Mechanically robust, readily repairable polymers via ta

Science 359, 72-76 DOI: 10.1126/science.aam7588

Citation Report

#	Article	IF	CITATIONS
3	Nitroarylurea-terminated supramolecular polymers that exhibit facile thermal repair and aqueous swelling-induced sealing of defects. Polymer, 2018, 140, 1-9.	3.8	7
4	Roomâ€Temperature Selfâ€Healing and Recyclable Tough Polymer Composites Using Nitrogenâ€Coordinated Boroxines. Advanced Functional Materials, 2018, 28, 1800560.	14.9	192
5	Room Temperature One-Step Conversion from Elemental Sulfur to Functional Polythioureas through Catalyst-Free Multicomponent Polymerizations. Journal of the American Chemical Society, 2018, 140, 6156-6163.	13.7	191
6	Superstretchable, Selfâ€Healing Polymeric Elastomers with Tunable Properties. Advanced Functional Materials, 2018, 28, 1800741.	14.9	162
7	Self-Healing Electronic Materials for a Smart and Sustainable Future. ACS Applied Materials & Interfaces, 2018, 10, 15331-15345.	8.0	170
8	Selfâ€Healing Biomaterials: From Molecular Concepts to Clinical Applications. Advanced Materials Interfaces, 2018, 5, 1800118.	3.7	73
9	Supramolecular elastomers: Switchable mechanical properties and tuning photohealing with changes in supramolecular interactions. Journal of Polymer Science Part A, 2018, 56, 1003-1011.	2.3	3
10	<i>In situ</i> TEM observation of rebonding on fractured silicon carbide. Nanoscale, 2018, 10, 6261-6269.	5.6	37
12	Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. Nanoscale Research Letters, 2018, 13, 393.	5.7	34
13	Design of Azomethine Diols for Efficient Self-Healing of Strong Polyurethane Elastomers. Molecules, 2018, 23, 2928.	3.8	5
14	Self-healable electroluminescent devices. Light: Science and Applications, 2018, 7, 102.	16.6	71
15	Tracking Local Mechanical Impact in Heterogeneous Polymers with Direct Optical Imaging. Angewandte Chemie - International Edition, 2018, 57, 16385-16390.	13.8	38
16	Thermal-Driven Self-Healing and Recyclable Waterborne Polyurethane Films Based on Reversible Covalent Interaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 14490-14500.	6.7	131
17	A Tough and Stiff Hydrogel with Tunable Water Content and Mechanical Properties Based on the Synergistic Effect of Hydrogen Bonding and Hydrophobic Interaction. Macromolecules, 2018, 51, 8136-8146.	4.8	179
18	Next-generation self-healing materials. Science, 2018, 362, 150-151.	12.6	60
19	Stretchable and self-healable organometal halide perovskite nanocrystal-embedded polymer gels with enhanced luminescence stability. Nanophotonics, 2018, 7, 1949-1958.	6.0	27
20	Multi-cycle deformation of supramolecular elastomers: Constitutive modeling and structure-property relations. International Journal of Engineering Science, 2018, 133, 311-335.	5.0	4
21	Anti-Kasha's Rule Emissive Switching Induced by Intermolecular H-Bonding. Chemistry of Materials, 2018, 30, 8008-8016.	6.7	75

#	Article	IF	CITATIONS
22	A self-healing conductive and stretchable aligned carbon nanotube/hydrogel composite with a sandwich structure. Nanoscale, 2018, 10, 19360-19366.	5.6	39
23	Self-assembly of lattices with high structural complexity from a geometrically simple molecule. Science, 2018, 361, 1242-1246.	12.6	127
24	A facile dynamic crosslinked healable poly(oxime-urethane) elastomer with high elastic recovery and recyclability. Journal of Materials Chemistry A, 2018, 6, 18154-18164.	10.3	102
25	An Elastic Autonomous Selfâ€Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Advanced Materials, 2018, 30, e1801435.	21.0	280
26	Granular, Slow-Release Fertilizer from Urea-formaldehyde, Ammonium Polyphosphate, and Amorphous Silica Gel: A New Strategy Using Cold Extrusion. Journal of Agricultural and Food Chemistry, 2018, 66, 7606-7615.	5.2	32
27	A deep insight into the intrinsic healing mechanism in ureidoâ€pyrimidinone copolymers. Polymers for Advanced Technologies, 2018, 29, 2899-2908.	3.2	11
28	Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Science Advances, 2018, 4, eaat8192.	10.3	422
29	Mechanically Robust Atomic Oxygenâ€Resistant Coatings Capable of Autonomously Healing Damage in Low Earth Orbit Space Environment. Advanced Materials, 2018, 30, e1803854.	21.0	109
30	A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nature Communications, 2018, 9, 2725.	12.8	242
31	Extremely Stretchable, Self-Healable Elastomers with Tunable Mechanical Properties: Synthesis and Applications. Chemistry of Materials, 2018, 30, 6026-6039.	6.7	118
32	Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. Advanced Materials, 2018, 30, e1802560.	21.0	140
33	Nanoparticle–Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromolecular Rapid Communications, 2018, 39, e1800337.	3.9	85
34	Coordinated silicon elastomer coating@fabrics with oil/water separation capabilities, outstanding durability and ultra-fast room-temperature self-healing ability. Journal of Materials Chemistry A, 2018, 6, 17156-17163.	10.3	50
35	Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chemical Reviews, 2018, 118, 8936-8982.	47.7	575
36	High-performance recyclable cross-linked polyurethane with orthogonal dynamic bonds: The molecular design, microstructures, and macroscopic properties. Polymer, 2018, 148, 127-137.	3.8	48
37	Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers?. Polymer Journal, 2018, 50, 919-929.	2.7	34
38	Direct Observation of Single-Molecule Stick–Slip Motion in Polyamide Single Crystals. ACS Macro Letters, 2018, 7, 762-766.	4.8	28
39	Tuning chain extender structure to prepare high-performance thermoplastic polyurethane elastomers. RSC Advances, 2018, 8, 20701-20711.	3.6	15

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
40	Selfa Healing of Polymers via Supramolecular Chemistry. Advanced Materials Interfaces, 2018, 5, 1800384.	3.7	132
41	Aggregation-induced ratiometric emission and mechanochromic luminescence in a pyrene-benzohydrazonate conjugate. New Journal of Chemistry, 2018, 42, 12644-12648.	2.8	22
42	Ring–Chain Competition in Supramolecular Polymerization Directed by Molecular Recognition of the Bisporphyrin Cleft. Macromolecules, 2019, 52, 6160-6168.	4.8	24
44	Synthesis of UV-Responsive Self-Healing Microcapsules and Their Potential Application in Aerospace Coatings. ACS Applied Materials & Amp; Interfaces, 2019, 11, 33314-33322.	8.0	75
45	Facile Fabrication of Room-Temperature Self-Healing, Mechanically Robust, Highly Stretchable, and Tough Polymers Using Dual Dynamic Cross-Linked Polymer Complexes. ACS Applied Materials & Interfaces, 2019, 11, 33356-33363.	8.0	41
47	Noncovalent Muscle-Inspired Hydrogel with Rapid Recovery and Antifatigue Property under Cyclic Stress. ACS Applied Materials & Interfaces, 2019, 11, 31393-31401.	8.0	17
48	Fluoride-responsive debond on demand adhesives: Manipulating polymer crystallinity and hydrogen bonding to optimise adhesion strength at low bonding temperatures. European Polymer Journal, 2019, 119, 260-271.	5.4	24
49	Sustainable, Reshapable Surfactant–Polyelectrolyte Plastics Employing Water as a Plasticizer. ACS Applied Materials & Interfaces, 2019, 11, 31311-31316.	8.0	6
50	Reprocessable Aliphatic Polydithiourethanes Based on the Reversible Addition Reaction of Diisothiocyanates and Dithiols. Macromolecules, 2019, 52, 6080-6087.	4.8	11
51	Notch-Insensitive, Ultrastretchable, Efficient Self-Healing Supramolecular Polymers Constructed from Multiphase Active Hydrogen Bonds for Electronic Applications. Chemistry of Materials, 2019, 31, 7951-7961.	6.7	106
52	Endowing recyclability to anti-adhesion materials <i>via</i> designing physically crosslinked polyurethane. Journal of Materials Chemistry A, 2019, 7, 22903-22911.	10.3	10
53	High-performance poly(acrylic acid) hydrogels formed with a block copolymer crosslinker containing amino-acid derivatives. Soft Matter, 2019, 15, 7381-7389.	2.7	9
54	Toughening and self-healing fiber-reinforced polymer composites using carbon nanotube modified poly (ethylene-co-methacrylic acid) sandwich membrane. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105510.	7.6	21
55	Molecular-Level Tuning toward Aggregation Dynamics of Self-Healing Materials. Macromolecules, 2019, 52, 5289-5297.	4.8	25
56	A facile antifogging/frost-resistant coating with self-healing ability. Chemical Engineering Journal, 2019, 378, 122173.	12.7	40
57	Assembling a Natural Small Molecule into a Supramolecular Network with High Structural Order and Dynamic Functions. Journal of the American Chemical Society, 2019, 141, 12804-12814.	13.7	190
58	Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Progress in Polymer Science, 2019, 97, 101144.	24.7	169
59	Sustainable and tough polyurethane films with self-healability and flame retardance enabled by reversible chemistry and cyclotriphosphazene. Polymer Chemistry, 2019, 10, 4142-4153.	3.9	42

