
261	2D Nanomaterials for Cancer Theranostic Applications. Advanced Materials, 2020, 32, e1902333.	11.1	375
262	Luminescent Pr(III)-Based Coordination Polymer: Syntheses, Structures, N2 and CO2 Adsorption Properties. Journal of Cluster Science, 2020, 31, 513-522.	1.7	0
263	Heteroatom doping modified hierarchical mesoporous carbon derived from ZIF-8 for capacitive deionization with enhanced salt removal rate. Separation and Purification Technology, 2020, 231, 115918.	3.9	30
264	Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases. Chemical Engineering Journal, 2020, 381, 122623.	6.6	79
265	Activatable Phototheranostic Materials for Imaging-Guided Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 5286-5299.	4.0	75
266	Integrated 3D foam-like porous Ni3S2 as improved deposition support for high-performance Li–O2 battery. Journal of Power Sources, 2020, 448, 227397.	4.0	16
267	Zeolitic imidazolate frameworks and their derived materials for sequestration of radionuclides in the environment: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 1874-1934.	6.6	33
268	Bimetallic nanoparticles decorated hollow nanoporous carbon framework as nanozyme biosensor for highly sensitive electrochemical sensing of uric acid. Biosensors and Bioelectronics, 2020, 150, 111869.	5.3	82
269	Metal-organic frameworks for electrochemical energy conversion: status and challenges. Science China Chemistry, 2020, 63, 7-10.	4.2	21
270	Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 816, 152684.	2.8	24

#	Article	IF	CITATIONS
271	Produktion von Wasserstoffperoxid durch photokatalytische Prozesse. Angewandte Chemie, 2020, 132, 17508-17529.	1.6	29
272	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 5886-5892.	1.6	16
273	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5837-5843.	7.2	99
274	Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020, 16, e1906133.	5.2	328
275	Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 3539-3546.	4.0	39
276	MOF-derived nanostructured catalysts for low-temperature ammonia synthesis. Catalysis Science and Technology, 2020, 10, 105-112.	2.1	13
277	Spatially confined electrochemical conversion of metal–organic frameworks into metal-sulfides and their <i>in situ</i> electrocatalytic investigation <i>via</i> scanning electrochemical microscopy. Chemical Science, 2020, 11, 180-185.	3.7	32
278	Zirconium metal–organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for <i>in situ</i> confinement of metal nanoparticles. Chemical Science, 2020, 11, 1918-1925.	3.7	43
279	Relating structural disorder and melting in complex mixed ligand zeolitic imidazolate framework glasses. Dalton Transactions, 2020, 49, 850-857.	1.6	25
280	Microflowers Comprised of Cu/Cu _{<i>x</i>} O/NC Nanosheets as Electrocatalysts and Horseradish Peroxidase Mimics. ACS Applied Nano Materials, 2020, 3, 617-623.	2.4	30
281	Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. Nano Energy, 2020, 67, 104288.	8.2	93
282	Cube-shaped metal-nitrogen–carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction. Carbon, 2020, 158, 719-727.	5.4	27
283	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	5.2	170
284	Surface modulation of inorganic layer via soft plasma electrolysis for optimizing chemical stability and catalytic activity. Chemical Engineering Journal, 2020, 391, 123614.	6.6	16
285	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie, 2020, 132, 2082-2086.	1.6	70
286	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 2705-2709.	7.2	404
287	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	5.2	120
288	Promoting desert biocrust formation using aquatic cyanobacteria with the aid of MOF-based nanocomposite. Science of the Total Environment, 2020, 708, 134824.	3.9	13

#	Article	IF	Citations
289	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie - International Edition, 2020, 59, 2066-2070.	7.2	191
290	Study of CoCu Alloy Nanoparticles Supported on MOF-Derived Carbon for Hydrosilylation of Ketones. Catalysis Letters, 2020, 150, 1537-1545.	1.4	14
291	MOF-derived NiO nanoparticles prilled by controllable explosion of perchlorate ion: Excellent performances and practical applications in supercapacitors. Applied Surface Science, 2020, 507, 145077.	3.1	34
292	Porous coordination polymer-derived ultrasmall CoP encapsulated in nitrogen-doped carbon for efficient hydrogen evolution in both acidic and basic media. International Journal of Hydrogen Energy, 2020, 45, 1729-1737.	3.8	12
293	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie, 2020, 132, 2727-2731.	1.6	110
294	Enzyme immobilized in BioMOFs: Facile synthesis and improved catalytic performance. International Journal of Biological Macromolecules, 2020, 144, 19-28.	3.6	26
295	Zirconium Oxide Sulfate-Carbon (ZrOSO ₄ @C) Derived from Carbonized UiO-66 for Selective Production of Dimethyl Ether. ACS Applied Materials & Interfaces, 2020, 12, 646-653.	4.0	63
296	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€5pecies Content for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 3244-3251.	7.2	167
297	Highly Efficient Porous Carbon Electrocatalyst with Controllable N‧pecies Content for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 3270-3277.	1.6	20
298	Construction of Hierarchical Nanotubes Assembled from Ultrathin V ₃ S ₄ @C Nanosheets towards Alkali″on Batteries with Ionâ€Dependent Electrochemical Mechanisms. Angewandte Chemie, 2020, 132, 2494-2503.	1.6	18
299	Construction of Hierarchical Nanotubes Assembled from Ultrathin V ₃ S ₄ @C Nanosheets towards Alkaliâ€Ion Batteries with Ionâ€Dependent Electrochemical Mechanisms. Angewandte Chemie - International Edition, 2020, 59, 2473-2482.	7.2	199
300	MOF derived C/Co@C with a "one-way-valve―like graphitic carbon layer for selective semi-hydrogenation of aromatic alkynes. Carbon, 2020, 160, 64-70.	5.4	21
301	Synthesis and Performance of MOF-Based Non-Noble Metal Catalysts for the Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells: A Review. Nanomaterials, 2020, 10, 1947.	1.9	22
302	Metal-Organic frameworks-derived multifunctional carbon encapsulated metallic nanocatalysts for catalytic peroxymonosulfate activation and electrochemical hydrogen generation. Molecular Catalysis, 2020, 498, 111241.	1.0	13
303	Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renewable Energy, 2020, 162, 535-549.	4.3	83
304	Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends in Food Science and Technology, 2020, 105, 76-92.	7.8	45
305	A metal–organic framework/polymer derived catalyst containing single-atom nickel species for electrocatalysis. Chemical Science, 2020, 11, 10991-10997.	3.7	32
306	Metal–Organic Framework-Derived Ceria-Supported Ni–Co Alloy Nanocatalysts for Hydrogenation of Nitroarenes. ACS Applied Nano Materials, 2020, 3, 10796-10804.	2.4	15

#	Article	IF	CITATIONS
307	<p>Multifunctional Hf/Mn-TCPP Metal-Organic Framework Nanoparticles for Triple-Modality Imaging-Guided PTT/RT Synergistic Cancer Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 7687-7702.	3.3	48
308	Engineering a Highly Improved Porous Photocatalyst Based on Cu ₂ 0 by a Synergistic Effect of Cation Doping of Zn and Carbon Layer Coating. Inorganic Chemistry, 2020, 59, 16010-16015.	1.9	12
309	Nitrogen-doped nanostructured carbons: A new material horizon for water desalination by capacitive deionization. EnergyChem, 2020, 2, 100043.	10.1	73
310	Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Organic and Biomolecular Chemistry, 2020, 18, 8508-8525.	1.5	11
311	Molecular recognition and sensing of dicarboxylates and dicarboxylic acids. Organic and Biomolecular Chemistry, 2020, 18, 8236-8254.	1.5	22
312	Octacyanidometallates for multifunctional molecule-based materials. Chemical Society Reviews, 2020, 49, 5945-6001.	18.7	100
313	Synthesis of ZnO Nanoparticles Doped with Cobalt Using Bimetallic ZIFs as Sacrificial Agents. Nanomaterials, 2020, 10, 1275.	1.9	7
314	Highly Active Zinc Sulfide Composite Microspheres: A Versatile Template for Synthesis of a Family of Hollow Nanostructures of Sulfides. Langmuir, 2020, 36, 1523-1529.	1.6	10
315	Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 662-679.	1.3	27
316	Metal-organic frameworks derived Bi2O2CO3/porous carbon nitride: A nanosized Z-scheme systems with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2020, 267, 118700.	10.8	131
317	Structural tuning of Zn(<scp>ii</scp>)-MOFs based on pyrazole functionalized carboxylic acid ligands for organic dye adsorption. CrystEngComm, 2020, 22, 5941-5945.	1.3	13
318	Modification of Metal-Organic Framework-Derived Nanocarbons for Enhanced Capacitive Deionization Performance: A Mini-Review. Frontiers in Chemistry, 2020, 8, 575350.	1.8	11
319	Design of Targeted Nanostructured Coordination Polymers (NCPs) for Cancer Therapy. Molecules, 2020, 25, 3449.	1.7	14
320	Synthesis of a Magnetic 2D Co@NC-600 Material by Designing a MOF Precursor for Efficient Catalytic Reduction of Water Pollutants. Inorganic Chemistry, 2020, 59, 12672-12680.	1.9	37
321	Removal of particulate matter with metal–organic framework-incorporated materials. Coordination Chemistry Reviews, 2020, 422, 213477.	9.5	66
322	Thermally reduced mesoporous manganese MOF @reduced graphene oxide nanocomposite as bifunctional electrocatalyst for oxygen reduction and evolution. RSC Advances, 2020, 10, 27728-27742.	1.7	27
323	Singleâ€Atom Electrocatalysts from Multivariate Metal–Organic Frameworks for Highly Selective Reduction of CO ₂ at Low Pressures. Angewandte Chemie - International Edition, 2020, 59, 20589-20595.	7.2	247
324	Facile Synthesis of Dicelike Cobalt Squarate Cages through a Spontaneous Dissolution–Regrowth Process. Chemistry of Materials, 2020, 32, 6765-6771.	3.2	15

#	Article	IF	CITATIONS
325	Singleâ€Atom Electrocatalysts from Multivariate Metal–Organic Frameworks for Highly Selective Reduction of CO ₂ at Low Pressures. Angewandte Chemie, 2020, 132, 20770-20776.	1.6	37
326	MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coordination Chemistry Reviews, 2020, 422, 213483.	9.5	105
327	ZIF-8 directed templating synthesis of CeO2 nanoparticles and its oxidase-like activity for colorimetric detection. Sensors and Actuators B: Chemical, 2020, 323, 128625.	4.0	24
328	Laser Synthesis of MOF-Derived Ni@Carbon for High-Performance Pseudocapacitors. ACS Applied Materials & amp; Interfaces, 2020, 12, 39154-39162.	4.0	56
329	Application of MOFs-derived mixed metal oxides in energy storage. Journal of Electroanalytical Chemistry, 2020, 878, 114576.	1.9	30
330	Thermal Defect Engineering of Precious Group Metal–Organic Frameworks: A Case Study on Ru/Rh-HKUST-1 Analogues. ACS Applied Materials & Interfaces, 2020, 12, 40635-40647.	4.0	24
331	Fabrication of Mn,Nâ€Codoped Carbon Electrocatalysts from a Cationic Cd(II)â€based MOF Involving Anionâ€exchange with MnO 4 â^' Anions. ChemNanoMat, 2020, 6, 1776-1781.	1.5	4
332	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030	651.1	183
333	Iron oxide and various metal oxide nanotubes engineered by one-pot double galvanic replacement based on reduction potential hierarchy of metal templates and ion precursors. RSC Advances, 2020, 10, 38617-38620.	1.7	1
334	Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Transactions, 2020, 49, 14723-14730.	1.6	31
335	Coâ^'MOFâ€74@Cuâ^'MOFâ€74 Derived Bifunctional Coâ^'C@Cuâ^'C for Oneâ€Pot Production of 1, 4â€Dipheny 3â€Butadiene from Phenylacetylene. ChemCatChem, 2020, 12, 6241-6247.	lâ€ 1 , 1.8	12
336	Synthesis and Optimization of Zeolitic Imidazolate Frameworks for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2020, 26, 14167-14172.	1.7	14
337	Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials. Chemistry of Materials, 2020, 32, 7822-7831.	3.2	27
338	Development of Porous Cobalt-/Copper-Doped Carbon Nanohybrids Derived from Functionalized MOFs as Efficient Catalysts for the Ullmann Cross-Coupling Reaction: Insights into the Active Centers. ACS Applied Materials & amp; Interfaces, 2020, 12, 43115-43124.	4.0	24
339	Navigating nMOF-mediated enzymatic reactions for catalytic tumor-specific therapy. Materials Horizons, 2020, 7, 3176-3186.	6.4	27
340	Synthesis of Honeycomb-Like Co3S4/MoS2 Composites with Hollow Structure As Anode Materials for High-Performance Lithium-Ion and Sodium-Ion Batteries. Journal of Electronic Materials, 2020, 49, 6519-6527.	1.0	5
341	Low-potential immunosensor-based detection of the vascular growth factor 165 (VEGF ₁₆₅) using the nanocomposite platform of cobalt metal–organic framework. RSC Advances, 2020, 10, 27288-27296.	1.7	14
342	Sustained-Release Method for the Directed Synthesis of ZIF-Derived Ultrafine Co-N-C ORR Catalysts with Embedded Co Quantum Dots. ACS Applied Materials & Interfaces, 2020, 12, 57847-57858.	4.0	46