#	Article	IF	CITATIONS
60	Characteristics of Self-Healable Copolymers of Styrene and Eugenol Terminated Polyurethane Prepolymer. Polymers, 2019, 11, 1674.	4.5	7
61	Controlling Healing and Toughness in Polyurethanes by Branch-Mediated Tube Dilation. Macromolecules, 2019, 52, 8067-8078.	4.8	15
62	Pineneâ€Functionalized Polysiloxane as an Excellent Selfâ€Healing Superhydrophobic Polymer. Macromolecular Chemistry and Physics, 2019, 220, 1900361.	2.2	12
63	Processable and Luminescent Supramolecular Hydrogels from Complex Coacervation of Polycations with Lanthanide Coordination Polyanions. Macromolecules, 2019, 52, 8643-8650.	4.8	54
64	Photodirected Morphing Structures of Nanocomposite Shape Memory Hydrogel with High Stiffness and Toughness. ACS Applied Materials & amp; Interfaces, 2019, 11, 43631-43640.	8.0	32
65	What dielectric spectroscopy can tell us about supramolecular networks⋆. European Physical Journal E, 2019, 42, 133.	1.6	30
66	Catalyst-Free Construction of Versatile and Functional CS ₂ -Based Polythioureas: Characteristics from Self-Healing to Heavy Metal Absorption. Macromolecules, 2019, 52, 8596-8603.	4.8	31
67	Selfâ€Healing Properties of PDMS Elastomers via Guanine and Cytosine Base Pairs. Macromolecular Chemistry and Physics, 2019, 220, 1900280.	2.2	11
68	Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer, 2019, 183, 121912.	3.8	86
69	New ultrastiff bio-furan epoxy networks with high Tg: Facile synthesis to excellent properties. European Polymer Journal, 2019, 121, 109292.	5.4	21
70	Self-healing UI: Mechanically and Electrically Self-healing Materials for Sensing and Actuation Interfaces. , 2019, , .		19
71	Healable and Mechanically Super‣trong Polymeric Composites Derived from Hydrogenâ€Bonded Polymeric Complexes. Advanced Materials, 2019, 31, e1904882.	21.0	109
72	Slide-Ring Cross-Links Mediated Tough Metallosupramolecular Hydrogels with Superior Self-Recoverability. Macromolecules, 2019, 52, 6748-6755.	4.8	68
73	Advances in self-healing supramolecular soft materials and nanocomposites. Nano Convergence, 2019, 6, 29.	12.1	52
74	Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy and Environmental Science, 2019, 12, 3156-3163.	30.8	107
75	Tailoring biomimetic polymer networks towards an unprecedented combination of versatile mechanical characteristics. RSC Advances, 2019, 9, 15780-15784.	3.6	7
76	A Self-Healing and Shape Memory Polymer that Functions at Body Temperature. Molecules, 2019, 24, 3224.	3.8	39
77	Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nature Communications, 2019, 10, 4247.	12.8	199

ARTICLE IF CITATIONS # Halogen Bonding beyond Crystals in Materials Science. Journal of Physical Chemistry B, 2019, 123, 2.6 95 78 9281-9290. Detailed Approach to Investigate Thermodynamically Controlled Supramolecular Copolymerizations. Macromolecules, 2019, 52, 7430-7438. 79 4.8 Dual Cross-Linked Self-Healing and Recyclable Epoxidized Natural Rubber Based on Multiple Reversible 80 6.7 126 Effects. ACS Sustainable Chemistry and Engineering, 2019, 7, 4443-4455. Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by 8.0 Hydrogen Bonds and Coordination Bonds. ACS Applied Materials & amp; Interfaces, 2019, 11, 7387-7396. Supramolecular Emulsion Interfacial Polymerization. ACS Macro Letters, 2019, 8, 177-182. 82 4.8 34 Graphene based self-healing materials. Carbon, 2019, 146, 371-387. 10.3 Stretchable and self-healable hydrogel-based capacitance pressure and strain sensor for electronic 84 1.6 25 skin systems. Materials Research Express, 2019, 6, 0850b9. Using Dynamic Bonds to Enhance the Mechanical Performance: From Microscopic Molecular 4.8 64 Interactions to Macroscopic Properties. Macromolecules, 2019, 52, 5014-5025. Preparation, characterization and properties of intrinsic self-healing elastomers. Journal of 86 5.8 141 Materials Chemistry B, 2019, 7, 4876-4926. Mechanics of Strong and Tough Cellulose Nanopaper. Applied Mechanics Reviews, 2019, 71, . 10.1 74 A review of new approaches to analytical methods to determine the structure and morphology of 88 11.4 17 polymers. TrAC - Trends in Analytical Chemistry, 2019, 118, 470-476. Moldable Material from $\hat{\mu}$ -Poly-l-lysine and Lignosulfonate: Mechanical and Self-Healing Properties of a Bio-Based Polyelectrolyte Complex. ACS Omega, 2019, 4, 9756-9762. A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism. Journal of 90 10.3 106 Materials Chemistry A, 2019, 7, 15207-15214. Thermally Healable Polyurethanes Based on Furfural-Derived Monomers via Baylis-Hillman Reaction. 2.4 Macromólecular Research, 2019, 27, 895-904. Sulfur-Based Intramolecular Hydrogen-Bond: Excited-State Hydrogen-Bond On/Off Switch with Dual 92 13.7 81 Room-Temperature Phosphorescence. Journal of the American Chemical Society, 2019, 141, 9885-9894. Introduction of Reversible Urethane Bonds Based on Vanillyl Alcohol for Efficient Self-Healing of Polyurethane Elastomers. Molecules, 2019, 24, 2201. Design of Coordination-Crosslinked Nitrile Rubber with Self-Healing and Reprocessing Ability. 94 2.4 27 Macromolecular Research, 2019, 27, 803-810. An ultrafast self-healing polydimethylsiloxane elastomer with persistent sealing performance. 38 Materials Chemistry Frontiers, 2019, 3, 1411-1421.

#	Article	IF	CITATIONS
96	Temperature-regulated flexibility of polymer chains in rapidly self-healing hydrogels. NPG Asia Materials, 2019, 11, .	7.9	29
97	Bio-inspired self-healing polyurethanes with multiple stimulus responsiveness. Polymer Chemistry, 2019, 10, 3362-3370.	3.9	29
98	Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Applied Materials & Interfaces, 2019, 11, 20453-20464.	8.0	98
99	Polymer Chemistries Underpinning Materials for Skin-Inspired Electronics. Macromolecules, 2019, 52, 3965-3974.	4.8	67
100	Supramolecular protein glue to boost enzyme activity. Science China Materials, 2019, 62, 1341-1349.	6.3	8
101	A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as a Superabsorbent Polymer. Macromolecules, 2019, 52, 3257-3267.	4.8	75
102	Electric-Alignment Immobilization of Liquid Crystalline Colloidal Nanosheets with the Aid of a Natural Organic Polymer. Langmuir, 2019, 35, 7003-7008.	3.5	1
103	Coexistence of Antiadhesion Performance, Intrinsic Stretchability, and Transparency. ACS Applied Materials & amp; Interfaces, 2019, 11, 16914-16921.	8.0	8
104	A robust self-healing polyurethane elastomer: From H-bonds and stacking interactions to well-defined microphase morphology. Science China Materials, 2019, 62, 1188-1198.	6.3	83
105	Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone. Carbohydrate Polymers, 2019, 218, 68-77.	10.2	55
106	Self-healing polymers with tunable mechanical strengths via combined hydrogen bonding and zinc-imidazole interactions. Polymer, 2019, 174, 143-149.	3.8	41
107	A gas-plastic elastomer that quickly self-heals damage with the aid of CO2 gas. Nature Communications, 2019, 10, 1828.	12.8	57
108	Self-Healing Alkyl Acrylate-Based Supramolecular Elastomers Cross-Linked via Host–Guest Interactions. Macromolecules, 2019, 52, 2659-2668.	4.8	83
109	From mechanical resilience to active material properties in biopolymer networks. Nature Reviews Physics, 2019, 1, 249-263.	26.6	111
110	Photoâ€Regulated Supramolecular Polymers: Shining Beyond Disassembly and Reassembly. Advanced Optical Materials, 2019, 7, 1900033.	7.3	60
111	Sulfur Chemistry in Polymer and Materials Science. Macromolecular Rapid Communications, 2019, 40, e1800650.	3.9	204
112	Directing the Solid-State Organization of Racemates via Structural Mutation and Solution-State Assembly Processes. Journal of the American Chemical Society, 2019, 141, 6302-6309.	13.7	22
113	Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte Chemie - International Edition, 2019, 58, 7040-7044.	13.8	137

#	Article	IF	CITATIONS
114	A super-stretchable and tough functionalized boron nitride/PEDOT:PSS/poly(<i>N</i> -isopropylacrylamide) hydrogel with self-healing, adhesion, conductive and photothermal activity. Journal of Materials Chemistry A, 2019, 7, 8204-8209.	10.3	101
115	Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nature Communications, 2019, 10, 1164.	12.8	258
116	An interfacially polymerized self-healing organo/hydro copolymer with shape memory. Nanoscale, 2019, 11, 6846-6851.	5.6	19
117	Self-healable poly(acrylic acid- <i>co</i> -maleic acid)/glycerol/boron nitride nanosheet composite hydrogels at low temperature with enhanced mechanical properties and water retention. Soft Matter, 2019, 15, 3680-3688.	2.7	58
118	Rapid and efficient polymer/graphene based multichannel self-healing material via Diels-Alder reaction. Carbon, 2019, 147, 398-407.	10.3	52
119	Novel polyurethane with high self-healing efficiency for functional energetic composites. Polymer Testing, 2019, 76, 82-89.	4.8	38
120	Semiaromatic Poly(thioester) from the Copolymerization of Phthalic Thioanhydride and Epoxide: Synthesis, Structure, and Properties. Macromolecules, 2019, 52, 2439-2445.	4.8	38
121	A Highly Efficient Selfâ€Healing Elastomer with Unprecedented Mechanical Properties. Advanced Materials, 2019, 31, e1901402.	21.0	413
122	Highly Tough, Stretchable, Self-Healing, and Recyclable Hydrogels Reinforced by in Situ-Formed Polyelectrolyte Complex Nanoparticles. Macromolecules, 2019, 52, 3141-3149.	4.8	115
123	Self-healing and recyclable biomass aerogel formed by electrostatic interaction. Chemical Engineering Journal, 2019, 371, 213-221.	12.7	35
124	Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte Chemie, 2019, 131, 7114-7118.	2.0	29
125	Designing polymers for advanced battery chemistries. Nature Reviews Materials, 2019, 4, 312-330.	48.7	579
126	Unclicking of thioureas: Base catalyzed elimination of anilines and isothiocyanates from thioureas. Tetrahedron, 2019, 75, 2188-2192.	1.9	8
127	Synthesis of Self-Healing Polymers by Scandium-Catalyzed Copolymerization of Ethylene and Anisylpropylenes. Journal of the American Chemical Society, 2019, 141, 3249-3257.	13.7	144
128	Ultrastiff and Tough Supramolecular Hydrogels with a Dense and Robust Hydrogen Bond Network. Chemistry of Materials, 2019, 31, 1430-1440.	6.7	241
129	Composite Nanotube Ring Structures Formed by Two-Step Self-Assembly for Drug Loading/Release. Langmuir, 2019, 35, 3108-3115.	3.5	9
130	Thermally and Near-Infrared Light-Induced Shape Memory Polymers Capable of Healing Mechanical Damage and Fatigued Shape Memory Function. ACS Applied Materials & amp; Interfaces, 2019, 11, 9470-9477.	8.0	81
131	Nitrogen-Coordinated Boroxines Enable the Fabrication of Mechanically Robust Supramolecular Thermosets Capable of Healing and Recycling under Mild Conditions. ACS Applied Materials & Interfaces, 2019, 11, 9478-9486.	8.0	67

#	Article	IF	CITATIONS
132	Effect of solvent–matrix interactions on structures and mechanical properties of micelleâ€crosslinked gels. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 473-483.	2.1	8
133	Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nature Communications, 2019, 10, 800.	12.8	154
134	A double-site Lewis pair for highly active and living synthesis of sulfur-containing polymers. Polymer Chemistry, 2019, 10, 6555-6560.	3.9	17
135	Self-healing and shape-memory solid polymer electrolytes with high mechanical strength facilitated by a poly(vinyl alcohol) matrix. Polymer Chemistry, 2019, 10, 6561-6569.	3.9	51
136	Extremely Fast Self-Healable Bio-Based Supramolecular Polymer for Wearable Real-Time Sweat-Monitoring Sensor. ACS Applied Materials & Interfaces, 2019, 11, 46165-46175.	8.0	110
137	Mechanistic Insights on Spontaneous Moisture-Driven Healing of Urea-Based Polyurethanes. ACS Applied Materials & Interfaces, 2019, 11, 46176-46182.	8.0	18
138	Dual-Cross-Linked Supramolecular Polysiloxanes for Mechanically Tunable, Damage-Healable and Oil-Repellent Polymeric Coatings. ACS Applied Materials & Interfaces, 2019, 11, 47382-47389.	8.0	44
139	Tuning Conformational H-Bonding Arrays in Aromatic/Alicyclic Polythiourea toward High Energy-Storable Dielectric Material. Macromolecules, 2019, 52, 8781-8787.	4.8	27
140	Hydrogen Bond-Assisted Poly (ethyl oxazoline) Polymer as a Functional Binder to Stabilize the Electrochemical Performance of Sulfur Cathodes. Journal of the Electrochemical Society, 2019, 166, A4080-A4087.	2.9	1
141	Studies on PBFMO- <i>b</i> -PNMMO alternative block thermoplastic elastomers as potential binders for solid propellants. RSC Advances, 2019, 9, 29765-29771.	3.6	12
142	Roomâ€ŧemperature selfâ€healing and reprocessing of Diselenideâ€containing waterborne polyurethanes under visible light. Journal of Applied Polymer Science, 2019, 136, 47071.	2.6	25
143	Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Materials, 2019, 7, .	5.1	97
144	Mechanically strong hydrogels achieved by designing homogeneous network structure. Materials and Design, 2019, 163, 107547.	7.0	36
145	Self-healing of biobased furan polymers: Recovery of high mechanical strength by mild heating. Polymer Degradation and Stability, 2019, 161, 13-18.	5.8	19
146	The Past 40 Years of Macromolecular Sciences: Reflections on Challenges in Synthetic Polymer and Material Science. Macromolecular Rapid Communications, 2019, 40, e1800610.	3.9	20
147	Archimedean Spiral Inspired Conductive Supramolecular Elastomer with Rapid Electrical and Mechanical Selfâ€Healing Capability for Sensor Application. Advanced Materials Technologies, 2019, 4, 1800424.	5.8	12
148	Alcohol-assisted self-healing network polymer based on vicinal tricarbonyl chemistry. Polymer, 2019, 161, 101-108.	3.8	13
149	Highâ€Performance Polymeric Materials through Hydrogenâ€Bond Crossâ€Linking. Advanced Materials, 2020, 32, e1901244.	21.0	292

#	Article	IF	CITATIONS
150	Supramolecular polymer chemistry: From structural control to functional assembly. Progress in Polymer Science, 2020, 100, 101167.	24.7	135
151	Room temperature readily self-healing polymer via rationally designing molecular chain and crosslinking bond for flexible electrical sensor. Journal of Colloid and Interface Science, 2020, 559, 152-161.	9.4	31
152	Preprogrammed Dynamic Microstructured Polymer Interfaces. Advanced Functional Materials, 2020, 30, 1903478.	14.9	12
153	Mutually-complementary structure design towards highly stretchable elastomers with robust strength and autonomous self-healing property. Polymer, 2020, 186, 122003.	3.8	27
154	Transparent, Mechanically Strong, Extremely Tough, Selfâ€Recoverable, Healable Supramolecular Elastomers Facilely Fabricated via Dynamic Hard Domains Design for Multifunctional Applications. Advanced Functional Materials, 2020, 30, 1907109.	14.9	208
155	LL1, a novel and highly selective STAT3 inhibitor, displays anti olorectal cancer activities <i>in v</i> itro and <i>in vivo</i> . British Journal of Pharmacology, 2020, 177, 298-313.	5.4	18
156	Shape memory effects in self-healing polymers. Progress in Polymer Science, 2020, 102, 101208.	24.7	130
157	Imidazolium-based ionic polyurethanes with high toughness, tunable healing efficiency and antibacterial activities. Polymer Chemistry, 2020, 11, 867-875.	3.9	45
158	Viscoelasticity in associating oligomers and polymers: experimental test of the bond lifetime renormalization model. Soft Matter, 2020, 16, 390-401.	2.7	40
159	Stretchable, compressible, self-healable carbon nanotube mechanically enhanced composite hydrogels with high strain sensitivity. Journal of Materials Chemistry C, 2020, 8, 1933-1942.	5.5	18
160	Resonance Raman spectroscopic and density functional theoretical study on microsolvated 2-Thiocytosine clusters with polar solvents. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118043.	3.9	3
161	Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Applied Materials Today, 2020, 19, 100542.	4.3	40
162	On Supramolecular Polymerization: Interview with Takuzo Aida. Advanced Materials, 2020, 32, 1905445.	21.0	7
163	Flame Retardancy and Mechanical Properties of Bioâ€Based Furan Epoxy Resins with High Crosslink Density. Macromolecular Materials and Engineering, 2020, 305, 1900587.	3.6	23
164	Achieving Fast Self-Healing and Reprocessing of Supertough Water-Dispersed "Living―Supramolecular Polymers Containing Dynamic Ditelluride Bonds under Visible Light. ACS Applied Materials & Interfaces, 2020, 12, 6383-6395.	8.0	59
165	A Self-Cross-Linking Supramolecular Polymer Network Enabled by Crown-Ether-Based Molecular Recognition. Journal of the American Chemical Society, 2020, 142, 2051-2058.	13.7	108
166	Bulk network polymers with dynamic B–O bonds: healable and reprocessable materials. Materials Horizons, 2020, 7, 694-714.	12.2	151
167	Economic Sulfur Conversion to Functional Polythioamides through Catalyst-Free Multicomponent Polymerizations of Sulfur, Acids, and Amines. Journal of the American Chemical Society, 2020, 142, 978-986.	13.7	121

# 168	ARTICLE Thermally Self-Healable Titanium Dioxide/Polyurethane Nanocomposites with Recoverable Mechanical and Dielectric Properties. Macromolecular Research, 2020, 28, 373-381.	IF 2.4	Citations 9
169	Robust Poly(urethane-amide) Protective Film with Fast Self-Healing at Room Temperature. ACS Applied Polymer Materials, 2020, 2, 285-294.	4.4	23
170	Improving the Lifetime of CsPbBr3 Perovskite in Water Using Self-Healing and Transparent Elastic Polymer Matrix. Frontiers in Chemistry, 2020, 8, 766.	3.6	8
171	Concurrent thiol–ene competitive reactions provide reprocessable, degradable and creep-resistant dynamic–permanent hybrid covalent networks. Green Chemistry, 2020, 22, 7769-7777.	9.0	34
172	Self-healing perovskite solar cells. Solar Energy, 2020, 209, 408-414.	6.1	41
173	A Supramolecular Polymer Formed by Small Molecules. Cell Reports Physical Science, 2020, 1, 100144.	5.6	14
174	Microstructure reset-based self-healing method using sub-second electric pulsing for metallic materials. Applied Materials Today, 2020, 20, 100755.	4.3	17
175	Intelligent lubricating materials: A review. Composites Part B: Engineering, 2020, 202, 108450.	12.0	89
176	Selfâ€Healing of Electrical Damage in Polymers. Advanced Science, 2020, 7, 2002131.	11.2	46
177	High-Strength, Fast Self-Healing, Aging-Insensitive Elastomers with Shape Memory Effect. ACS Applied Materials & Interfaces, 2020, 12, 35445-35452.	8.0	35
178	Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer. Physical Chemistry Chemical Physics, 2020, 22, 17620-17631.	2.8	30
179	Synthesis of unsymmetrical sulfamides and polysulfamides <i>via</i> SuFEx click chemistry. Chemical Science, 2020, 11, 7807-7812.	7.4	38
180	The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Accounts of Chemical Research, 2020, 53, 1580-1592.	15.6	85
181	Types of chemistries involved in self-healing polymeric systems. , 2020, , 17-73.		4
182	Biomimetic Brushlike Slippery Coatings with Mechanically Robust, Self-Cleaning, and Icephobic Properties. ACS Applied Materials & Interfaces, 2020, 12, 54041-54052.	8.0	39
183	Self-Healing Material with Reversible Luminescence Switch Behavior. ACS Applied Materials & Interfaces, 2020, 12, 54026-54034.	8.0	48
184	Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020, 8, 25499-25527.	10.3	106
185	Self-Healing Thermoplastic Elastomers Formed from Triblock Copolymers with Dense 1,2,3-Triazole Blocks. Macromolecules, 2020, 53, 10323-10329.	4.8	17

#	Article	IF	CITATIONS
186	Conformation-Dependent Phosphorescence of Galactose-Decorated Phosphors and Assembling-Induced Phosphorescence Enhancement. ACS Applied Materials & Interfaces, 2020, 12, 52059-52069.	8.0	18
187	Thiosquaramide-Based Supramolecular Polymers: Aromaticity Gain in a Switched Mode of Self-Assembly. Journal of the American Chemical Society, 2020, 142, 19907-19916.	13.7	26
188	Tuning the Self-Healing Response of Poly(dimethylsiloxane)-Based Elastomers. ACS Applied Polymer Materials, 2020, 2, 4127-4139.	4.4	46
189	Study on a polyacrylate-based waterborne coating: facile preparation, convenient self-healing behavior and photoluminescence properties. Journal of Materials Chemistry C, 2020, 8, 12638-12647.	5.5	15
190	Thermally healable polyurethane with tailored mechanical performance using dynamic crosslinking motifs. New Journal of Chemistry, 2020, 44, 13584-13590.	2.8	19
191	Selfâ€healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. Chemical Record, 2020, 20, 1142-1162.	5.8	35
192	Mechanically robust and tough waterborne polyurethane films based on diselenide bonds and dual H-bonding interactions with fast visible-light-triggered room-temperature self-healability. Polymer Chemistry, 2020, 11, 5463-5474.	3.9	30
193	New Kind of Thermoplastic Polyurea Elastomers Synthesized from CO ₂ and with Self-Healing Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 12677-12685.	6.7	18
194	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	21.0	77
195	Phosgene-free and Chemoselective Synthesis of Novel Polyureas from Activated <scp>l</scp> -Lysine with Diphenyl Carbonate. Macromolecules, 2020, 53, 6809-6815.	4.8	9
196	Highly Conductive, Stretchable, Adhesive, and Selfâ€Healing Polymer Hydrogels for Strain and Pressure Sensor. Macromolecular Materials and Engineering, 2020, 305, 2000479.	3.6	21
197	Exploiting Selfâ€Healing in Lithium Batteries: Strategies for Nextâ€Generation Energy Storage Devices. Advanced Energy Materials, 2020, 10, 2002815.	19.5	38
198	Hydrogen Bonding-Derived Healable Polyacrylate Elastomers via On-demand Copolymerization of n-Butyl Acrylate and tert-Butyl Acrylate. ACS Applied Materials & Interfaces, 2020, 12, 50812-50822.	8.0	21
199	Acylsemicarbazide Moieties with Dynamic Reversibility and Multiple Hydrogen Bonding for Transparent, High Modulus, and Malleable Polymers. Macromolecules, 2020, 53, 7914-7924.	4.8	62
200	Advanced Functional Hydrogel Biomaterials Based on Dynamic B–O Bonds and Polysaccharide Building Blocks. Biomacromolecules, 2020, 21, 3984-3996.	5.4	46
201	Extremely Rapid Selfâ€Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host–Guest Interactions. Advanced Materials, 2020, 32, e2002008.	21.0	54
202	Long Alkyl Side Chains Simultaneously Improve Mechanical Robustness and Healing Ability of a Photoswitchable Polymer. Macromolecules, 2020, 53, 8562-8569.	4.8	30
203	A near infrared induced self-healable composite based on disulfide bonds for flexible electronics. Journal of Polymer Research, 2020, 27, 1.	2.4	8