#	Article	IF	CITATIONS
343	Oxide nanomembrane induced assembly of a functional smart fiber composite with nanoporosity for an ultra-sensitive flexible glucose sensor. Journal of Materials Chemistry A, 2020, 8, 26119-26129.	5.2	28
344	Synthesis of hierarchically organized α-Fe2O3 nanostructures for the photocatalytic degradation of methylene blue. Emergent Materials, 2020, 3, 605-612.	3.2	11
345	Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Research, 2020, 13, 1527-1535.	5.8	56
346	Metal–Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel. Angewandte Chemie, 2020, 132, 15124-15130.	1.6	57
347	Metal–Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel. Angewandte Chemie - International Edition, 2020, 59, 15014-15020.	7.2	276
348	Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nature Communications, 2020, 11, 2519.	5.8	77
349	A Chemically Stable Hofmannâ€Type Metalâ^'Organic Framework with Sandwichâ€Like Binding Sites for Benchmark Acetylene Capture. Advanced Materials, 2020, 32, e1908275.	11.1	236
350	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687.	18.7	176
351	Fabrication of Fe3C caged in N doped carbon nanotube as a desirable ORR electrocatalyst by a facile method. Journal of Electroanalytical Chemistry, 2020, 871, 114316.	1.9	10
352	Heteroatom-Doped Carbon Electrocatalysts Derived from Nanoporous Two-Dimensional Covalent Organic Frameworks for Oxygen Reduction and Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 5481-5488.	2.4	46
353	Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors. Chemical Engineering Journal, 2020, 396, 125316.	6.6	80
354	Co-MOF nanocatalysts of tunable shape and size for selective aerobic oxidation of toluene. Inorganica Chimica Acta, 2020, 510, 119737.	1.2	10
355	ZIF-67 derived carbon wrapped discontinuous CoxP nanotube as anode material in high-performance Li-ion battery. Materials Today Chemistry, 2020, 17, 100284.	1.7	20
356	Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 841, 155670.	2.8	51
358	Fischer–Tropsch Synthesis: ZIF-8@ZIF-67-Derived Cobalt Nanoparticle-Embedded Nanocage Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 12352-12359.	1.8	28
359	A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie, 2020, 132, 17561-17565.	1.6	8
360	A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie - International Edition, 2020, 59, 17408-17412.	7.2	58
361	Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal. Inorganica Chimica Acta, 2020, 511, 119801.	1.2	75

#	Article	IF	CITATIONS
362	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
363	Transition Bimetal Based MOF Nanosheets for Robust Aqueous Zn Battery. Frontiers in Materials, 2020, 7, .	1.2	18
364	Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering. Nano-Micro Letters, 2020, 12, 121.	14.4	111
365	Magnetic porous carbons derived from cobalt(<scp>ii</scp>)-based metal–organic frameworks for the solid-phase extraction of sulfonamides. Dalton Transactions, 2020, 49, 8959-8966.	1.6	20
366	Ru Species Supported on MOFâ€Derived Nâ€Doped TiO ₂ /C Hybrids as Efficient Electrocatalytic/Photocatalytic Hydrogen Evolution Reaction Catalysts. Advanced Functional Materials, 2020, 30, 2003007.	7.8	126
367	MOFâ€Mediated Synthesis of Supported Feâ€Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**. Chemistry - A European Journal, 2020, 26, 13659-13667.	1.7	9
368	Crack Formation on Crystalline Bismuth Oxychloride Thin Square Sheets by Using a Wetâ€Chemical Method. ChemNanoMat, 2020, 6, 759-764.	1.5	7
369	Reductive amination using cobalt-based nanoparticles for synthesis of amines. Nature Protocols, 2020, 15, 1313-1337.	5.5	56
370	Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. ACS Applied Materials & Interfaces, 2020, 12, 15183-15193.	4.0	67
371	Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sensors, 2020, 5, 970-977.	4.0	117
372	Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin. Materials Chemistry and Physics, 2020, 247, 122875.	2.0	41
373	Nano-spatially confined Pd–Cu bimetals in porous N-doped carbon as an electrocatalyst for selective denitrification. Journal of Materials Chemistry A, 2020, 8, 9545-9553.	5.2	35
374	Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of γ-CoOOH in a Heterostructured Co-Mo ₂ C Precatalyst Enable Water Oxidation. ACS Catalysis, 2020, 10, 4411-4419.	5.5	174
375	Graphene-Metal-Metastructure Monolith via Laser Shock-Induced Thermochemical Stitching of MOF Crystals. Matter, 2020, 2, 1535-1549.	5.0	49
376	An Sc-based coordination polymer with concaved superstructures: preparation, formation mechanism, conversion, and their electrochemistry properties. CrystEngComm, 2020, 22, 2926-2932.	1.3	0
377	Designing an All-Solid-State Sodium-Carbon Dioxide Battery Enabled by Nitrogen-Doped Nanocarbon. Nano Letters, 2020, 20, 3620-3626.	4.5	30
378	Zeolitic Imidazolate Framework-67-Derived CoP/Co@N,P-Doped Carbon Nanoparticle Composites with Graphitic Carbon Nitride for Enhanced Photocatalytic Production of H ₂ and H ₂ O ₂ . ACS Applied Nano Materials, 2020, 3, 3558-3567.	2.4	29
379	Spherical Superstructure of Boron Nitride Nanosheets Derived from Boron-Containing Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 8755-8762.	6.6	96

#	Article	IF	CITATIONS
380	Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chemical Reviews, 2020, 120, 8468-8535.	23.0	1,001
381	Electrochemical deposition of metal–organic framework films and their applications. Journal of Materials Chemistry A, 2020, 8, 7569-7587.	5.2	126
382	Fe/Fe3C@N-doped porous carbon microspindles templated from a metal–organic framework as highly selective and stable catalysts for the catalytic oxidation of sulfides to sulfoxides. Molecular Catalysis, 2020, 486, 110863.	1.0	12
383	Nanoscale coordination polymers for medicine and sensors. Advances in Inorganic Chemistry, 2020, , 3-31.	0.4	3
384	Co@N-doped carbon nanomaterial derived by simple pyrolysis of mixed-ligand MOF as an active and stable oxygen evolution electrocatalyst. Applied Surface Science, 2020, 529, 147081.	3.1	36
385	Controllable synthesis of Co-MOF-74 catalysts and their application in catalytic oxidation of toluene. Journal of Solid State Chemistry, 2020, 289, 121497.	1.4	19
386	Metal–Organic Framework Derived Nanozymes in Biomedicine. Accounts of Chemical Research, 2020, 53, 1389-1400.	7.6	308
387	Recent progress on hollow array architectures and their applications in electrochemical energy storage. Nanoscale Horizons, 2020, 5, 1188-1199.	4.1	48
388	Thermal Shrinkage Behavior of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2001389.	7.8	35
389	MOF-derived zinc manganese oxide nanosheets with valence-controllable composition for high-performance Li storage. Green Energy and Environment, 2021, 6, 703-714.	4.7	16
390	Fishnet-like superstructures constructed from ultrafine and ultralong Ni-MOF nanowire arrays directionally grown on highly rough and conductive scaffolds: synergistic activating effect for efficient and robust alkaline water oxidation activity. Applied Surface Science, 2020, 529, 147030.	3.1	8
391	Nanoporeâ€ S upported Metal Nanocatalysts for Efficient Hydrogen Ceneration from Liquidâ€Phase Chemical Hydrogen Storage Materials. Advanced Materials, 2020, 32, e2001818.	11.1	226
392	Nonenzymatic amperometric sensor for hydrogen peroxide released from living cancer cells based on hierarchical NiCo2O4-CoNiO2 hybrids embedded in partially reduced graphene oxide. Mikrochimica Acta, 2020, 187, 436.	2.5	17
393	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	1.6	19
394	Two Co(â¡)-based metal organic frameworks for highly efficient removal of azo dyes from aqueous environment: Synthesis, selective adsorption and adsorption mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125236.	2.3	21
395	Defect engineering of the protection layer for photoelectrochemical devices. EnergyChem, 2020, 2, 100039.	10.1	15
396	Structural Transitions of the Metal–Organic Framework DUT-49(Cu) upon Physi- and Chemisorption Studied by <i>in Situ</i> Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 5856-5862.	2.1	14
397	Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63, 1601-1607.	4.2	29

#	Article	IF	CITATIONS
398	Catalysis using metal–organic framework-derived nanocarbons: Recent trends. Journal of Materials Research, 2020, 35, 2190-2207.	1.2	12
399	Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coordination Chemistry Reviews, 2020, 410, 213221.	9.5	141
400	Transformation of 2D Co-LDH into 3D hierarchical hollow Co3O4 polyhedral arrays with enhanced electrochemical performance for supercapacitors. Journal of Alloys and Compounds, 2020, 826, 154241.	2.8	31
401	Inâ€situ Construction of Graphiteâ€5upported Magnetic Carbocatalysts from a Metalloâ€5upramolecular Polymer: High Performance for Catalytic Transfer Hydrogenation. ChemNanoMat, 2020, 6, 629-638.	1.5	4
402	Metal-organic framework-templated synthesis of t-ZrO2 /γ-Fe2O3 supported AgPt nanoparticles with enhanced catalytic and photocatalytic properties. Materials Research Bulletin, 2020, 126, 110838.	2.7	10
403	Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coordination Chemistry Reviews, 2020, 410, 213222.	9.5	321
404	Development of a new synthetic strategy for highly reduced graphene oxide-CdS quantum-dot nanocomposites and their photocatalytic activity. Journal of Alloys and Compounds, 2020, 828, 154406.	2.8	21
405	Catalytic activity of a magnetic Fe ₂ O ₃ @CoFe ₂ O ₄ nanocomposite in peroxymonosulfate activation for norfloxacin removal. New Journal of Chemistry, 2020, 44, 4185-4198.	1.4	29
406	Ultra-small cobalt nanoparticles from molecularly-defined Co–salen complexes for catalytic synthesis of amines. Chemical Science, 2020, 11, 2973-2981.	3.7	43
407	Colloidal-sized zirconium porphyrin metal–organic frameworks with improved peroxidase-mimicking catalytic activity, stability and dispersity. Analyst, The, 2020, 145, 3002-3008.	1.7	16
408	Well-constructed Ni@CN material derived from di-ligands Ni-MOF to catalyze mild hydrogenation of nitroarenes. Molecular Catalysis, 2020, 485, 110838.	1.0	36
409	Bimetallic Metalâ€Organic Framework Derived ZnO/Ni _{0.9} Zn _{0.1} O Nanocomposites for Improved Photocatalytic Degradation of Organic Dyes. ChemistrySelect, 2020, 5, 1858-1864.	0.7	21
410	Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coordination Chemistry Reviews, 2020, 409, 213220.	9.5	169
411	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
412	A Photoactivated Cu–CeO ₂ Catalyst with Cuâ€{O] e Active Species Designed through MOF Crystal Engineering. Angewandte Chemie, 2020, 132, 8280-8286.	1.6	8
413	A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical Performance. Angewandte Chemie - International Edition, 2020, 59, 8247-8254.	7.2	72
414	A Universal Strategy toward Ultrasmall Hollow Nanostructures with Remarkable Electrochemical Performance. Angewandte Chemie, 2020, 132, 8324-8331.	1.6	22
415	MOF Derived Co ₃ O ₄ @Co/NCNT Nanocomposite for Electrochemical Hydrogen Evolution, Flexible Zinc-Air Batteries, and Overall Water Splitting. Inorganic Chemistry, 2020, 59, 3160-3170.	1.9	67

#	Article	IF	CITATIONS
416	Co-doped Ni3S2 hierarchical nanoarrays derived from zeolitic imidazolate frameworks as bifunctional electrocatalysts for highly enhanced overall-water-splitting activity. Journal of Alloys and Compounds, 2020, 827, 154299.	2.8	29
417	Metal-organic frameworks derived cobalt encapsulated in porous nitrogen-doped carbon nanostructure towards highly efficient and durable oxygen reduction reaction electrocatalysis. Journal of Power Sources, 2020, 451, 227747.	4.0	30
418	The synergetic effect of N, S-codoped carbon and CoO _x nanodots derived from ZIF-67 as a highly efficient cocatalyst over CdS nanorods. Sustainable Energy and Fuels, 2020, 4, 1954-1962.	2.5	12
419	Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 2020, 408, 213180.	9.5	389
420	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
421	Enzyme embedded metal organic framework (enzyme–MOF): De novo approaches for immobilization. International Journal of Biological Macromolecules, 2020, 149, 861-876.	3.6	136
422	An effective "precursor-transformation―route toward the high-yield synthesis of ZIF-8 tubes. Chemical Communications, 2020, 56, 2913-2916.	2.2	35
423	Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions. Catalysis Science and Technology, 2020, 10, 1498-1506.	2.1	30
424	Preparation of porous Co ₃ O ₄ and its response to ethanol with low energy consumption. RSC Advances, 2020, 10, 2191-2197.	1.7	18
425	Nickel-ruthenium nanoalloy encapsulated in mesoporous carbon as active electrocatalysts for highly efficient overall water splitting in alkaline solution. Electrochimica Acta, 2020, 334, 135653.	2.6	4
426	A Photoactivated Cu–CeO ₂ Catalyst with Cuâ€{O]â€Ce Active Species Designed through MOF Crystal Engineering. Angewandte Chemie - International Edition, 2020, 59, 8203-8209.	7.2	26
427	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182
428	In Situ Fabrication of Porous Nanostructures Derived from Bimetal-Organic Frameworks for Highly Sensitive Non-Enzymatic Glucose Sensors. Journal of the Electrochemical Society, 2020, 167, 027531.	1.3	10
429	A Metal–Organic-Framework-Derived (Zn _{0.95} Cu _{0.05}) _{0.6} Cd _{0.4} S Solid Solution as Efficient Photocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 10261-10267.	4.0	30
430	Designed Fabrication of Polymer-Mediated MOF-Derived Magnetic Hollow Carbon Nanocages for Specific Isolation of Bovine Hemoglobin. ACS Biomaterials Science and Engineering, 2020, 6, 1387-1396.	2.6	17
431	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692
432	Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance. ACS Applied Materials & Interfaces, 2020, 12, 23968-23975.	4.0	20
433	Carbonâ€Modified CuO/ZnO Catalyst with High Oxygen Vacancy for CO ₂ Hydrogenation to Methanol. Energy Technology, 2020, 8, 2000194.	1.8	40

#	Article	IF	CITATIONS
434	Electrophoretic Deposition of Binderâ€Free MOFâ€Derived Carbon Films for Highâ€Performance Microsupercapacitors. Chemistry - A European Journal, 2020, 26, 10283-10289.	1.7	6
435	An Efficient and Stable MoS ₂ /Zn _{0.5} Cd _{0.5} S Nanocatalyst for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 12206-12211.	1.7	25
436	Bismuth MOFs based hierarchical Co3O4-Bi2O3 composite: An efficient heterogeneous peroxymonosulfate activator for azo dyes degradation. Separation and Purification Technology, 2020, 242, 116825.	3.9	67
437	Metal-organic frameworks for QCM-based gas sensors: A review. Sensors and Actuators A: Physical, 2020, 307, 111984.	2.0	108
438	Bimetallic Metal–Organic Framework-Derived Pomegranate-like Nanoclusters Coupled with CoNi-Doped Graphene for Strong Wideband Microwave Absorption. ACS Applied Materials & Interfaces, 2020, 12, 17870-17880.	4.0	95
439	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	18.7	190
440	In Situ Pyrolysis Tracking and Realâ€Time Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie - International Edition, 2020, 59, 13232-13237.	7.2	44
441	Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 2020, 11, 5369-5403.	3.7	285
442	In Situ Pyrolysis Tracking and Realâ€Time Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie, 2020, 132, 13334-13339.	1.6	6
443	Highly Uniform Alkali Doped Cobalt Oxide Derived from Anionic Metal-Organic Framework: Improving Activity and Water Tolerance for CO Oxidation. Chemical Research in Chinese Universities, 2020, 36, 946-954.	1.3	6
444	Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage. Nanoscale, 2020, 12, 10685-10692.	2.8	58
445	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	2.4	75
446	New Opportunities for Functional Materials from Metal Phosphonates. , 2020, 2, 582-594.		33
447	Conversion of a microwave synthesized alkali-metal MOF to a carbonaceous anode for Li-ion batteries. RSC Advances, 2020, 10, 13732-13736.	1.7	10
448	Extended Metal–Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage. ACS Applied Nano Materials, 2020, 3, 3964-3990.	2.4	80
449	Applications of Functional Metalâ€Organic Frameworks in Biosensors. Biotechnology Journal, 2021, 16, e1900424.	1.8	58
450	Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54, 89-104.	7.1	65
451	Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks. Nano Research, 2021, 14, 493-500.	5.8	12

#	Article	IF	CITATIONS
452	Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Journal of Colloid and Interface Science, 2021, 582, 60-69.	5.0	34
453	Uniformly bimetal-decorated holey carbon nanorods derived from metalâ^'organic framework for efficient hydrogen evolution. Science Bulletin, 2021, 66, 170-178.	4.3	27
454	Spatial-controlled etching of coordination polymers. Chinese Chemical Letters, 2021, 32, 635-641.	4.8	9
455	Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2021, 42, 225-234.	6.9	43
456	Insights into the Capacity and Rate Performance of Transitionâ€Metal Coordination Compounds for Reversible Lithium Storage. Angewandte Chemie - International Edition, 2021, 60, 4142-4149.	7.2	35
457	Bimetallic MOFs derived FeM(II)-alloy@C composites with high-performance electromagnetic wave absorption. Chemical Engineering Journal, 2021, 420, 127609.	6.6	37
458	MOF-derived porous ZnO-Co ₃ O ₄ nanocages as peroxidase mimics for colorimetric detection of copper(<scp>ii</scp>) ions in serum. Analyst, The, 2021, 146, 605-611.	1.7	32
459	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	6.5	109
460	Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries. Journal of Energy Chemistry, 2021, 53, 396-406.	7.1	37
461	Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chemical Engineering Journal, 2021, 403, 126312.	6.6	236
462	Hollow Co ₃ O ₄ dodecahedrons with controlled crystal orientation and oxygen vacancies for the high performance oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 259-267.	3.2	22
463	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie, 2021, 133, 2461-2468.	1.6	11
464	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie - International Edition, 2021, 60, 2431-2438.	7.2	53
465	Yolk-shell ZIF-8@ZIF-67 derived Co3O4@NiCo2O4 catalysts with effective electrochemical properties for Li-O2 batteries. Journal of Alloys and Compounds, 2021, 861, 157945.	2.8	23
466	Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review. Chemical Engineering Journal, 2021, 421, 127863.	6.6	129
467	Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid selective layer. Journal of Colloid and Interface Science, 2021, 585, 158-166.	5.0	40
468	Ultrafast Li+ diffusion kinetics enhanced by cross-stacked nanosheets loaded with Co3O4@NiO nanoparticles: Constructing superstructure to enhance Li-ion half/full batteries. Journal of Colloid and Interface Science, 2021, 585, 51-60.	5.0	26
469	Insights into the Capacity and Rate Performance of Transitionâ€Metal Coordination Compounds for Reversible Lithium Storage. Angewandte Chemie, 2021, 133, 4188-4195.	1.6	2

#	Article	IF	CITATIONS
470	One‧tep Roomâ€Temperature Synthesis of Metal(IV) Carboxylate Metal—Organic Frameworks. Angewandte Chemie, 2021, 133, 4328-4334.	1.6	13
471	Metal-organic framework-derived porous carbon templates for catalysis. , 2021, , 73-121.		0
472	Functional porous carbons: Synthetic strategies and catalytic application in fine chemical synthesis. , 2021, , 299-352.		2
473	Microbial-derived functional carbon decorated hollow NiCo-LDHs nanoflowers as a highly efficient catalyst for Li-CO2 battery. Applied Surface Science, 2021, 540, 148351.	3.1	21
474	Biaxial Stretchability in Highâ€Performance, Allâ€Solidâ€State Supercapacitor with a Doubleâ€Layer Anode and a Faradic Cathode Based on Graphiticâ€2200 Knitted Carbon Fiber. Advanced Energy Materials, 2021, 11, 2002961.	10.2	38
475	Laser-scribed ultrasmall nanoparticles with unary and binary phases. Chemical Engineering Journal, 2021, 421, 127731.	6.6	8
476	Oneâ€5tep Roomâ€Temperature Synthesis of Metal(IV) Carboxylate Metal—Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 4282-4288.	7.2	73
477	The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment. Chemical Engineering Journal, 2021, 417, 127914.	6.6	62
478	A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angewandte Chemie - International Edition, 2021, 60, 7389-7396.	7.2	42
479	Ni3Fe nanoalloys embedded in N-doped carbon derived from dual-metal ZIF: Efficient bifunctional electrocatalyst for Zn-air battery. Carbon, 2021, 174, 475-483.	5.4	44
480	Cobalt embedded in nitrogen-doped porous carbon as a robust heterogeneous catalyst for the atom-economic alcohol dehydrogenation to carboxylic acids. Carbon, 2021, 174, 284-294.	5.4	23
481	Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coordination Chemistry Reviews, 2021, 426, 213479.	9.5	145
482	Electrocatalysis for the Water Splitting: Recent Strategies for Improving the Performance of Electrocatalyst. , 2021, , 315-339.		1
483	Understanding the opportunities of metal–organic frameworks (MOFs) for CO ₂ capture and gas-phase CO ₂ conversion processes: a comprehensive overview. Reaction Chemistry and Engineering, 2021, 6, 787-814.	1.9	31
484	Nanostructured anode materials in rechargeable batteries. , 2021, , 187-219.		5
485	Riveting the atomically distributed lithiophilic centers in the CNT-reinforced interfacial layer: an ultrathin, light-weight deposition substrate toward superior Li utilization. Journal of Materials Chemistry A, 2021, 9, 21281-21290.	5.2	5
486	Multiâ€Scale Design of Metal–Organic Frameworkâ€Derived Materials for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12, 2003410.	10.2	81
487	Introducing reticular chemistry into agrochemistry. Chemical Society Reviews, 2021, 50, 1070-1110.	18.7	106