#	Article	IF	CITATIONS
204	Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies. Applied Physics Reviews, 2020, 7, .	11.3	58
205	Synthesis of Polyurea Thermoplastics through a Nonisocyanate Route Using CO2 and Aliphatic Diamines. ACS Sustainable Chemistry and Engineering, 2020, 8, 18626-18635.	6.7	14
206	Healable, Recyclable, and Mechanically Tough Polyurethane Elastomers with Exceptional Damage Tolerance. Advanced Materials, 2020, 32, e2005759.	21.0	262
207	Stiff UV-Curable self-healing coating based on double reversible networks containing diels-alder cross-linking and hydrogen bonds. Progress in Organic Coatings, 2020, 146, 105699.	3.9	15
208	Nonconventional luminophores with unprecedented efficiencies and color-tunable afterglows. Materials Horizons, 2020, 7, 2105-2112.	12.2	80
209	Tough Supramolecular Elastomer via Entropy-Driven Hydrogen Bonds between Vicinal Diols. Macromolecules, 2020, 53, 4121-4125.	4.8	21
210	Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11299-11305.	7.1	134
211	Self-Assembly of Hydrophobic and Self-Healing Bionanocomposite-Coated Controlled-Release Fertilizers. ACS Applied Materials & Interfaces, 2020, 12, 27598-27606.	8.0	47
212	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	6.7	87
213	Dynamic crosslinked rubbers for a green future: A material perspective. Materials Science and Engineering Reports, 2020, 141, 100561.	31.8	90
214	Ultra stretchable, tough and self-healable poly(acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds. Polymer, 2020, 199, 122603.	3.8	22
215	All-Organic Cross-Linked Polysiloxane-Aromatic Thiourea Dielectric Films for Electrical Energy Storage Application. ACS Applied Energy Materials, 2020, 3, 5198-5207.	5.1	32
216	Electron tunneling of hierarchically structured silver nanosatellite particles for highly conductive healable nanocomposites. Nature Communications, 2020, 11, 2252.	12.8	28
217	Rediscovering Surlyn: A Supramolecular Thermoset Capable of Healing and Recycling. Macromolecular Rapid Communications, 2020, 41, e2000097.	3.9	17
218	High-Performance Cross-Linked Self-Healing Material Based on Multiple Dynamic Bonds. ACS Applied Polymer Materials, 2020, 2, 2228-2237.	4.4	40
219	Autonomous Self-Healing to Combat Insulation Failure. Matter, 2020, 2, 288-289.	10.0	3
220	The "labile―chemical bond: A perspective on mechanochemistry in polymers. Polymer, 2020, 202, 122639.	3.8	34
221	Polydopamine nanotube for dual bio-inspired strong, tough, and flame retarding composites. Composites Part B: Engineering, 2020, 197, 108184.	12.0	20

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
222	Mechanically Robust, Self-Healing, Polymer Blends and Polymer/Small Molecule Blend Materials with High Antibacterial Activity. ACS Applied Materials & Interfaces, 2020, 12, 26966-26972.	8.0	29
223	Remalleable, Healable, and Highly Sustainable Supramolecular Polymeric Materials Combining Superhigh Strength and Ultrahigh Toughness. ACS Applied Materials & Interfaces, 2020, 12, 30805-30814.	8.0	111
224	A comprehensive review on smart anti-corrosive coatings. Progress in Organic Coatings, 2020, 148, 105821.	3.9	61
225	Mussel-inspired, self-healing polymer blends. Polymer, 2020, 198, 122528.	3.8	10
226	Self-healing polymers. Nature Reviews Materials, 2020, 5, 562-583.	48.7	684
227	Selfâ€healing supramolecular waterborne polyurethane dispersions with quadruple hydrogen bonds in main chain. Journal of Applied Polymer Science, 2020, 137, 49413.	2.6	24
228	Developing visible-light-induced dynamic aromatic Schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties. Journal of Materials Chemistry A, 2020, 8, 6757-6767.	10.3	65
229	Mucus-Inspired Supramolecular Adhesives with Oil-Regulated Molecular Configurations and Long-Lasting Antibacterial Properties. ACS Applied Materials & Interfaces, 2020, 12, 16877-16886.	8.0	34
230	Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chemical Communications, 2020, 56, 4381-4395.	4.1	107
231	Regulating vesicle bilayer permeability and selectivity via stimuli-triggered polymersome-to-PICsome transition. Nature Communications, 2020, 11, 1524.	12.8	56
232	Selfâ€Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912.	14.9	121
233	Non-Isocyanate and Catalyst-Free Synthesis of a Recyclable Polythiourethane with Cyclic Structure. ACS Sustainable Chemistry and Engineering, 2020, 8, 5693-5703.	6.7	27
234	Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor. Journal of Colloid and Interface Science, 2020, 570, 1-10.	9.4	64
235	Supramolecular Oligourethane Gel with Multicolor Luminescence Controlled by Mechanically Sensitive Hydrogen-Bonding. Chemistry of Materials, 2020, 32, 5776-5784.	6.7	20
236	Assembling of Reprocessable Polybutadiene-Based Vitrimers with High Strength and Shape Memory via Catalyst-Free Imine-Coordinated Boroxine. ACS Applied Materials & Interfaces, 2020, 12, 33305-33314.	8.0	58
237	Elastomeric polyamide biomaterials with stereochemically tuneable mechanical properties and shape memory. Nature Communications, 2020, 11, 3250.	12.8	56
238	Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultraâ€Durable Ionic Skins. Advanced Materials, 2020, 32, e2002706.	21.0	300
239	Hierarchical Dynamics in a Transient Polymer Network Cross-Linked by Orthogonal Dynamic Bonds. Macromolecules, 2020, 53, 5937-5949.	4.8	29

#	Article	IF	CITATIONS
240	Kinetic insights into glassy hydrogels with hydrogen bond complexes as the cross-links. Materials Today Physics, 2020, 15, 100230.	6.0	25
241	Highly Transparent, Underwater Self-Healing, and Ionic Conductive Elastomer Based on Multivalent Ion–Dipole Interactions. Chemistry of Materials, 2020, 32, 6310-6317.	6.7	93
242	Supramolecular Polymers – we've Come Full Circle. Israel Journal of Chemistry, 2020, 60, 33-47.	2.3	145
243	Toward strong self-healing polyisoprene elastomers with dynamic ionic crosslinks. Soft Matter, 2020, 16, 3384-3394.	2.7	25
244	Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion–Anion Linkages. Journal of the American Chemical Society, 2020, 142, 2579-2591.	13.7	68
245	Selfâ€Healing Metalloâ€Supramolecular Amphiphilic Polymer Conetworks. Macromolecular Chemistry and Physics, 2020, 221, 1900432.	2.2	17
246	Transparent, eco-friendly, super-tough "living―supramolecular polymers with fast room-temperature self-healability and reprocessability under visible light. Polymer, 2020, 190, 122199.	3.8	24
247	Strong, Reconfigurable, and Recyclable Thermosets Cross-Linked by Polymer–Polymer Dynamic Interaction Based on Commodity Thermoplastics. Macromolecules, 2020, 53, 956-964.	4.8	46
248	Biomimetic Tough Self-Healing Polymers Enhanced by Crystallization Nanostructures. ACS Applied Polymer Materials, 2020, 2, 879-886.	4.4	34
249	Supramolecular nucleobase-functionalized polymers: synthesis and potential biological applications. Journal of Materials Chemistry B, 2020, 8, 1576-1588.	5.8	24
250	Water-Enabled Room-Temperature Self-Healing and Recyclable Polyurea Materials with Super-Strong Strength, Toughness, and Large Stretchability. ACS Applied Materials & Interfaces, 2020, 12, 23484-23493.	8.0	84
251	Citric Acid-Modified Cellulose-Based Tough and Self-Healable Composite Formed by Two Kinds of Noncovalent Bonding. ACS Applied Polymer Materials, 2020, 2, 2274-2283.	4.4	27
252	The effect of incorporating inorganic materials into quaternized polyacrylic polymer on its mechanical strength and adsorption behaviour for ibuprofen removal. Scientific Reports, 2020, 10, 5188.	3.3	10
253	Advances in intrinsic self-healing polyurethanes and related composites. RSC Advances, 2020, 10, 13766-13782.	3.6	72
254	Achievement of Both Mechanical Properties and Intrinsic Self-Healing under Body Temperature in Polyurethane Elastomers: A Synthesis Strategy from Waterborne Polymers. Polymers, 2020, 12, 989.	4.5	20
255	Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. Progress in Polymer Science, 2020, 105, 101250.	24.7	164
256	Universally autonomous self-healing elastomer with high stretchability. Nature Communications, 2020, 11, 2037.	12.8	300
257	Synergy between dynamic covalent boronic ester and boron–nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties. Materials Horizons, 2021, 8, 216-223.	12.2	145

#	Article	IF	CITATIONS
258	Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polymer Journal, 2021, 53, 355-362.	2.7	17
259	Muscle-Mimetic Synergistic Covalent and Supramolecular Polymers: Phototriggered Formation Leads to Mechanical Performance Boost. Journal of the American Chemical Society, 2021, 143, 902-911.	13.7	71
260	A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy, 2021, 81, 105654.	16.0	141
261	A dual cross-linked aromatic polythiourea gate dielectric with multifunctional capabilities for organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 77-81.	5.5	2
262	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	21.0	75
263	Disulfide bond and Diels–Alder reaction bond hybrid polymers with high stretchability, transparency, recyclability, and intrinsic dual healability for skin-like tactile sensing. Journal of Materials Chemistry A, 2021, 9, 6109-6116.	10.3	28
264	Robust, healable and hydrophobically recoverable polydimethylsiloxane based supramolecular material with dual-activate hard segment. Science China Technological Sciences, 2021, 64, 423-432.	4.0	12
265	Roomâ€ŧemperature self-healable and stretchable waterborne polyurethane film fabricated via multiple hydrogen bonds. Progress in Organic Coatings, 2021, 151, 106081.	3.9	21
266	Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. ACS Sustainable Chemistry and Engineering, 2021, 9, 50-75.	6.7	110
267	A thermally reversible healing EPDM based elastomer with higher tensile properties and damping properties. Journal of Applied Polymer Science, 2021, 138, 49767.	2.6	6
268	Temperature-dependent modulation by biaryl-based monomers of the chain length and morphology of biphenyl-based supramolecular polymers. Chemical Science, 2021, 12, 13001-13012.	7.4	6
269	Self-healing of internal damage in mechanically robust polymers utilizing a reversibly convertible molecular network. Journal of Materials Chemistry A, 2021, 9, 15975-15984.	10.3	34
270	Poly(thiourea triethylene glycol) as a multifunctional binder for enhanced performance in lithium-sulfur batteries. Green Energy and Environment, 2022, 7, 1206-1216.	8.7	10
271	Exploring AIE luminogens as stickers to construct self-healing ionomers and as probes to detect the microscopic healing dynamics. Journal of Materials Chemistry A, 2021, 9, 22943-22951.	10.3	6
272	Molecular engineering of a colorless, extremely tough, superiorly self-recoverable, and healable poly(urethane–urea) elastomer for impact-resistant applications. Materials Horizons, 2021, 8, 2238-2250.	12.2	103
273	Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chemical Reviews, 2021, 121, 1716-1745.	47.7	587
274	<i>Parthenocissus</i> -inspired, strongly adhesive, efficiently self-healing polymers for energetic adhesive applications. Journal of Materials Chemistry A, 2021, 9, 16076-16085.	10.3	39
275	Polymer Dynamics in Nanostructured Environments: Structure-Property Relations Unraveled by Dielectric Spectroscopy. ACS Symposium Series, 2021, , 223-238.	0.5	1

#	Article	IF	CITATIONS
276	Macromolecular Additives to Turn a Thermoplastic Elastomer into a Self-Healing Material. Macromolecules, 2021, 54, 888-895.	4.8	25
277	A Biologically Muscleâ€Inspired Polyurethane with Superâ€Tough, Thermal Reparable and Selfâ€Healing Capabilities for Stretchable Electronics. Advanced Functional Materials, 2021, 31, 2009869.	14.9	104
278	Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nature Communications, 2021, 12, 621.	12.8	169
279	Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. Journal of Materials Chemistry A, 2021, 9, 12265-12275.	10.3	29
280	Novel Moldable Materials from Lignosulfonate by Using Ionic Interaction. Oleoscience, 2021, 21, 13-23.	0.0	0
281	A unified cost-effective method for the construction of reliable potential energy surfaces for H ₂ S and H ₂ O clusters. Physical Chemistry Chemical Physics, 2021, 23, 18044-18057.	2.8	3
282	3D Printing of a Self-Healing Thermoplastic Polyurethane through FDM: From Polymer Slab to Mechanical Assessment. Polymers, 2021, 13, 305.	4.5	20
283	Robust, Self-Healable Siloxane Elastomers Constructed by Multiple Dynamic Bonds for Stretchable Electronics and Microsystems. Industrial & Engineering Chemistry Research, 2021, 60, 2154-2162.	3.7	17
284	Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nature Communications, 2021, 12, 1291.	12.8	254
285	Mechanically robust and self-healable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100320.	5.6	29
286	Selfâ€Healing Polyurethane Elastomer Based on Crosslinkedâ€Linear Interpenetrating Structure: Preparation, Properties, and Applications. Macromolecular Materials and Engineering, 2021, 306, 2000684.	3.6	10
287	Segmented Polyurethane Elastomers with Mechanochromic and Selfâ€Strengthening Functions. Angewandte Chemie, 2021, 133, 8487-8490.	2.0	13
288	Printable, Down/Upâ€Conversion Tripleâ€Mode Fluorescence Responsive and Colorless Selfâ€Healing Elastomers with Superior Toughness. Advanced Functional Materials, 2021, 31, 2100211.	14.9	51
289	Segmented Polyurethane Elastomers with Mechanochromic and Self‣trengthening Functions. Angewandte Chemie - International Edition, 2021, 60, 8406-8409.	13.8	60
290	Sulfur Conversion to Multifunctional Poly(<i>O</i> -thiocarbamate)s through Multicomponent Polymerizations of Sulfur, Diols, and Diisocyanides. Journal of the American Chemical Society, 2021, 143, 3944-3950.	13.7	63
291	A Fast Roomâ€Temperature Selfâ€Healing Glassy Polyurethane. Angewandte Chemie, 2021, 133, 8026-8034.	2.0	6
292	A Fast Roomâ€Temperature Selfâ€Healing Glassy Polyurethane. Angewandte Chemie - International Edition, 2021, 60, 7947-7955.	13.8	183
294	A novel kind of room temperature self-healing poly(urethane-urea) with robust mechanical strength based on aromatic disulfide. Journal of Polymer Research, 2021, 28, 1.	2.4	9

#	ARTICLE	IF	CITATIONS
295	Preparation of mechanically robust and autonomous self-healable elastomer based on multiple dynamic interactions. European Polymer Journal, 2021, 146, 110257.	5.4	19
296	Hydrogen Bonding in Self-Healing Elastomers. ACS Omega, 2021, 6, 9319-9333.	3.5	79
298	Designing Dynamic Materials from Dynamic Bonds to Macromolecular Architecture. Trends in Chemistry, 2021, 3, 231-247.	8.5	36
299	<i>S</i> arboxyanhydrides: Ultrafast and Selective Ringâ€Opening Polymerizations Towards Wellâ€defined Functionalized Polythioesters. Angewandte Chemie, 2021, 133, 10893-10900.	2.0	13
300	<i>S</i> arboxyanhydrides: Ultrafast and Selective Ringâ€Opening Polymerizations Towards Wellâ€defined Functionalized Polythioesters. Angewandte Chemie - International Edition, 2021, 60, 10798-10805.	13.8	39
301	Synthesis of Thiourea-Graft-Polyethyleneimine and Its Performance in Flocculation of Some Inorganic Particles. Industrial & Engineering Chemistry Research, 2021, 60, 5167-5175.	3.7	7
302	From Scratch Closure to Electrolyte Barrier Restoration in Self-Healing Polyurethane Coatings. ACS Applied Polymer Materials, 2021, 3, 2802-2812.	4.4	8
303	Bioinspired Polyurethane Using Multifunctional Block Modules with Synergistic Dynamic Bonds. ACS Macro Letters, 2021, 10, 510-517.	4.8	36
304	Robust, transparent, and self-healable polyurethane elastomer via dynamic crosslinking of phenol-carbamate bonds. Polymer, 2021, 222, 123674.	3.8	34
305	From Photoinduced Supramolecular Polymerization to Responsive Organogels. Journal of the American Chemical Society, 2021, 143, 5990-5997.	13.7	66
306	Rapid Selfâ€Healing Supramoleular Gel Constructed from Pillar[5]arene. Macromolecular Chemistry and Physics, 2021, 222, 2100018.	2.2	5
307	Dynamics and healing behavior of metallosupramolecular polymers. Science Advances, 2021, 7, .	10.3	25
308	Study on waterborne self-healing polyurethane with dual dynamic units of quadruple hydrogen bonding and disulfide bonds. Polymer, 2021, 221, 123625.	3.8	67
309	Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. Materials, 2021, 14, 2680.	2.9	5
310	Self-healing and stretchable PDMS-based bifunctional sensor enabled by synergistic dynamic interactions. Chemical Engineering Journal, 2021, 412, 128734.	12.7	42
311	Digital Light Processing 3D Printing of PDMS-Based Soft and Elastic Materials with Tunable Mechanical Properties. ACS Applied Polymer Materials, 2021, 3, 3049-3059.	4.4	19
312	Development of a Strong, Recyclable Poly(dimethylsiloxane) Elastomer with Autonomic Selfâ€Healing Capabilities and Fluorescence Response Properties at Room Temperature. Macromolecular Materials and Engineering, 2021, 306, 2100132.	3.6	11
313	Synthesis of a slow-release fertilizer composite derived from waste straw that improves water retention and agricultural yield. Science of the Total Environment, 2021, 768, 144978.	8.0	28

#	Article	IF	CITATIONS
314	Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process. Nature Communications, 2021, 12, 2916.	12.8	64
315	A High Strength but Fast Fractureâ€Selfâ€Healing Thermoplastic Elastomer. Macromolecular Rapid Communications, 2021, 42, e2100135.	3.9	17
316	Stiff, Self-Healable, Transparent Polymers with Synergetic Hydrogen Bonding Interactions. Chemistry of Materials, 2021, 33, 5189-5196.	6.7	56
317	A Fast Autonomous Healing Magnetic Elastomer for Instantly Recoverable, Modularly Programmable, and Thermorecyclable Soft Robots. Advanced Functional Materials, 2021, 31, 2101825.	14.9	56
318	Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics. Angewandte Chemie - International Edition, 2021, 60, 22332-22338.	13.8	28
319	Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics. Angewandte Chemie, 2021, 133, 22506-22512.	2.0	4
320	Engineering the Nanoscaled Morphologies of Linear DNA Homopolymers. Macromolecular Rapid Communications, 2021, 42, e2100217.	3.9	5
321	The advances of characterization and evaluation methods for the compatibility and assembly structure stability of food soft matter. Trends in Food Science and Technology, 2021, 112, 753-763.	15.1	13
322	Healable and Recyclable Elastomers with Recordâ€High Mechanical Robustness, Unprecedented Crack Tolerance, and Superhigh Elastic Restorability. Advanced Materials, 2021, 33, e2101498.	21.0	227
323	Bioinspired Supramolecular Slippery Organogels for Controlling Pathogen Spread by Respiratory Droplets. Advanced Functional Materials, 2021, 31, 2102888.	14.9	19
324	Length Effects of Short Alkyl Side Chains on Phase-Separated Structure and Dynamics of Hydrophobic Association Hydrogels. Macromolecules, 2021, 54, 5962-5973.	4.8	23
325	Universal Self-Healing Poly(dimethylsiloxane) Polymer Crosslinked Predominantly by Physical Entanglements. ACS Applied Materials & Interfaces, 2021, 13, 31129-31139.	8.0	40
326	Solutionâ€Processable and Thermostable Superâ€Strong Poly(aryl ether ketone) Supramolecular Thermosets Crossâ€Linked with Dynamic Boroxines. Advanced Functional Materials, 2021, 31, 2103061.	14.9	29
327	Bioinspired stiff yet tough healable nanocomposites: From molecular design to structural processing. Matter, 2021, 4, 2108-2111.	10.0	3
328	Wide temperature range damping polyurethane elastomer based on dynamic disulfide bonds. Journal of Applied Polymer Science, 2022, 139, 51453.	2.6	11
329	Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection. Corrosion Science, 2021, 187, 109485.	6.6	56
330	Base-Layer-Driven Self-Healing Materials. ACS Applied Polymer Materials, 2021, 3, 3922-3928.	4.4	8
331	Weldable and Reprocessable Biomimetic Polymer Networks Based on a Hydrogen Bonding and Dynamic Covalent Thiourea Motif. ACS Applied Polymer Materials, 2021, 3, 3714-3720.	4.4	12