#	Article	IF	CITATIONS
488	Colorimetric determination of amyloid-Î ² peptide using MOF-derived nanozyme based on porous ZnO-Co3O4 nanocages. Mikrochimica Acta, 2021, 188, 56.	2.5	25
489	Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Convergence, 2021, 8, 1.	6.3	84
490	A high-efficiency oxygen evolution electrode material of a carbon material containing a NiCo bimetal. RSC Advances, 2021, 11, 16461-16467.	1.7	10
491	An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochemistry Communications, 2021, 122, 106899.	2.3	13
492	Controllable generation of ZnO/ZnCo ₂ O ₄ arising from bimetal–organic frameworks for electrochemical detection of naphthol isomers. Analyst, The, 2021, 146, 3352-3360.	1.7	3
493	Soluble porous carbon cage-encapsulated highly active metal nanoparticle catalysts. Journal of Materials Chemistry A, 2021, 9, 13670-13677.	5.2	13
494	Miniaturized energy storage: microsupercapacitor based on two-dimensional materials. , 2021, , 311-358.		3
495	Coloring ultrasensitive MRI with tunable metal–organic frameworks. Chemical Science, 2021, 12, 4300-4308.	3.7	15
496	A novel and efficient method of MOF-derived electrocatalyst for HER performance through doping organic ligands. Materials Chemistry Frontiers, 2021, 5, 7833-7842.	3.2	8
497	The recent progress on metal–organic frameworks for phototherapy. Chemical Society Reviews, 2021, 50, 5086-5125.	18.7	262
498	Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks. Chemical Science, 2021, 12, 7214-7230.	3.7	43
499	Co- and N-doped carbon nanotubes with hierarchical pores derived from metal–organic nanotubes for oxygen reduction reaction. Journal of Energy Chemistry, 2021, 53, 49-55.	7.1	18
500	Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Research, 2021, 14, 3329-3336.	5.8	14
501	Hollow FeCo-FeCoP@C nanocubes embedded in nitrogen-doped carbon nanocages for efficient overall water splitting. Journal of Energy Chemistry, 2021, 53, 1-8.	7.1	37
502	Non-Magnetic Bimetallic MOF-Derived Porous Carbon-Wrapped TiO2/ZrTiO4 Composites for Efficient Electromagnetic Wave Absorption. Nano-Micro Letters, 2021, 13, 75.	14.4	154
503	Synthesis of Fe3Se4/carbon composites from different metal–organic frameworks and their comparative lithium/sodium storage performances. Chemical Papers, 2021, 75, 2737-2747.	1.0	7
504	MOFs-Derived Fe–N Codoped Carbon Nanoparticles as O ₂ -Evolving Reactor and ROS Generator for CDT/PDT/PTT Synergistic Treatment of Tumors. Bioconjugate Chemistry, 2021, 32, 318-327.	1.8	57
505	Investigation on cross-scale indentation scaling relationships of elastic–plastic solids. Acta Mechanica, 2021, 232, 1479-1496.	1.1	5

#	Article	IF	CITATIONS
506	A Physical Entangling Strategy for Simultaneous Interior and Exterior Modification of Metal–Organic Framework with Polymers. Angewandte Chemie, 2021, 133, 7465-7472.	1.6	7
507	Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928.	3.2	8
508	A reusable colorimetric assay based on mixed valence state Ce-MOF@Pt nanoparticles for highly sensitive detection of visfatin. Analytica Chimica Acta, 2021, 1146, 24-32.	2.6	7
509	In Situ Growth of Ni-Based Metal–Organic Framework Nanosheets on Carbon Nanotube Films for Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 3439-3446.	1.9	19
510	A Fluorescent Titaniumâ€based Metalâ€Organic Framework Sensor for Nitroâ€aromatics Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 759-763.	0.6	17
511	Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Letters, 2021, 21, 1555-1565.	4.5	351
512	Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Science China Materials, 2021, 64, 1556-1562.	3.5	7
513	Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. Journal of Nanobiotechnology, 2021, 19, 92.	4.2	29
514	2D Nanomaterials for Effective Energy Scavenging. Nano-Micro Letters, 2021, 13, 82.	14.4	36
515	Cobalt Nanoparticle-Decorated LDH/ZIF-Derived Porous Nanoplatelets for Fischer–Tropsch Synthesis. ACS Applied Nano Materials, 2021, 4, 3734-3741.	2.4	5
516	Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Materials and Design, 2021, 201, 109518.	3.3	85
517	Carbonâ€Based Composite Phase Change Materials for Thermal Energy Storage, Transfer, and Conversion. Advanced Science, 2021, 8, 2001274.	5.6	162
518	Phosphorus-Doped Metal–Organic Framework-Derived CoS ₂ Nanoboxes with Improved Adsorption-Catalysis Effect for Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15226-15236.	4.0	51
519	An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti). Microporous and Mesoporous Materials, 2021, 316, 110957.	2.2	43
520	Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalysts for enhanced oxygen evolution reaction and urea oxidation reaction. Journal of Energy Chemistry, 2021, 63, 230-238.	7.1	29
521	A Metal–Organic Framework Nanorodâ€Assembled Superstructure and Its Derivative: Unraveling the Fast Potassium Storage Mechanism in Nitrogenâ€Modified Micropores. Small, 2021, 17, e2100135.	5.2	19
522	Micro/Nano‣caled Metalâ€Organic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	10.2	64
523	Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction. Applied Surface Science, 2021, 545, 148975.	3.1	17

#	Article	IF	CITATIONS
524	Transparent and Robust Amphiphobic Surfaces Exploiting Nanohierarchical Surface-grown Metal–Organic Frameworks. Nano Letters, 2021, 21, 3480-3486.	4.5	20
525	Dynamical SEI Reinforced by Openâ€Architecture MOF Film with Stereoscopic Lithiophilic Sites for Highâ€Performance Lithium–Metal Batteries. Advanced Functional Materials, 2021, 31, 2101034.	7.8	59
526	A review of synthesis strategies for MOF-derived single atom catalysts. Korean Journal of Chemical Engineering, 2021, 38, 1104-1116.	1.2	22
527	Hollow Co–Mo–Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors. Journal of Power Sources, 2021, 490, 229532.	4.0	79
528	Antidegradation Property of Alginate Materials by Riveting Functionalized Carbon Nanotubes on the Sugar Chain. ACS Omega, 2021, 6, 12813-12819.	1.6	0
529	Assembly and Covalent Cross-Linking of an Amine-Functionalised Metal-Organic Cage. Frontiers in Chemistry, 2021, 9, 696081.	1.8	14
530	Integrating the Essence of a Metal–Organic Framework with Electrospinning: A New Approach for Making a Metal Nanoparticle Confined N-Doped Carbon Nanotubes/Porous Carbon Nanofibrous Membrane for Energy Storage and Conversion. ACS Applied Materials & Interfaces, 2021, 13, 23732-23742.	4.0	43
531	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem, 2021, 3, 100054.	10.1	20
532	HfO ₂ oO nanoparticles for electrochemical dopamine sensing. Electrochemical Science Advances, 2022, 2, e2100013.	1.2	3
533	Programmable Logic in Metal–Organic Frameworks for Catalysis. Advanced Materials, 2021, 33, e2007442.	11.1	129
534	Recent Advances in Metal–Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. Advanced Science, 2021, 8, e2100625.	5.6	118
535	Advances in metal–organic frameworks and their derivatives for diverse electrocatalytic applications. Electrochemistry Communications, 2021, 126, 107024.	2.3	131
536	Cold plasma treatment of catalytic materials: a review. Journal Physics D: Applied Physics, 2021, 54, 333001.	1.3	50
537	Exploring Li4N and Li4O superalkalis as efficient dopants for the Al12N12 nanocage to design high performance nonlinear optical materials with high thermodynamic stability. Polyhedron, 2021, 200, 115145.	1.0	12
538	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	10.1	51
539	Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. , 2021, 3, 752-780.		62
540	Metal organic framework-derived Ni-Cu bimetallic electrocatalyst for efficient oxygen evolution reaction. Journal of King Saud University - Science, 2021, 33, 101379.	1.6	19
541	Defect Dominated Hierarchical Tiâ€Metalâ€Organic Frameworks via a Linker Competitive Coordination Strategy for Toluene Removal. Advanced Functional Materials, 2021, 31, 2102511.	7.8	50

#	Article	IF	CITATIONS
542	Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. Advanced Functional Materials, 2021, 31, 2101804.	7.8	71
543	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	2.8	123
544	Co/ZnO/N-C composites obtained by ZIF derived from Co-Zn oxides as highly efficient catalyst for reduction of p-nitrophenol. Journal of Sol-Gel Science and Technology, 2021, 99, 101-108.	1.1	1
545	Size-controlled synthesis of spinel nickel ferrite nanorods by thermal decomposition of a bimetallic Fe/Ni-MOF. Ceramics International, 2021, 47, 12433-12441.	2.3	20
546	Tailoring MOF-derived porous carbon nanorods confined red phosphorous for superior potassium-ion storage. Nano Energy, 2021, 83, 105797.	8.2	44
547	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
548	Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. International Journal of Environmental Science and Technology, 2022, 19, 11539-11560.	1.8	21
549	A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction. Molecular Catalysis, 2021, 510, 111710.	1.0	16
550	Effect of Na, Cu and Ru on metal-organic framework-derived porous carbon supported iron catalyst for Fischer-Tropsch synthesis. Molecular Catalysis, 2021, 509, 111601.	1.0	4
551	Cu/Cu _{<i>x</i>} Sâ€Embedded N,Sâ€Doped Porous Carbon Derived in Situ from a MOF Designed for Efficient Catalysis. Chemistry - A European Journal, 2021, 27, 11468-11476.	1.7	7
552	Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries. Science China Chemistry, 2021, 64, 1401-1409.	4.2	43
553	Self-Optimized Metal–Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation. ACS Catalysis, 2021, 11, 7132-7143.	5.5	77
554	Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials, 2021, 11, 1638.	1.9	31
555	Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Communications Chemistry, 2021, 4, .	2.0	29
556	Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. JPhys Materials, 2021, 4, 042002.	1.8	11
557	Indium-organic framework CPP-3(In) derived Ag/In2O3 porous hexagonal tubes for H2S detection at low temperature. Chinese Chemical Letters, 2022, 33, 551-556.	4.8	8
558	A Review of MOFs and Their Compositesâ€Based Photocatalysts: Synthesis and Applications. Advanced Functional Materials, 2021, 31, 2104231.	7.8	243
559	Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Letters, 2021, 13, 135.	14.4	182

#	Article	IF	CITATIONS
560	2D nanomaterials in 3D/4D-printed biomedical devices. Journal of Materials Research, 2021, 36, 4024-4050.	1.2	16
561	One-Step Synthesis of Ultrathin Carbon Nanoribbons from Metal–Organic Framework Nanorods for Oxygen Reduction and Zinc–Air Batteries. CCS Chemistry, 2022, 4, 194-204.	4.6	15
562	The Electro-oxidation of Hydrazine with Palladium Nanoparticle Modified Electrodes: Dissecting Chemical and Physical Effects: Catalysis, Surface Roughness, or Porosity?. Journal of Physical Chemistry Letters, 2021, 12, 6661-6666.	2.1	16
563	Bimetal-organic framework-derived carbon nanocubes with 3D hierarchical pores as highly efficient oxygen reduction reaction electrocatalysts for microbial fuel cells. Science China Materials, 2021, 64, 2926-2937.	3.5	14
564	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	23.0	633
566	Metalâ€Organic Framework Derived Nanostructured Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2021, 8, 3782-3803.	1.7	14
567	Bismuth-based metal–organic frameworks and their derivatives: Opportunities and challenges. Coordination Chemistry Reviews, 2021, 439, 213902.	9.5	62
568	Dual functional fluorosensors based on flexible bis(pyridylbenzimidazole) derivatives with highly selective and sensitive detection of acetylacetone and Fe3+ ions. Journal of Solid State Chemistry, 2021, 299, 122197.	1.4	6
569	Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors. Journal of Materials Science and Technology, 2021, 81, 162-174.	5.6	35
570	Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing. Sensors and Actuators B: Chemical, 2021, 341, 129965.	4.0	22
571	Developing metalâ€organic frameworkâ€based composite for innovative fuel cell application: An overview. International Journal of Energy Research, 2022, 46, 471-504.	2.2	26
572	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50
573	Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts. Materials Today Nano, 2021, 15, 100124.	2.3	28
574	Monodispersed MOF-808 Nanocrystals Synthesized via a Scalable Room-Temperature Approach for Efficient Heterogeneous Peptide Bond Hydrolysis. Chemistry of Materials, 2021, 33, 7057-7066.	3.2	51
575	Nitrogenâ€Doped Carbon Composites with Ordered Macropores and Hollow Walls. Angewandte Chemie - International Edition, 2021, 60, 23729-23734.	7.2	64
576	In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts. Chinese Journal of Catalysis, 2021, 42, 1370-1378.	6.9	37
577	Boosting Catalytic Efficiency of Metalâ€Organic Frameworks with Electronâ€Withdrawing Effect for Lewisâ€Acid Catalysis. ChemistrySelect, 2021, 6, 7732-7735.	0.7	5
578	Confinement Strategies for Precise Synthesis of Efficient Electrocatalysts from the Macroscopic to the Atomic Level. Accounts of Materials Research, 2021, 2, 907-919.	5.9	46

#	Article	IF	CITATIONS
579	Nitrogenâ€Ðoped Carbon Composites with Ordered Macropores and Hollow Walls. Angewandte Chemie, 2021, 133, 23922-23927.	1.6	11
580	Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS Applied Materials & Interfaces, 2021, 13, 40302-40314.	4.0	39
581	Electrospinning Synthesis of Self‣tanding Cobalt/Nanocarbon Hybrid Membrane for Long‣ife Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2021, 31, 2105021.	7.8	66
582	Metal–organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Nano Energy, 2021, 86, 106073.	8.2	107
583	Synthesis of CuCo2O4/BiVO4 composites as promise and efficient catalysts for 4-nitrophenol reduction in water: Experimental and theoretical study. Journal of Environmental Chemical Engineering, 2021, 9, 105408.	3.3	17
584	A self-supporting electrode with in-situ partial transformation of Fe-MOF into amorphous NiFe-LDH for efficient oxygen evolution reaction. Applied Surface Science, 2021, 556, 149781.	3.1	47
585	FeMn bimetallic MOF directly applicable as an efficient electrocatalyst for overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126596.	2.3	30
586	The Surge of Metal–Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment. Molecules, 2021, 26, 5713.	1.7	12
587	1D Coreâ^'Shell MOFs derived CoP Nanoparticles-Embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts. Chemical Engineering Journal, 2021, 419, 129977.	6.6	56
588	Single-atom engineering of metal-organic frameworks toward healthcare. CheM, 2021, 7, 2635-2671.	5.8	55
589	Constructing 2D/2D N-ZnO/g-C3N4 S-scheme heterojunction: Efficient photocatalytic performance for norfloxacin degradation. Chemical Engineering Journal, 2022, 430, 132652.	6.6	27
590	A metal–organic framework derived cobalt oxide/nitrogen-doped carbon nanotube nanotentacles on electrospun carbon nanofiber for electrochemical energy storage. Chemical Engineering Journal, 2021, 420, 129679.	6.6	44
591	Significance of nanomaterials in electrochemical sensors for nitrate detection: A review. Trends in Environmental Analytical Chemistry, 2021, 31, e00135.	5.3	60
592	Metalâ€Organic Frameworks Derived Titanium Oxides via Soft Interface Adaptive Transformation. Advanced Functional Materials, 2021, 31, 2107260.	7.8	5
593	Direct Conversion of CO ₂ to Ethanol Boosted by Intimacy-Sensitive Multifunctional Catalysts. ACS Catalysis, 2021, 11, 11742-11753.	5.5	69
594	Fabrication of transition-metal (Zn, Mn, Cu)-based MOFs as efficient sensor materials for detection of H2 gas by clad modified fiber optic gas sensor technique. Optical Fiber Technology, 2021, 65, 102614.	1.4	9
595	Recent Developments in All-Solid-State Micro-Supercapacitors Based on Two-Dimensional Materials. , 0, , .		1
596	MOF-derived MnO/C composites as high-performance lithium-ion battery anodes. Synthetic Metals, 2021, 280, 116872.	2.1	17

#	Article	IF	CITATIONS
597	Nano-engineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting. Applied Catalysis B: Environmental, 2021, 294, 120230.	10.8	49
598	Metal-organic framework assembly derived hierarchically ordered porous carbon for oxygen reduction in both alkaline and acidic media. Chemical Engineering Journal, 2022, 430, 132762.	6.6	13
599	Carbon nitride-supported CuCeO2 composites derived from bimetal MOF for efficiently electrocatalytic nitrogen fixation. International Journal of Hydrogen Energy, 2021, 46, 35319-35329.	3.8	12
600	1D/2D nanoconfinement FexOy and nitrogen-doped carbon matrix for catalytic self-cleaning membranes removal for pollutants. Journal of Environmental Chemical Engineering, 2021, 9, 106076.	3.3	9
601	Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coordination Chemistry Reviews, 2021, 445, 214083.	9.5	65
602	Well-connected ZnO nanoparticle network fabricated by in-situ annealing of ZIF-8 for enhanced sensitivity in gas sensing application. Sensors and Actuators B: Chemical, 2021, 344, 130180.	4.0	12
603	Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coordination Chemistry Reviews, 2021, 445, 214086.	9.5	67
604	α-MnS@Co3S4 hollow nanospheres assembled from nanosheets for hybrid supercapacitors. Chemical Engineering Journal, 2021, 422, 129953.	6.6	85
605	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	3.3	47
606	Metal–organic framework-based sorbents in analytical sample preparation. Coordination Chemistry Reviews, 2021, 445, 214107.	9.5	138
607	Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coordination Chemistry Reviews, 2021, 445, 214073.	9.5	19
608	Controllable synthesis of sea urchin-like carbon from metal-organic frameworks for advanced solar vapor generators. Chemical Engineering Journal, 2021, 423, 130268.	6.6	105
609	Heteroatom-doped porous carbon derived from zeolite imidazole framework/polymer core-shell fibers as an electrode material for supercapacitor. Composites Part B: Engineering, 2021, 225, 109256.	5.9	38
610	ZIF-67 derived nanofibrous catalytic membranes for ultrafast removal of antibiotics under flow-through filtration via non-radical dominated pathway. Journal of Membrane Science, 2021, 639, 119782.	4.1	28
611	Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review. Chemosphere, 2021, 284, 131393.	4.2	131
612	Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction. Chemical Engineering Journal, 2021, 426, 131300.	6.6	20
613	Advances in metal–organic framework-based nanozymes and their applications. Coordination Chemistry Reviews, 2021, 449, 214216.	9.5	122
614	Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Applied Catalysis B: Environmental, 2021, 298, 120583.	10.8	31

#	Article	IF	Citations
615	Highly active catalyst using zeolitic imidazolate framework derived nano-polyhedron for the electro-oxidation of l-cysteine and amperometric sensing. Journal of Colloid and Interface Science, 2021, 603, 822-833.	5.0	11
616	Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol. Environmental Research, 2022, 203, 111818.	3.7	30
617	Efficient detection of hazardous H2S gas using multifaceted Co3O4/ZnO hollow nanostructures. Chemosphere, 2022, 287, 132178.	4.2	43
618	Oxidative modification of metal-organic framework-derived carbon: An effective strategy for adsorptive elimination of carbazole and benzonitrile. Fuel, 2022, 307, 121764.	3.4	16
619	Metal-organic framework derived multi-functionalized and co-doped TiO2/C nanocomposites for excellent visible-light photocatalysis. Journal of Materials Science and Technology, 2022, 101, 49-59.	5.6	29
620	Zinc/Iron mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water. Chemical Engineering Journal, 2022, 428, 131147.	6.6	45
621	<i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.	3.2	1
622	General Strategy for Fabrication of Ordered One Dimensional Inorganic Structures by Electrospinning: Structural Evolution From Belt to Solid via Hollow Tubes. Advanced Engineering Materials, 2021, 23, 2001129.	1.6	3
623	Strategic design and synthesis of star-shaped organic linkers for mesoporous MOFs. Faraday Discussions, 2021, 231, 97-111.	1.6	0
625	Synthesis of ultrafine Co/CoO nanoparticle-embedded N-doped carbon framework magnetic material and application for 4-nitrophenol catalytic reduction. New Journal of Chemistry, 2021, 45, 13751-13754.	1.4	4
626	Controlled assembly of cobalt embedded N-doped graphene nanosheets (Co@NGr) by pyrolysis of a mixed ligand Co(<scp>ii</scp>) MOF as a sacrificial template for high-performance electrocatalysts. RSC Advances, 2021, 11, 21179-21188.	1.7	9
627	The role of metal–organic porous frameworks in dual catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3618-3658.	3.0	30
628	Synthesis and applications of MOF-derived nanohybrids: A review. Materials Today: Proceedings, 2021, 46, 3018-3029.	0.9	19
629	Designing Selfâ€Supported Metalâ€Organic Framework Derived Catalysts for Electrochemical Water Splitting. Chemistry - an Asian Journal, 2020, 15, 607-623.	1.7	48
630	Naturally derived pyroxene nanomaterials: an ore for wide applications. , 2020, , 731-774.		1
631	MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem, 2020, 2, 100033.	10.1	177
632	Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy and Environment, 2022, 7, 3-15.	4.7	94
633	One-pot synthesis of hierarchical Co1–S/NC@MoS2/C hollow nanofibers based on one-dimensional metal coordination polymers for enhanced lithium and sodium-ion storage. Science Bulletin, 2020, 65, 1460-1469.	4.3	37

#	Article	IF	Citations
634	Enhanced thermal conductivity of nanocomposites with MOF-derived encapsulated magnetic oriented carbon nanotube-grafted graphene polyhedra. RSC Advances, 2020, 10, 3357-3365.	1.7	22
635	From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. Journal of Materials Chemistry A, 2020, 8, 15245-15270.	5.2	209
636	Zr-MOFs based BiOBr/UiO-66 nanoplates with enhanced photocatalytic activity for tetracycline degradation under visible light irradiation. AIP Advances, 2020, 10, .	0.6	14
637	Characterization of Multiphase Oxide Layer Formation on Micro and Nanoscale Iron Particles. Metals, 2021, 11, 12.	1.0	6
638	Encapsulation of gold nanoclusters: stabilization and more. Nanoscale, 2021, 13, 17199-17217.	2.8	28
639	Simultaneous transformation of 2D to 3D and doped metal transitions of zeolitic imidazole frameworks under solid phase and free-solvent conditions. Dalton Transactions, 2021, 50, 15793-15801.	1.6	1
640	An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 26476-26482.	7.2	45
641	Highly Ethyleneâ€Selective Electrocatalytic CO ₂ Reduction Enabled by Isolated Cuâ^'S Motifs in Metal–Organic Framework Based Precatalysts. Angewandte Chemie, 2022, 134, .	1.6	5
642	Highly Ethyleneâ€5elective Electrocatalytic CO ₂ Reduction Enabled by Isolated Cuâ^'S Motifs in Metal–Organic Framework Based Precatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	81
643	Killing Two Birds with One Stone: Selective Oxidation of Small Organic Molecule as Anodic Reaction to Boost CO ₂ Electrolysis. Small Structures, 2022, 3, 2100134.	6.9	25
644	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	10.1	25
645	Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catalysis, 2021, 11, 13374-13396.	5.5	121
646	Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. Nanomaterials, 2021, 11, 2700.	1.9	26
647	Fabrication of Metal Nanoparticle Composites by Slow Chemical Reduction of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 16447-16454.	1.9	10
648	Design and synthesis of noble metal–based electrocatalysts using metal–organic frameworks and derivatives. Materials Today Nano, 2022, 17, 100144.	2.3	17
649	Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Letters, 2021, 13, 203.	14.4	143
650	An Efficient Metal–Organic Frameworkâ€Derived Nickel Catalyst for the Light Driven Methanation of CO ₂ . Angewandte Chemie, 2021, 133, 26680-26686.	1.6	4
651	Rapid degradation of p-arsanilic acid and simultaneous removal of the released arsenic species by Co–Fe@C activated peroxydisulfate process. Environmental Research, 2022, 207, 112184.	3.7	12