#	Article	IF	CITATIONS
332	Thermally conductive, self-healing, and elastic Polyimide@Vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon, 2021, 179, 348-357.	10.3	114
333	Polymers with Dynamic Bonds: Adaptive Functional Materials for a Sustainable Future. Journal of Physical Chemistry B, 2021, 125, 9389-9401.	2.6	66
334	Aggregate Engineering in Supramolecular Polymers via Extensive Non-covalent Networks. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1310-1318.	3.8	12
335	Digital Light Processing 3D Printing of Healable and Recyclable Polymers with Tailorable Mechanical Properties. ACS Applied Materials & Interfaces, 2021, 13, 34954-34961.	8.0	41
336	Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter, 2021, 4, 2474-2489.	10.0	63
337	Intrinsically self-healing and stretchy poly(urethane-urea) elastomer based on dynamic urea bonds and thiol-ene click reaction. Materials Chemistry and Physics, 2021, 267, 124642.	4.0	8
338	Autonomous self-repair in piezoelectric molecular crystals. Science, 2021, 373, 321-327.	12.6	72
339	Polymer Topology Reinforced Synergistic Interactions among Nanoscale Molecular Clusters for Impact Resistance with Facile Processability and Recoverability. Angewandte Chemie, 2021, 133, 22386-22392.	2.0	1
340	High-Performance Self-Healing Polyurethane Binder Based on Aromatic Disulfide Bonds and Hydrogen Bonds for the Sulfur Cathode of Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2021, 60, 12011-12020.	3.7	10
341	Plastic-Like Supramolecular Hydrogels with Polyelectrolyte/Surfactant Complexes as Physical Cross-links. Macromolecules, 2021, 54, 8052-8066.	4.8	25
342	Mechanically Robust, Self-Healable Polymers Usable under High Humidity: Humidity-Tolerant Noncovalent Cross-Linking Strategy. Journal of the American Chemical Society, 2021, 143, 15279-15285.	13.7	49
343	Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. Polymer, 2021, 229, 123969.	3.8	22
344	Boron Nitride Nanosheets Strengthened PVA/Borax Hydrogels with Highly Efficient Selfâ€Healing and Rapid pHâ€Driven Shape Memory Effect. Macromolecular Materials and Engineering, 2021, 306, 2100415.	3.6	11
345	A Tough and Self-Healing Polymer Enabled by Promoting Bond Exchange in Boronic Esters with Neighboring Hydroxyl Groups. , 2021, 3, 1328-1338.		47
346	Polymer Topology Reinforced Synergistic Interactions among Nanoscale Molecular Clusters for Impact Resistance with Facile Processability and Recoverability. Angewandte Chemie - International Edition, 2021, 60, 22212-22218.	13.8	30
347	Fluoropolymer/Clycidyl Azide Polymer (GAP) Block Copolyurethane as New Energetic Binders: Synthesis, Mechanical Properties, and Thermal Performance. Polymers, 2021, 13, 2706.	4.5	9
348	Hyaluronic acid-based supramolecular hydrogels for biomedical applications. Multifunctional Materials, 2021, 4, 032001.	3.7	25
349	Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery. ACS Nano, 2021, 15, 14570-14579.	14.6	39

#	Article	IF	CITATIONS
350	Self-healable and recyclable polyurethane-polyaniline hydrogel toward flexible strain sensor. Composites Part B: Engineering, 2021, 219, 108965.	12.0	86
351	Polymer Pressureâ€Sensitive Adhesive with A Temperatureâ€Insensitive Loss Factor Operating Under Water and Oil. Advanced Functional Materials, 2021, 31, 2104296.	14.9	34
352	Super Tough and Spontaneous Waterâ€Assisted Autonomous Selfâ€Healing Elastomer for Underwater Wearable Electronics. Advanced Science, 2021, 8, e2102275.	11.2	69
353	A Fast Selfâ€Healing Magnetic Nanocomposite for Magnetic Actuators. Macromolecular Materials and Engineering, 2022, 307, 2100649.	3.6	14
354	Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon anode in lithium-ion batteries. Chemical Engineering Journal, 2021, 420, 129991.	12.7	37
355	Minireview on Self-Healing Polymers: Versatility, Application, and Prospects. Advances in Polymer Technology, 2021, 2021, 1-12.	1.7	10
356	Novel titin-inspired high-performance polyurethanes with self-healing and recyclable capacities based on dual dynamic network. Polymer, 2021, 230, 124096.	3.8	22
357	Morphology-controllable amphiphilic cellulose microgels made from self-assembly of hydrophobic long-chain bromide-alkylated-cellulose/gelatin copolymer. Carbohydrate Polymers, 2021, 269, 118265.	10.2	10
358	Bioinspired extremely rapid self-repairing coatings for long-life repeated features. Chemical Engineering Journal, 2021, 424, 130568.	12.7	7
359	Mechanically robust, highly adhesive and autonomously low-temperature self-healing elastomer fabricated based on dynamic metalÂâ^'Âligand interactions tailored for functional energetic composites. Chemical Engineering Journal, 2021, 425, 130665.	12.7	32
360	An "inner soft external hardâ€; scratch-resistant, self-healing waterborne poly(urethane-urea) coating based on gradient metal coordination structure. Chemical Engineering Journal, 2021, 426, 131883.	12.7	26
361	Uncovering divergent fluorescence of aliphatic polyamides: Synthesis, dual polymerization-induced emissions, and organelle-specific imaging. Chemical Engineering Journal, 2022, 428, 132142.	12.7	23
362	Castor-oil-based, robust, self-healing, shape memory, and reprocessable polymers enabled by dynamic hindered urea bonds and hydrogen bonds. Chemical Engineering Journal, 2022, 429, 131848.	12.7	45
363	A hybrid polyvinyl alcohol/molybdenum disulfide nanosheet hydrogel with light-triggered rapid self-healing capability. Journal of Materials Chemistry B, 2021, 9, 2266-2274.	5.8	11
364	A novel self-catalytic cooperative multiple dynamic moiety: towards rigid and tough but more healable polymer networks. Journal of Materials Chemistry A, 2021, 9, 16759-16768.	10.3	27
365	A highly efficient bionic self-healing flexible waterborne polyurethane elastic film based on a cyclodextrin–ferrocene host–guest interaction. Polymer Chemistry, 2021, 12, 831-842.	3.9	30
366	Mechanically tough yet self-healing transparent conductive elastomers obtained using a synergic dual cross-linking strategy. Polymer Chemistry, 2021, 12, 2016-2023.	3.9	19
367	Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior. Journal of Materials Chemistry A, 2021, 9, 5730-5739.	10.3	65

#	Article	IF	CITATIONS
368	Recent Advances in Selfâ€Healable Intelligent Materials Enabled by Supramolecular Crosslinking Design. Advanced Intelligent Systems, 2021, 3, 2000183.	6.1	14
369	Clarification of the effects of topological isomers on the mechanical strength of comb polyurethane. Polymer Chemistry, 2021, 12, 1533-1539.	3.9	5
370	3D and 4D printable dual cross-linked polymers with high strength and humidity-triggered reversible actuation. Materials Advances, 2021, 2, 5124-5134.	5.4	11
371	Extremely tough and healable elastomer realized <i>via</i> reducing the crystallinity of its rigid domain. Polymer Chemistry, 2021, 12, 4778-4784.	3.9	4
372	Reprocessable and healable room temperature photoactuators based on a main-chain azobenzene liquid crystalline poly(ester-urea). Journal of Materials Chemistry C, 0, , .	5.5	10
373	An Extremely Stretchable and Self-Healable Supramolecular Polymer Network. ACS Applied Materials & Interfaces, 2021, 13, 4499-4507.	8.0	21
374	Viewpoint: Pavlovian Materials—Functional Biomimetics Inspired by Classical Conditioning. Advanced Materials, 2020, 32, e1906619.	21.0	21
375	Self-antiglare waterborne coating with superior mechanical robustness and highly efficient room-temperature self-healing capability. Progress in Organic Coatings, 2020, 146, 105717.	3.9	21
376	Toward Robust, Tough, Self-Healable Supramolecular Elastomers for Potential Application in Flexible Substrates. ACS Applied Materials & Interfaces, 2021, 13, 1135-1144.	8.0	60
377	Improving the Electrochemical Property of Silicon Anodes through Hydrogen-Bonding Cross-Linked Thiourea-Based Polymeric Binders. ACS Applied Materials & Interfaces, 2021, 13, 639-649.	8.0	36
378	Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture. Soft Matter, 2020, 16, 2276-2284.	2.7	22
379	Autonomous self-healing polyisoprene elastomers with high modulus and good toughness based on the synergy of dynamic ionic crosslinks and highly disordered crystals. Polymer Chemistry, 2020, 11, 6549-6558.	3.9	15
380	Mechanically Strong and Highly Stiff Supramolecular Polymer Composites Repairable at Ambient Conditions. CCS Chemistry, 2020, 2, 280-292.	7.8	40
381	Preparation of Poly(thiolâ€urethane) Covalent Adaptable Networks Based on Multipleâ€Types Dynamic Motifs. Macromolecular Rapid Communications, 2022, 43, e2100510.	3.9	6
382	Understanding the Selfâ€Healing Mechanism of Polyurethane Elastomer Based on Hydrogen Bonding Interactions through Molecular Dynamics Simulation. Macromolecular Theory and Simulations, 0, , 2100051.	1.4	1
383	A Stiff yet Rapidly Selfâ€Healable Elastomer in Harsh Aqueous Environments. Advanced Functional Materials, 2022, 32, .	14.9	41
384	Lightâ€Ðriven Spiral Deformation of Supramolecular Helical Microfibers by Localized Photoisomerization. Advanced Optical Materials, 2022, 10, 2101267.	7.3	6
385	Self-assembled topological transition via intra- and inter-chain coupled binding in physical hydrogel towards mechanical toughening. Polymer, 2021, 235, 124268.	3.8	6