#	Article	IF	CITATIONS
652	Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review. Nano-Micro Letters, 2021, 13, 208.	14.4	138
653	Hierarchical N-Doped CuO/Cu Composites Derived from Dual-Ligand Metal–Organic Frameworks as Cost-Effective Catalysts for Low-Temperature CO Oxidation. ACS Omega, 2021, 6, 29596-29608.	1.6	5
654	MOF-Directed Construction of Cu–Carbon and Cu@N-Doped Carbon as Superior Supports of Metal Nanoparticles toward Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2021, 13, 52921-52930.	4.0	8
656	Regulation and mechanism study of the CoS2/Cu2S-NF heterojunction as highly-efficient bifunctional electrocatalyst for oxygen reactions. Applied Catalysis B: Environmental, 2022, 303, 120849.	10.8	55
657	Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coordination Chemistry Reviews, 2022, 451, 214277.	9.5	97
658	Sacrificial templating synthesis of metal-organic framework hybrid nanosheets as efficient pre-electrocatalyst for oxygen evolution reaction in alkaline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127745.	2.3	7
659	Base-free catalytic aerobic oxidation of mercaptans over MOF-derived Co/CN catalyst with controllable composition and structure. Journal of Colloid and Interface Science, 2022, 607, 1836-1848.	5.0	6
660	Environmentally persistent free radicals in bismuth-based metal–organic layers derivatives: Photodegradation of pollutants and mechanism unravelling. Chemical Engineering Journal, 2022, 430, 133026.	6.6	23
661	MOF-Derived Nanoparticles and Single Atoms for Electrochemical Reactions. ACS Symposium Series, 2020, , 127-149.	0.5	0
662	Carbon-wrapped Fe–Ni bimetallic nanoparticle-catalyzed Friedel–Crafts acylation for green synthesis of aromatic ketones. Catalysis Science and Technology, 0, , .	2.1	6
663	Catalysis with MNPs on N-Doped Carbon. Molecular Catalysis, 2020, , 199-219.	1.3	0
664	Metal–Organic Frameworks for Electrocatalysis. , 2020, , 29-66.		1
665	Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron, 2021, , 132526.	1.0	0
666	Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering, 2022, 230, 109532.	5.9	66
667	CuO@NiO Nanoparticles Derived from Metal–Organic Framework Precursors for the Deoxygenation of Fatty Acids. ACS Sustainable Chemistry and Engineering, 2021, 9, 15612-15622.	3.2	13
668	Recent Progress in Prussian Blue/Prussian Blue Analogue-Derived Metallic Compounds. Bulletin of the Chemical Society of Japan, 2022, 95, 230-260.	2.0	36
669	Zeolitic imidazolate framework derived porous ZnO/Co3O4 incorporated with gold nanoparticles as ternary nanohybrid for determination of hydrazine. Journal of Alloys and Compounds, 2022, 896, 162922.	2.8	8
670	Sustainable synthesis of potential antitumor new derivatives of Abemaciclib and Fedratinib via C-N cross coupling reactions using Pd/Cu-free Co-catalyst. Molecular Catalysis, 2022, 517, 112011.	1.0	5

#	Article	IF	CITATIONS
671	Metal Organic Framework Derived Cu–Doped Ni ₂ P Nanoparticles Incorporated with Porous Carbon as High Performance Electrocatalyst for Hydrogen Evolution Reaction in a Wide pH Range. ChemistrySelect, 2021, 6, 12926-12933.	0.7	3
672	Ligand Defect Density Regulation in Metal–Organic Frameworks by Functional Group Engineering on Linkers. Nano Letters, 2022, 22, 838-845.	4.5	29
673	Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials, 2022, 281, 121322.	5.7	83
674	Enhancement of oxygen evolution reaction by X-doped (XÂ= Se, S, P) holey graphitic carbon shell encapsulating NiCoFe nanoparticles: a combined experimental and theoretical study. Materials Today Chemistry, 2022, 23, 100706.	1.7	4
675	Advances in and prospects of nanomaterials' morphological control for lithium rechargeable batteries. Nano Energy, 2022, 93, 106860.	8.2	40
676	Molten-Li infusion of ultra-thin interfacial modification layer towards the highly-reversible, energy-dense metallic batteries. Energy Storage Materials, 2022, 45, 796-804.	9.5	9
677	Insights into enhanced peroxydisulfate activation with S doped Fe@C catalyst for the rapid degradation of organic pollutants. Journal of Colloid and Interface Science, 2022, 610, 24-34.	5.0	27
678	MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coordination Chemistry Reviews, 2022, 456, 214392.	9.5	86
679	Engineering hierarchical porous ternary Co-Mn-Cu-S nanodisk arrays for ultra-high-capacity hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 612, 298-307.	5.0	26
680	A Review on Metal-Organic Frameworks as Congenial Heterogeneous Catalysts for Potential Organic Transformations. Frontiers in Chemistry, 2021, 9, 747615.	1.8	19
681	Co Nanoparticles Encapsulated in Carbon Nanotubes Decorated Carbon Aerogels Toward Excellent Microwave Absorption. Industrial & Engineering Chemistry Research, 2022, 61, 1684-1693.	1.8	6
682	Self-supported metal–organic framework-based nanostructures as binder-free electrodes for supercapacitors. Nanoscale, 2022, 14, 2155-2166.	2.8	73
683	Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condensed Matter, 2022, 7, 6.	0.8	66
684	Mitochondrial Dysfunction and Antioxidation Dyshomeostasis-Enhanced Tumor Starvation Synergistic Chemotherapy Achieved using a Metal–Organic Framework-Based Nano-Enzyme Reactor. ACS Applied Materials & Interfaces, 2022, 14, 3675-3684.	4.0	14
685	N-doping of the TiO2/C nanostructure derived from metal-organic frameworks with high drug loading for efficient sonodynamic & chemotherapy. Smart Materials in Medicine, 2022, 3, 168-178.	3.7	7
686	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society, 2022, 144, 2614-2623.	6.6	127
687	Phosphorus modified Ni-MOF–74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 307, 121166.	10.8	106
688	MOF effectively deliver CRISPR and enhance gene-editing efficiency via MOF's hydrolytic activity of phosphate ester bonds. Chemical Engineering Journal, 2022, 439, 134992.	6.6	7

#	Article	IF	Citations
689	Metal-organic frameworks-derived Ni2P@C Nanocomposite as a high-performance catalyst for hydrazine electrooxidation. Journal of Alloys and Compounds, 2022, 902, 163746.	2.8	4
690	Metal–Organic Frameworks: A Robust Platform for Creating Nanoarchitectured Carbon Materials. Accounts of Materials Research, 2022, 3, 426-438.	5.9	15
691	N-doped porous carbons derived from Zn-porphyrin-MOF. RSC Advances, 2022, 12, 5979-5989.	1.7	1
692	Pd(/Fe ₃ O ₄)-on-ZIFs: nanoparticle deposition on (nano-)MOFs from ionic liquids. Journal of Materials Chemistry A, 2022, 10, 11955-11970.	5.2	4
693	Understanding the active sites of Fe–N–C materials and their properties in the ORR catalysis system. RSC Advances, 2022, 12, 9543-9549.	1.7	9
694	Nickel–salen as a model for bifunctional OER/UOR electrocatalysts: pyrolysis temperature–electrochemical activity interconnection. Inorganic Chemistry Frontiers, 2022, 9, 1973-1983.	3.0	8
695	Resisting Metal Aggregation in Pyrolysis of Mofs Towards High-Density Metal Nanocatalysts for Efficient Hydrazine Assisted Hydrogen Production. SSRN Electronic Journal, 0, , .	0.4	0
696	Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Physical Chemistry Chemical Physics, 2022, 24, 9855-9865.	1.3	5
697	Nanostructured metal–organic framework-based luminescent sensor for chemical sensing: current challenges and future prospects. Journal of Nanostructure in Chemistry, 2023, 13, 197-242.	5.3	16
698	Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications. New Carbon Materials, 2022, 37, 196-222.	2.9	20
699	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
700	Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. Journal of Energy Chemistry, 2022, 71, 277-287.	7.1	44
701	A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries. Journal of Solid State Electrochemistry, 2022, 26, 1163-1173.	1.2	3
702	Rational Design of Metal–Organic Frameworkâ€Based Materials for Photocatalytic CO ₂ Reduction. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	23
703	Metal–Organic-Framework-Based Photo-electrochemical Cells for Solar Fuel Generation. Journal of Physical Chemistry C, 2022, 126, 5079-5091.	1.5	11
704	Sensitive simultaneous determination of catechol and hydroquinone based on iron and nitrogen doped carbon nanonets derived from MOFs. Journal of Electroanalytical Chemistry, 2022, 913, 116290.	1.9	8
705	Semiconducting Paddle-Wheel Metal–Organic Complex with a Compact Cu–S Cage. Journal of Physical Chemistry C, 2022, 126, 6300-6307.	1.5	0
706	Unprecedented Electroreduction of CO ₂ over Metal Organic Framework-Derived Intermetallic Nano-Alloy Cu _{0.85} Ni _{0.15} /C. ACS Applied Energy Materials, 2022, 5, 4945-4955.	2.5	20

#	Article	IF	CITATIONS
707	Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43, 971-1000.	6.9	64
708	Active nanozyme derived from biomineralized metal-organic frameworks for cholesterol detection. Microporous and Mesoporous Materials, 2022, 335, 111826.	2.2	6
709	Engineering Pollenâ€Derived Microstructures to Reveal Material Morphoâ€Performance Paradigm. Small, 2022, 18, e2200037.	5.2	4
710	Rh/ZrO2@C(MIL) catalytic activity and TEM images. CO2 conversion performance and structural systematic evaluation of novel catalysts derived from Zr-MOF metallated with Ru, Rh, Pd or In. Microporous and Mesoporous Materials, 2022, 336, 111855.	2.2	5
711	A general strategy for overcoming the trade-off between ultrasmall size and high loading of MOF-derived metal nanoparticles by millisecond pyrolysis. Nano Energy, 2022, 97, 107125.	8.2	17
712	Recent advances in the synthesis of various analogues of MOF-based nanomaterials: A mini-review. Inorganica Chimica Acta, 2022, 536, 120890.	1.2	10
713	Hollow Co3S4 polyhedron decorated with interlayer-expanded MoS2 nanosheets for efficient tetracycline removal from aqueous solution. Chemical Engineering Journal, 2022, 441, 136006.	6.6	21
714	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
715	Confinement Effects in Individual Carbon Encapsulated Nonprecious Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2022, 32, .	7.8	35
716	A General Strategy to Immobilize Singleâ€Atom Catalysts in Metal–Organic Frameworks for Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2109203.	11.1	80
717	Highly efficient C(CO)–C(alkyl) bond cleavage in ketones to access esters over ultrathin N-doped carbon nanosheets. Chemical Science, 2022, 13, 5196-5204.	3.7	6
718	Metal-organic aerogel derived hierarchical porous metal-carbon nanocomposites as efficient bifunctional electrocatalysts for overall water splitting. Journal of Colloid and Interface Science, 2022, 621, 398-405.	5.0	6
719	Photosensitized Peroxidase Mimicry at the Hierarchical 0D/2D Heterojunctionâ€Like Quasi Metalâ€Organic Framework Interface for Boosting Biocatalytic Disinfection. Small, 2022, 18, e2200178.	5.2	62
720	Nanostructured Mn-doped Zn N C @reduced graphene oxide as high performing electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2022, 914, 116324.	1.9	6
721	Multifunctional TiO2/C nanosheets derived from 3D metal–organic frameworks for mild-temperature-photothermal-sonodynamic-chemodynamic therapy under photoacoustic image guidance. Journal of Colloid and Interface Science, 2022, 621, 360-373.	5.0	10
724	Zeolitic imidazolate framework 67 based metal oxides derivatives as electrocatalysts for oxygen evolution reaction. , 2022, , 471-495.		1
725	Heterostructured Co-NTC@Co ₃ S ₄ as an anode material for asymmetric pseudocapacitors. CrystEngComm, 2022, 24, 3621-3629.	1.3	5
726	Artificial Intelligence for Nanostructured Materials. Nanobiotechnology Reports, 2022, 17, 1-9.	0.2	0

#	Article	IF	CITATIONS
727	A Spherical Superstructure of Co,N-doping Mesoporous Carbon for Oxygen Reduction Reaction in Air-Breath Cathode Microbial Fuel Cell. Catalysis Letters, 0, , 1.	1.4	0
728	Functionalized MOF-Derived Nanoporous Carbon as Compatible Nanofiller to Fabricate Defect-Free PDMS-Based Mixed Matrix Pervaporation Membranes. ACS Omega, 2022, 7, 15786-15794.	1.6	9
729	Facile Guest-Mediated Method for Gram-Scale Synthesis of Superhydrophilic Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4242-4247.	3.2	3
730	A chemometric approach based on Box–Behnken and response surface methodology for design and optimization of ciprofloxacin adsorption from water. Chemical Papers, 2022, 76, 4873-4883.	1.0	4
731	Progress on 3Dâ€Printed Metalâ€Organic Frameworks with Hierarchical Structures. Advanced Materials Technologies, 2022, 7, .	3.0	10
732	Progress in Metal-Organic Framework Catalysts for Selective Catalytic Reduction of NOx: A Mini-Review. Atmosphere, 2022, 13, 793.	1.0	5
733	Functionalized metal-organic framework-derived carbon: Effective adsorbent to eliminate methylene blue, a small cationic dye from water. Chemosphere, 2022, 303, 134890.	4.2	11
734	Improving the surface area of metal organic framework-derived porous carbon through constructing inner support by compatible graphene quantum dots. Journal of Colloid and Interface Science, 2022, 623, 77-85.	5.0	22
735	Recent advancements in metal–organic frameworks integrating quantum dots (QDs@MOF) and their potential applications. Nanotechnology Reviews, 2022, 11, 1947-1976.	2.6	17
736	Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction. ACS Applied Nano Materials, 2022, 5, 8883-8893.	2.4	6
737	High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nature Nanotechnology, 2022, 17, 857-863.	15.6	85
738	Graphite felt modified by nanoporous carbon as a novel cathode material for EF process. New Journal of Chemistry, 0, , .	1.4	3
739	Fabrication of Ag nanoparticles coupled with ferrous disulfide biocatalyst as a peroxidase mimic for sensitive electrochemical and colorimetric dual-mode biosensing of H2O2. Food Chemistry, 2022, 393, 133386.	4.2	14
740	Applications of Metalâ ``Organic Frameworks in Wastewater Treatment and Gas Separation and Purification. ACS Symposium Series, 0, , 271-337.	0.5	0
741	CeO2 modified Ni-MOF as an efficient catalyst for electrocatalytic urea oxidation. , 0, 1, .		1
742	MOF-derived porous nitrogen and phosphorus codoped carbon nanosheets: An emerging material for constructing robust electrochemical sensing platform. Sensors and Actuators B: Chemical, 2022, 369, 132263.	4.0	6
743	Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Applied Materials & Interfaces, 2022, 14, 30443-30453.	4.0	18
744	Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron, 2022, 223, 115950.	1.0	3

#	Article	IF	CITATIONS
745	Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coordination Chemistry Reviews, 2022, 469, 214664.	9.5	100
746	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749.	15.6	107
747	Co/CoO nanoparticles armored by N-doped nanoporous carbon polyhedrons towards glucose oxidation in high-performance non-enzymatic sensors. New Journal of Chemistry, 2022, 46, 15071-15079.	1.4	10
748	Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022, 46, 13818-13837.	1.4	61
749	A Dualâ€Responsive Magnetoactive and Electro–Ionic Soft Actuator Derived from a Nickelâ€Based Metal–Organic Framework. Advanced Materials, 2022, 34, .	11.1	14
750	MoS ₂ and WS ₂ Nanosheets Decorated on Metal–Organic Framework-Derived Cobalt/Carbon Nanostructures as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 10696-10703.	2.4	10
751	FeP-CoP Nanocubes In Situ Grown on Ti ₃ C ₂ T <i>_x</i> MXene as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Industrial & Engineering Chemistry Research, 2022, 61, 10837-10845.	1.8	10
752	Applications of metal–organic framework-based bioelectrodes. Chemical Science, 2022, 13, 8727-8743.	3.7	19
753	Hierarchical ZrO2@N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation. Science China Chemistry, 2022, 65, 1661-1669.	4.2	2
754	Ni-doped CoP with multi-level hollow structure as efficient electrocatalyst for overall water splitting. Journal of Materials Science, 2022, 57, 14430-14439.	1.7	3
755	Morphological Anisotropy in Metal–Organic Framework Micro/Nanostructures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
756	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
757	Ultrasound-Activated, Tumor-Specific <i>In Situ</i> Synthesis of a Chemotherapeutic Agent Using ZIF-8 Nanoreactors for Precision Cancer Therapy. ACS Nano, 2022, 16, 12403-12414.	7.3	18
758	Resisting metal aggregation in pyrolysis of MOFs towards high-density metal nanocatalysts for efficient hydrazine assisted hydrogen production. Nano Research, 2023, 16, 6067-6075.	5.8	16
759	MOF $\hat{a} \in B$ ased Chemiresistive Gas Sensors: Toward New Functionalities. Advanced Materials, 2023, 35, .	11.1	59
760	Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends in Chemistry, 2022, 4, 886-906.	4.4	63
761	Morphological Anisotropy in Metal–Organic Framework Micro/Nanostructures. Angewandte Chemie, 2022, 134, .	1.6	3
762	Pore creation nanoarchitectonics from non-porous metal-organic framework to porous carbon for adsorptive elimination of sulfanilamide and chloroxylenol from aqueous solution. Journal of Hazardous Materials, 2022, 439, 129659.	6.5	4

#	Article	IF	CITATIONS
763	A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 471, 214741.	9.5	24
764	Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V2O5 nanowires compositing carbon nanomaterials. Journal of Colloid and Interface Science, 2022, 628, 24-32.	5.0	18
765	Elucidating the promoting mechanism of coordination-driven self-assembly MOFs/SiO2 composite derived catalyst for dry reforming of methane with CO2. Fuel, 2022, 330, 125569.	3.4	14
766	HCl-activated porous nitrogen-doped carbon nanopolyhedras with abundant hierarchical pores for ultrafast desalination. Journal of Colloid and Interface Science, 2022, 628, 236-246.	5.0	12
767	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	6.6	39
768	Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays. Rare Metals, 2022, 41, 3654-3661.	3.6	24
769	Tailored architectures of mesoporous carbon nanostructures: From synthesis to applications. Nano Today, 2022, 46, 101607.	6.2	16
770	Enriching Fe3O4@MoS2 composites in surface layer to fabricate polyethersulfone (PES) composite membrane: The improved performance and mechanisms. Separation and Purification Technology, 2022, 302, 122178.	3.9	39
771	The Role of NMR in Metal Organic Frameworks: Deep Insights into Dynamics, Structure and Mapping of Functional Groups. Materials Today Advances, 2022, 16, 100287.	2.5	5
772	Metal-Organic Framework-Induced Edge-Riched Growth of Layered Bi2se3 Towards Ultrafast Na-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
773	Synthetic carbon nanomaterials for electrochemical energy conversion. Nanoscale, 2022, 14, 13473-13489.	2.8	6
774	Analytical performances of electrochemical sensor based on metal-organic frameworks. , 2022, , 117-133.		0
775	Amorphous FeNiCu-MOFs as highly efficient electrocatalysts for the oxygen evolution reaction in an alkaline medium. Dalton Transactions, 2022, 51, 14306-14316.	1.6	11
776	Metal-organic framework in fuel cell technology: Fundamentals and application. , 2022, , 135-189.		1
777	Enzymeâ€Immobilized Metalâ€Organic Frameworks: From Preparation to Application. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
778	Implanting CoO <i>_x</i> Clusters on Ordered Macroporous ZnO Nanoreactors for Efficient CO ₂ Photoreduction. Advanced Materials, 2022, 34, .	11.1	40
779	Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. , 2022, 4, 2058-2079.		35
780	Perspective on the heavy metal pollution and recent remediation strategies. Current Research in Microbial Sciences, 2022, 3, 100166.	1.4	12

#	Article	IF	CITATIONS
781	Catalytic activity of C ₆₀ fullerene nanowhisker–zeolitic imidazolate framework-67 composite for reduction of 4-nitrophenol. Fullerenes Nanotubes and Carbon Nanostructures, 2023, 31, 61-67.	1.0	1
782	Observation and Analysis of Staircase Response of Single Palladium Nanoparticle Collision on Gold Ultramicroelectrodes. Nanomaterials, 2022, 12, 3095.	1.9	2
783	Applications of Transition Metal (Fe, Co, Ni)-Based Metal–Organic Frameworks and their Derivatives in Batteries and Supercapacitors. Transactions of Tianjin University, 2022, 28, 446-468.	3.3	4
784	MOF-Derived Co ₃ O ₄ Nanoparticles Catalyzing Hydrothermal Deoxygenation of Fatty Acids for Alkane Production. ACS Omega, 2022, 7, 33482-33490.	1.6	2
785	Persulfate activation by single-atom catalysts for the removal of organic pollutants: A review. , 2023, 2, 63-79.		0
786	Cu(II)-Based Coordination Polymer as a Pristine Form Usable Electrocatalyst for Oxygen Reduction Reaction: Experimental Evaluation and Theoretical Insights into Biomimetic Mechanistic Aspects. Inorganic Chemistry, 2022, 61, 15699-15710.	1.9	2
787	Two-Dimensional Metal–Organic Framework Superstructures from Ice-Templated Self-Assembly. Journal of the American Chemical Society, 2022, 144, 17457-17467.	6.6	47
788	Emerging surface strategies for porous materials-based phase change composites. Matter, 2022, 5, 3225-3259.	5.0	21
789	Metal-organic frameworks supported Ni–Co–S nanosheet arrays for advanced hybrid supercapacitors. International Journal of Hydrogen Energy, 2022, 47, 39265-39275.	3.8	13
790	Quasi-Cu-MOFs: highly improved water stability and electrocatalytic activity toward H ₂ O ₂ reduction among pristine 3D MOFs. Journal of Materials Chemistry A, 2022, 11, 31-40.	5.2	7
791	Bioengineered Metallic Nanomaterials for Nanoscale Drug Delivery Systems. Nanotechnology in the Life Sciences, 2022, , 187-225.	0.4	2
792	Two-dimensional materials for electrocatalysis and energy storage applications. Inorganic Chemistry Frontiers, 2022, 9, 6008-6046.	3.0	9
793	A flexible route to crisp-like metal–organic framework derivatives by crystalline transformation. Inorganic Chemistry Frontiers, 0, , .	3.0	0
794	Compositing of MOFs with ceramic and nanoparticles for efficient and rapid adsorptive desalination of artificial seawater or NaCl solution. RSC Advances, 2022, 12, 29793-29804.	1.7	1
795	Nanozyme Based on Porphyrinic Metal–Organic Framework for Electrocatalytic CO ₂ Reduction. Small Structures, 2023, 4, .	6.9	2
796	A Janus heteroatom-doped carbon electrocatalyst for hydrazine oxidation. National Science Review, 2023, 10, .	4.6	16
797	Synthesis of copper/chromium metal organic frameworks - Derivatives as an advanced electrode material for high-performance supercapacitors. Ceramics International, 2023, 49, 5119-5129.	2.3	33
798	Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform. Journal of the American Chemical Society, 2022, 144, 19973-19980.	6.6	32