#	Article	IF	CITATIONS
386	Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chemical Engineering Journal, 2022, 430, 133163.	12.7	35
387	A Transparent, Highly Stretchable, Solventâ€Resistant, Recyclable Multifunctional Ionogel with Underwater Selfâ€Healing and Adhesion for Reliable Strain Sensors. Advanced Materials, 2021, 33, e2105306.	21.0	300
388	Mechanically robust, ion-conductive, self-healing glassy hybrid materials via tailored Zn/imidazole interaction. Materials Today Chemistry, 2021, 22, 100611.	3.5	3
389	The tough, fluorescent and adhesive elastomer in aqueous dispersion: The contribution of aromatic amide-urea segments. Materials Today Communications, 2021, 29, 102880.	1.9	0
390	Room-Temperature Self-Healable and Mechanically Robust Thermoset Polymers for Healing Delamination and Recycling Carbon Fibers. ACS Applied Materials & Interfaces, 2021, 13, 53099-53110.	8.0	36
391	Multifunctional waterborne polyurethane films: Amine-response, thermal-driven self-healing and recyclability. Applied Surface Science, 2022, 573, 151526.	6.1	32
392	Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality <i>via</i> a binary filler strategy. Materials Horizons, 2022, 9, 640-652.	12.2	53
393	Bifunctional hydrogen-bonding cross-linked polymeric binders for silicon anodes of lithium-ion batteries. Electrochimica Acta, 2022, 402, 139552.	5.2	11
394	Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials. Progress in Polymer Science, 2022, 124, 101486.	24.7	36
395	A novel multifunctional fertilizer derived from wasted straw: Synthesis, characteristics and agriculture applications. Industrial Crops and Products, 2022, 176, 114308.	5.2	6
396	Highly compressible glass-like supramolecular polymer networks. Nature Materials, 2022, 21, 103-109.	27.5	117
397	Sustainable Bioplastic Made from Biomass DNA and Ionomers. Journal of the American Chemical Society, 2021, 143, 19486-19497.	13.7	50
398	Comparing C2=O and C2=S Barbiturates: Different Hydrogen-Bonding Patterns of Thiobarbiturates in Solution and the Solid State. International Journal of Molecular Sciences, 2021, 22, 12679.	4.1	4
399	Printable, room-temperature self-healing and full-color-tunable emissive composites for transparent panchromatic display and flexible high-level anti-counterfeiting. Chemical Engineering Journal, 2022, 431, 133728.	12.7	25
400	Preparation and molecular dynamics study of polyurethane damping elastomer containing dynamic disulfide bond and multiple hydrogen bond. European Polymer Journal, 2022, 162, 110893.	5.4	20
401	Highly Conductive Strong Healable Nanocomposites via Diels–Alder Reaction and Fillerâ€Polymer Covalent Bifunctionalization. Small, 2021, , 2104764.	10.0	1
402	Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones. Nature Chemistry, 2022, 14, 294-303.	13.6	73
403	Robust and Reprocessable Artificial Muscles Based on Liquid Crystal Elastomers with Dynamic Thiourea Bonds. Advanced Functional Materials, 2022, 32, 2110360.	14.9	49

#	Article	IF	CITATIONS
404	Functional Hyperbranched Polythioamides Synthesized from Catalystâ€free Multicomponent Polymerization of Elemental Sulfur ^{â€} . Chinese Journal of Chemistry, 2022, 40, 725-733.	4.9	10
405	Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. ACS Applied Materials & Interfaces, 2021, 13, 58048-58058.	8.0	40
406	Terpolymerization of Ethylene and Two Different Methoxyaryl‣ubstituted Propylenes by Scandium Catalyst Makes Tough and Fast Selfâ€Healing Elastomers. Angewandte Chemie - International Edition, 2021, 60, 26192-26198.	13.8	35
407	Terpolymerization of Ethylene and Two Different Methoxyarylâ€&ubstituted Propylenes by Scandium Catalyst Makes Tough and Fast Selfâ€Healing Elastomers. Angewandte Chemie, 2021, 133, 26396-26402.	2.0	6
408	A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode. Energy Storage Materials, 2022, 45, 1220-1228.	18.0	33
409	Complementary Dynamic Chemistries for Multifunctional Polymeric Materials. Advanced Functional Materials, 0, , 2108431.	14.9	24
410	Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers, 2021, 13, 4199.	4.5	38
411	Synthesis of selfâ€healing supramolecular waterborne polyurethane with quadruple hydrogen bonds via ureidotriazine. Journal of Applied Polymer Science, 2022, 139, 51932.	2.6	4
412	Hydrolyzation-Triggered Ultralong Room-Temperature Phosphorescence in Biobased Nonconjugated Polymers. ACS Applied Materials & amp; Interfaces, 2021, 13, 59320-59328.	8.0	20
413	Self-healable, recyclable, mechanically tough transparent polysiloxane elastomers based on dynamic microphase separation for flexible sensor. Polymer, 2021, 237, 124357.	3.8	17
414	Unprecedented observation and characterization of sulfur-centred bifurcated hydrogen bonds. Physical Chemistry Chemical Physics, 2021, 23, 26519-26523.	2.8	1
415	Reducing the reprocessing and healing temperature of polyurea with piperazine-based hindered urea bonds. Materials Chemistry Frontiers, 2022, 6, 473-481.	5.9	5
416	Design of Robust Self-Healing Silicone Elastomers Based on Multiple H-Bonding and Dynamic Covalent Bond. Langmuir, 2022, 38, 1194-1203.	3.5	5
417	Room temperature synthesis of polythioamides from multicomponent polymerization of sulfur, pyridine-activated alkyne, and amines. Chemical Communications, 2022, 58, 1994-1997.	4.1	14
418	A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochimica Acta, 2022, 404, 139730.	5.2	21
419	A substrate-independent isocyanate-modified polydimethylsiloxane coating harvesting mechanical durability, self-healing ability and low surface energy with anti-corrosion/biofouling potential. Applied Surface Science, 2022, 579, 152186.	6.1	16
420	Development of a multifunctional nanocomposite film with record-high ultralow temperature toughness and unprecedented fatigue-resistance. Chemical Engineering Journal, 2022, 432, 134408.	12.7	13
421	Cu(I)-Catalyzed Heterogeneous Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and NH ₄ Cl. Macromolecules, 2020, 53, 10366-10374.	4.8	13

#	Article	IF	CITATIONS
422	Controlling the aggregation and assembly of boron ontaining molecular and polymeric materials. Aggregate, 2022, 3, .	9.9	15
423	Quantifying the effects of cooperative hydrogen bonds between vicinal diols on polymer dynamics. Soft Matter, 2022, 18, 1275-1286.	2.7	2
424	Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials. Science Advances, 2022, 8, eabk3286.	10.3	58
425	Transparent, self-recoverable, highly tough, puncture and tear resistant polyurethane supramolecular elastomer with fast self-healing capacity <i>via</i> "hard–soft―hard domain design. RSC Advances, 2022, 12, 2712-2720.	3.6	16
426	Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials. Journal of the American Chemical Society, 2022, 144, 2022-2033.	13.7	140
427	Damage restoration in rigid materials <i>via</i> a keloid-inspired growth process. Journal of Materials Chemistry A, 2021, 10, 174-179.	10.3	9
428	Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening. Nature Communications, 2022, 13, 397.	12.8	32
429	Dual Self-Healing Hybrid Coatings with Controlled Inhibitor Release on Magnesium Alloys for Reliable Corrosion Resistance. SSRN Electronic Journal, 0, , .	0.4	0
430	Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Selfâ€Healing, Shape Memory, and Liquid Crystal Polymers. Macromolecular Rapid Communications, 2022, 43, e2100768.	3.9	18
431	Host–Guest Interlocked Complex Binder for Silicon–Graphite Composite Electrodes in Lithium Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	32
432	Research progress in surface strengthening technology of carbide-based coating. Journal of Alloys and Compounds, 2022, 905, 164062.	5.5	18
433	Facile preparation of reprocessable and degradable phenolic resin based on dynamic acetal motifs. Polymer Degradation and Stability, 2022, 196, 109818.	5.8	23
434	Solving the difficult recyclability of conventional thermosetting polyurea elastomers based on commercial raw materials in a facile way. Journal of Materials Chemistry A, 2022, 10, 6713-6723.	10.3	21
435	Catalyzed Michael addition, polycondensation, and the related performance of Diels–Alder selfâ€healing crosslinked polyamides. Polymer Engineering and Science, 2022, 62, 1269-1280.	3.1	6
436	Applications of supramolecular polymer networks. Reactive and Functional Polymers, 2022, 172, 105209.	4.1	23
437	A combined strategy of room-temperature plasma activation and chemical treatment to toughen the interfacial adhesion of fluoropolymers. Chemical Engineering Journal, 2022, 435, 135006.	12.7	2
438	Fabrication and mechanical properties of knitted dissimilar polymeric materials with movable cross-links. Molecular Systems Design and Engineering, 2022, 7, 733-745.	3.4	8
439	Double network hydrogels for energy/environmental applications: challenges and opportunities. Journal of Materials Chemistry A, 2022, 10, 9215-9247.	10.3	46

#	Article	IF	CITATIONS
440	Highly Transparent, Colorless Optical Film with Outstanding Mechanical Strength and Folding Reliability Using Mismatched Chargeâ€Transfer Complex Intensification. Advanced Functional Materials, 2022, 32, .	14.9	22
441	A fast-healing and high-performance metallosupramolecular elastomer based on pyridine-Cu coordination. Science China Materials, 2022, 65, 1943-1951.	6.3	17
442	Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Materials, 2022, 14, .	7.9	33
443	Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds. Advanced Materials, 2022, 34, e2110639.	21.0	20
444	Dynamic Control of a Multistate Chiral Supramolecular Polymer in Water. Journal of the American Chemical Society, 2022, 144, 6019-6027.	13.7	36
445	A Transparent Self-Healing Polyurethane–Isophorone-Diisocyanate Elastomer Based on Hydrogen-Bonding Interactions. ACS Applied Polymer Materials, 2022, 4, 2497-2505.	4.4	20
446	Healable and Recyclable Polymeric Materials with High Mechanical Robustness. , 2022, 4, 554-571.		49
447	Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers. Macromolecules, 2022, 55, 2290-2299.	4.8	18
449	Hydrogenâ€Bonding Affords Sustainable Plastics with Ultrahigh Robustness and Waterâ€Assisted Arbitrarily Shape Engineering. Advanced Materials, 2022, 34, e2201065.	21.0	53
450	Tough polymer with a gradual spatial change in the hydrogen bond density controlled by simple one-pot copolymerization. Polymer, 2022, 246, 124748.	3.8	2
451	Self-healing epoxidized natural rubber with ionic/coordination crosslinks. Materials Chemistry and Physics, 2022, 285, 126063.	4.0	19
452	Ionically Conductive Self-Healing Polymer Binders with Poly(ether-thioureas) Segments for High-Performance Silicon Anodes in Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4934-4944.	5.1	22
453	Tri-branched gels: Rubbery materials with the lowest branching factor approach the ideal elastic limit. Science Advances, 2022, 8, eabk0010.	10.3	32
454	Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery. Journal of Solid State Chemistry, 2022, 310, 123072.	2.9	27
455	Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling. Journal of Materials Science and Technology, 2022, 124, 1-13.	10.7	29
456	Hierarchical Multiscale Hydrogels with Identical Compositions Yet Disparate Properties via Tunable Phase Separation. Advanced Functional Materials, 2022, 32, .	14.9	17
457	Weak Coordination-Induced Dynamic Crosslinked, Adjustable Strength, Reversible Adhesion Supramolecular Hydrogel. ACS Applied Polymer Materials, 2022, 4, 725-734.	4.4	6
458	Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group. Science China Chemistry, 2022, 65, 363-372.	8.2	28