	CITATION R	EPORT	
#	Article	IF	CITATIONS
799	In situ construction of SnO-NiO derived from metal-organic frameworks on nickel foam for energy storage devices. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104553.	2.7	2
800	Metal-organic frameworks for advanced aqueous ion batteries and supercapacitors. EnergyChem, 2022, 4, 100090.	10.1	22
801	The promoting effect of alkali metal and H2O on Mn-MOF derivatives for toluene oxidation: A combined experimental and theoretical investigation. Journal of Catalysis, 2022, 415, 218-235.	3.1	78
802	The progress of electrochromic materials based on metal–organic frameworks. Coordination Chemistry Reviews, 2023, 475, 214891.	9.5	27
803	Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination Chemistry Reviews, 2023, 474, 214868.	9.5	25
804	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	9.5	43
805	Metal-organic framework-induced edge-riched growth of layered Bi2Se3 towards ultrafast Na-ion storage. Journal of Power Sources, 2023, 555, 232387.	4.0	18
806	Recent advances in metal–organic frameworks–derived carbon-based materials in sulfate radical-based advanced oxidation processes for organic pollutant removal. Chemical Engineering Journal, 2023, 454, 140244.	6.6	27
807	A Novel Membrane-like 2D A'-MoS2 as Anode for Lithium- and Sodium-Ion Batteries. Membranes, 2022, 12, 1156.	1.4	4
808	A comprehensive review on bioâ€mimicked multimolecular frameworks andÂsupramolecules as scaffolds for enzyme immobilization. Biotechnology and Bioengineering, 2023, 120, 352-398.	1.7	3
809	Ultrahigh pressure-induced modification of morphology and performance of MOFs-derived Cu@C electrocatalysts. Nanoscale Advances, 0, , .	2.2	0
810	Metal–organic framework derived vanadium oxide supported nanoporous carbon structure as a bifunctional electrocatalyst for potential application in metal air batteries. RSC Advances, 2022, 13, 652-664.	1.7	5
811	Size and morphology control of two-dimensional metal-organic frameworks through coordination modulation. Microporous and Mesoporous Materials, 2023, 348, 112379.	2.2	1
812	Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges. Materials Science and Engineering Reports, 2023, 152, 100714.	14.8	12
813	Efficient direct electrocatalysis of nano-dodecahedron for the highly sensitive and selective detection of rutin. Microchemical Journal, 2023, 186, 108332.	2.3	3
814	Layered Double Hydroxides Derived from MIL-88A(Fe) as an Efficient Adsorbent for Enhanced Removal of Lead (II) from Water. International Journal of Molecular Sciences, 2022, 23, 14556.	1.8	3
815	Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods, 2022, 11, 3727.	1.9	9
817	Kinetic and Thermodynamic Insights into Advanced Energy Storage Mechanisms of Battery-Type Bimetallic Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 10338-10346.	3.2	4

#	Article	IF	CITATIONS
818	Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications. Science China Chemistry, 2023, 66, 65-77.	4.2	16
819	Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers, 2022, 14, 5279.	2.0	7
820	Structure Engineering and Electronic Modulation of Transition Metal Interstitial Compounds for Electrocatalytic Water Splitting. Accounts of Materials Research, 2023, 4, 42-56.	5.9	20
821	Characterization of ZnO and Mn-doped ZnO nanoparticles and their antimicrobial activity. Rendiconti Lincei, 2023, 34, 189-198.	1.0	2
822	Nanoarchitectonics of metal–organic frameworks having hydroxy group for adsorption, catalysis, and sensing. Journal of Industrial and Engineering Chemistry, 2023, 119, 181-192.	2.9	8
823	Fe, Ni-modified ZIF-8 as a tensive precursor to derive N-doped carbon as Na and Li-ion batteries anodes. Nanotechnology, 2023, 34, 085401.	1.3	5
824	Review on Porosity Control in Nanostructured Semiconducting Metal Oxides and Its Influence on Chemiresistive Gas Sensing. ACS Applied Nano Materials, 2023, 6, 1027-1049.	2.4	13
825	In Situ Carbon-Encapsulated Copper-Doped Cerium Oxide Derived from MOFs for Boosting CO ₂ -to-CH ₄ Electro-Conversion. ACS Catalysis, 2023, 13, 1545-1553.	5.5	22
826	Photocurrent-Polarity-Switching Photoelectrochemical Biosensor for Switching Spatial Distance Electroactive Tags. ACS Sensors, 2023, 8, 317-325.	4.0	60
827	Mn–N–C catalysts derived from metal triazole framework with hierarchical porosity for efficient oxygen reduction. Nanotechnology, 2023, 34, 145403.	1.3	1
828	Metalâ€Organic Framework Derived Terephthalate Ligand Decorated TiO ₂ with Various Morphologies for Efficient Photocatalytic H ₂ Evolution. Chemistry - A European Journal, 2023, 29, .	1.7	4
829	Reticular Coordination Induced Interfacial Interstitial Carbon Atoms on Ni Nanocatalysts for Highly Selective Hydrogenation of Bio-Based Furfural under Facile Conditions. Nanomaterials, 2023, 13, 285.	1.9	2
830	Tuning metal oxide-support interaction and crystal structure of prussian blue derived iron-based oxygen carriers for enhanced chemical looping CO2 conversion. Separation and Purification Technology, 2023, 310, 123089.	3.9	3
831	Unravelling the influence of interfacial tailoring in metal-organic framework-derived ultrathin sheets of Co2P/Cu3P for high-performance hybrid supercapacitor. Materials Today Sustainability, 2023, 21, 100335.	1.9	7
832	A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts. Journal of Materials Science, 0, , .	1.7	3
833	Ultrafine ZnSe/CoSe nanodots encapsulated in core–shell MOF-derived hierarchically porous N-doped carbon nanotubes for superior lithium/sodium storage. Journal of Materials Chemistry A, 2023, 11, 5056-5066.	5.2	12
834	Multivariate Porphyrinic MOFs as Precursors of Nanoalloy Catalysts for Efficient Dehydrogenation of Hydrogen Molecular Carriers. ACS Applied Energy Materials, 0, , .	2.5	0
835	Oriented Design of Transition-Metal-Oxide Hollow Multishelled Micropolyhedron Derived from Bimetal–Organic Frameworks for the Electrochemical Detection of Multipesticide Residues. Journal of Agricultural and Food Chemistry, 2023, 71, 2600-2609.	2.4	9

#	Article	IF	CITATIONS
836	Sowing Single Atom Seeds: A Versatile Strategy for Hyper‣ow Noble Metal Loading to Boost Hydrogen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	14
837	UiO-66-derived Ce/Ni-ZrO2 nano-catalysts with a large nickel surface area for the highly efficient CO2 methanation under high GHSVs. Fuel, 2023, 340, 127553.	3.4	2
838	Novel magnetic zeolitic imidazolate framework for room temperature enhanced catalysis. Inorganic Chemistry Communication, 2023, 150, 110463.	1.8	7
839	High-performance depolymerization of lignin by bimetallic Cu-Ni@C catalysts prepared with MOF as a carrier under mild conditions. Applied Catalysis A: General, 2023, 656, 119120.	2.2	3
840	Electrochemical deposition for metal organic Frameworks: Advanced Energy, Catalysis, sensing and separation applications. Journal of Electroanalytical Chemistry, 2023, 937, 117417.	1.9	6
841	Involvement of metal organic frameworks in wearable electrochemical sensor for efficient performance. Trends in Environmental Analytical Chemistry, 2023, 38, e00200.	5.3	22
842	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	9.5	7
843	A new strategy for preparation of copper oxides composites as anode materials for Li-ion storage. Solid State Ionics, 2023, 394, 116195.	1.3	1
844	Functional metal/covalent organic framework materials for triboelectric nanogenerator. Coordination Chemistry Reviews, 2023, 486, 215118.	9.5	49
845	Flexible 3,5-bis(3,4-dicarboxyphenoxy) benzoic acid based coordination polymers as photocatalysts for the sensitive photodegradation of methylene blue. Polyhedron, 2023, 237, 116393.	1.0	2
846	Metal-organic framework derived core-shell nanoparticles as high performance bifunctional electrocatalysts for HER and OER. Applied Surface Science, 2023, 616, 156499.	3.1	26
847	A metal-organic framework-based immunomodulatory nanoplatform for anti-atherosclerosis treatment. Journal of Controlled Release, 2023, 354, 615-625.	4.8	54
848	MOF-related electrocatalysts for sulfur reduction/evolution reactions: Composition modulation, structure design, and mechanism research. EScience, 2023, 3, 100107.	25.0	6
849	Rationally Designed Manganese-Based Metal–Organic Frameworks as Altruistic Metal Oxide Precursors for Noble Metal-Free Oxygen Reduction Reaction. Inorganic Chemistry, 2023, 62, 3026-3035.	1.9	3
850	Fe-metal organic framework converts mechanical energy with piezoelectric polarization to remove carbamazepine in water: Efficiency, pathway and mechanism. Chemical Engineering Journal, 2023, 460, 141839.	6.6	6
851	Metal-organic frameworks-derived layered double hydroxides: From controllable synthesis to various electrochemical energy storage/conversion applications. Advances in Colloid and Interface Science, 2023, 313, 102865.	7.0	15
852	Metal-organic framework and its derivative nanoparticles for effective textile wastewater treatment. , 2023, , 155-188.		0
853	Porous Carbon in Food Industry. Materials Horizons, 2023, , 733-761.	0.3	0

#	Article	IF	CITATIONS
854	Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers, 2023, 15, 1450.	2.0	12
855	Microfluidics-assisted, time-effective and continuous synthesis of bimetallic ZIF-8/67 under different synthesis conditions. Journal of Materials Science, 2023, 58, 5219-5233.	1.7	4
856	A novel electrochemical sensor based on <i>AuNPs/Coâ€CNs</i> for the simultaneous detection of acetaminophen and 4â€aminophenol. Electroanalysis, 2023, 35, .	1.5	1
857	Hierarchically Ordered Macro–Mesoporous Electrocatalyst with Hydrophilic Surface for Efficient Oxygen Reduction Reaction. Advanced Materials, 2023, 35, .	11.1	30
858	Understanding the synergistically enhanced thermocatalytic decomposition of ammonium perchlorate using cobalt nanoparticle-embedded nitrogen-doped graphitized carbon. Materials Advances, 2023, 4, 2332-2339.	2.6	4
859	Photovoltaic performance of MOF-derived transition metal doped titania-based photoanodes for DSSCs. Scientific Reports, 2023, 13, .	1.6	13
860	Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nature Communications, 2023, 14, .	5.8	23
861	Metal–organic frameworks for solid-state electrolytes: A mini review. Electrochemistry Communications, 2023, 150, 107491.	2.3	18
864	Boosting the Ceramics with In Situ MOF-Derived Nanocarbons. , 0, , 1537-1545.		2
869	Process and manufacturing of nanomaterial-based metal organic frameworks. , 2023, , 55-73.		0
870	Nanomaterials and catalysis. , 2023, , 39-54.		0
896	Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis. Nano Research, 2023, 16, 12919-12935.	5.8	1
904	Enhancing electrochemical sensing through the use of functionalized graphene composites as nanozymes. Nanoscale, 2023, 15, 16514-16538.	2.8	0
906	Advancing metal–organic frameworks' materials chemistry. Advances in Inorganic Chemistry, 2023, , 69-118.	0.4	0
910	Computational modeling guided design of metal–organic frameworks for photocatalysis – a mini review. Catalysis Science and Technology, 0, , .	2.1	0
917	Tuning atomic-scale sites in metal–organic framework-based nanozymes for sensitive biosensing. Sensors & Diagnostics, 0, , .	1.9	0
925	MOF-Based Nanoarchitectonics for Lithium-Ion Batteries: A Comprehensive Review. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	1.9	0
942	Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to hydrocarbon fuels. Nanoscale, 0, , .	2.8	0

#	Article	IF	CITATIONS
947	Metal-organic frameworks and their derivatives: emerging materials for energy conversion and storage. , 2024, , 1-17.		0