#	Article	IF	CITATIONS
459	Ru(II) Catalyst Enables Dynamic Dual rossâ€Linked Elastomers with Nearâ€Infrared Selfâ€Healing toward Flexible Electronics. Advanced Functional Materials, 2022, 32, .	14.9	16
460	Self-Healable, Malleable, and Flexible Ionic Polyimine as an Environmental Sensor for Portable Exogenous Pollutant Detection. , 2022, 4, 136-144.		30
461	Self-healing polyurethane with high strength and toughness based on a dynamic chemical strategy. Journal of Materials Chemistry A, 2022, 10, 10139-10149.	10.3	75
462	Liquid-Free Ionic Conductive Elastomers with High Mechanical Strength and Rapid Healable Ability. ACS Applied Polymer Materials, 2022, 4, 3543-3551.	4.4	14
463	Rigidityâ€Tuned Fullâ€Color Emission: Uncommon Luminescence Change from Polymer Freeâ€Volume Variations. Advanced Materials, 2022, 34, e2201337.	21.0	12
466	Healable, recyclable and mechanically robust elastomers with multiple dynamic cross-linking bonds. Polymer, 2022, 252, 124900.	3.8	14
467	An Extensively Adhesive Patch with Multiple Physical Interactions and Chemical Crosslinking as a Wound Dressing and Strain Sensor. ACS Applied Polymer Materials, 2022, 4, 3926-3941.	4.4	10
468	Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nature Communications, 2022, 13, 2633.	12.8	19
469	Dual physical cross-linked self-healing elastomer for the triple shape memory. Journal of Materials Science, 2022, 57, 11430-11442.	3.7	3
470	Bridging H2O and H2S homomeric clusters via H2O-H2S mixed clusters: Impact of the changing ratio of H2O and H2S moieties. Computational and Theoretical Chemistry, 2022, 1213, 113740.	2.5	2
471	Experimental Comparison of Bond Lifetime and Viscoelastic Relaxation in Transient Networks with Well-Controlled Structures. ACS Macro Letters, 2022, 11, 753-759.	4.8	8
472	Photothermally responsive smart elastomer composites based on aliphatic polycarbonate backbone for biomedical applications. Composites Part B: Engineering, 2022, 240, 109985.	12.0	16
473	Mechanism of Self-Healing Hydrogels and Application in Tissue Engineering. Polymers, 2022, 14, 2184.	4.5	25
474	Thermoâ€responsive topological metamorphosis in covalentâ€andâ€supramolecular polymer architectures. Aggregate, 2022, 3, .	9.9	18
475	Robust and ultra-fast self-healing elastomers with hierarchically anisotropic structures and used for wearable sensors. Chemical Engineering Journal, 2022, 446, 137305.	12.7	14
476	Self-healable recyclable thermoplastic polyurethane elastomers: Enabled by metal–ligand bonds between the cerium(III) triflate and phloretin. Chemical Engineering Journal, 2022, 446, 137228.	12.7	12
477	Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds. Soft Matter, 2022, 18, 5027-5036.	2.7	11
478	Versatile and Extendable Boronate-Based Tunable Hydrogel Networks for Patterning Applications. ACS Applied Polymer Materials, 2022, 4, 5091-5102.	4.4	2

#		IF	CITATIONS
479	Mechanically Robust Skin-like Poly(urethane-urea) Elastomers Cross-Linked with Hydrogen-Bond Arrays and Their Application as High-Performance Ultrastretchable Conductors. Macromolecules, 2022, 55, 5816-5825.	4.8	35
480	Highly elastic energy storage device based on intrinsically super-stretchable polymer lithium-ion conductor with high conductivity. Fundamental Research, 2024, 4, 140-146.	3.3	19
481	Synthesis and molecular dynamics study of high-damping polyurethane elastomers based on the synergistic effect of dangling chains and dynamic bonds. Polymer Chemistry, 2022, 13, 4260-4272.	3.9	3
482	Effect of alkali metal cations on network rearrangement in polyisoprene ionomers. Physical Chemistry Chemical Physics, 2022, 24, 17042-17049.	2.8	5
483	Highly stretchable and stretch-induced fluorescence chromism self-healing materials based on boroxine and dynamic imine bond. Journal of Materials Chemistry C, 2022, 10, 10895-10901.	5.5	16
484	High strength, stable and self-healing copolyimide for defects induced by mechanical and electrical damages. Journal of Materials Chemistry C, 2022, 10, 11307-11315.	5.5	16
485	Supramolecular network-based self-healing polymer materials. , 2022, , 193-217.		0
486	Overview of crack self-healing. , 2022, , 1-26.		1
487	Tannic Acid Modified Cellulose as a Multi-Functional Binder for Silicon Anodes in Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
488	Isolation of hetero-telechelic polyethylene glycol with groups of different reactivity at the chain ends. Polymer Journal, 2022, 54, 1321-1329.	2.7	1
489	Neuron Inspired Allâ€Around Universal Telechelic Polyurea with High Stiffness, Excellent Crack Tolerance, Recordâ€High Adhesion, Outstanding Triboelectricity, and AlE Fluorescence. Advanced Functional Materials, 2022, 32, .	14.9	29
490	Photocatalyst-Incorporated Cross-Linked Porous Polymer Networks. Industrial & Engineering Chemistry Research, 2022, 61, 10616-10630.	3.7	7
491	Using Periodic Dynamic Polymers to Form Supramolecular Nanostructures. Accounts of Materials Research, 2022, 3, 948-959.	11.7	7
492	Noncovalently Cross-Linked Polymeric Materials Reinforced by Well-Designed In Situ-Formed Nanofillers. Langmuir, 2022, 38, 9050-9063.	3.5	6
493	Robust and dynamic underwater adhesives enabled by catechol-functionalized poly(disulfides) network. National Science Review, 2023, 10, .	9.5	30
494	A microscale regulation strategy for strong, tough, and efficiently self-healing energetic adhesives. Chemical Engineering Journal, 2023, 451, 138810.	12.7	8
495	Grassâ€ŧoâ€stone surface inspired longâ€ŧerm inhibiting scaling. Nano Select, 2022, 3, 1509-1525.	3.7	2
496	Self-healing by Diels-Alder cycloaddition in advanced functional polymers: A review. Progress in Materials Science. 2023. 131. 101001.	32.8	48

#	Article	IF	Citations
497	A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	44
498	A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angewandte Chemie, 2022, 134, .	2.0	6
499	Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability. Nature Communications, 2022, 13, .	12.8	86
500	Synergistic effect of siliconâ€containing groups on the selfâ€healing performance of polyurethanes based on disulfide bonds. Journal of Applied Polymer Science, 0, , .	2.6	0
501	Dynamic Grafting of Carboxylates onto Poly(Vinyl Alcohol) Polymers for Supramolecularlyâ€Crosslinked Hydrogel Formation. Chemistry - an Asian Journal, 2022, 17, .	3.3	1
502	Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. International Journal of Biological Macromolecules, 2022, 219, 312-332.	7.5	9
503	Supramolecular polymerization of thiobarbituric acid naphthalene dye. Chemical Communications, 2022, 58, 9365-9368.	4.1	1
504	Facile strategy to incorporate amidoxime groups into elastomers toward self-crosslinking and self-reinforcement. Polymer Chemistry, 2022, 13, 5368-5379.	3.9	2
505	Bioinspired Self-Healing and Robust Smart Skin Via Tailored Slipping Semi-Crystalline Arrays for Multifunctional Biomedical Electronics. SSRN Electronic Journal, 0, , .	0.4	0
506	Vapor-phase synthesis of a reagent-free self-healing polymer film with rapid recovery of toughness at room temperature and under ambient conditions. Soft Matter, 2022, 18, 6907-6915.	2.7	3
507	Advances and Challenges of Self-Healing Elastomers: A Mini Review. Materials, 2022, 15, 5993.	2.9	6
508	A review on room-temperature self-healing polyurethane: synthesis, self-healing mechanism and application. Journal of Leather Science and Engineering, 2022, 4, .	6.0	13
509	Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction. Nature Communications, 2022, 13, .	12.8	20
510	Dynamic Bonds: Adaptable Timescales for Responsive Materials. Angewandte Chemie, 2022, 134, .	2.0	1
511	Making Polyisoprene Selfâ€Healable through Microstructure Regulation by Rareâ€Earth Catalysts. Angewandte Chemie, 2022, 134, .	2.0	2
512	Selfâ€Healing, Highâ€Strength, and Antimicrobial Polysiloxane Based on Amino Acid Hydrogen Bond. Macromolecular Rapid Communications, 2023, 44, .	3.9	9
513	Influence of the <i>α</i> -Methyl Group on Elastic-To-Glassy Transition of Supramolecular Hydrogels with Hydrogen-Bond Associations. Macromolecules, 2022, 55, 7512-7525.	4.8	29
514	Making Polyisoprene Selfâ€Healable through Microstructure Regulation by Rareâ€Earth Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8

#	Article	IF	CITATIONS
515	Mussel Byssus Inspired Ionic Skin with Damageâ€Resistant Signal for Human–Machine Interaction. Advanced Materials Interfaces, 2022, 9, .	3.7	2
516	The Contributions of Supramolecular Kinetics to Dynamics of Supramolecular Polymers. ChemPlusChem, 0, , .	2.8	0
518	Dynamic Bonds: Adaptable Timescales for Responsive Materials. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
519	Efficient, Room-Temperature Self-Healing Polyurethane Elastomers with Superior Tensile Properties and Solvatochromic Capacities. ACS Applied Polymer Materials, 2022, 4, 7801-7811.	4.4	5
520	Strong and Tough Supramolecular Microneedle Patches with Ultrafast Dissolution and Rapidâ€Onset Capabilities. Advanced Materials, 2022, 34, .	21.0	14
521	Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement. Journal of Materials Chemistry B, 2022, 10, 9188-9201.	5.8	7
522	Bioinspired antifouling and antibacterial polymer coating with intrinsic self-healing property. Biomaterials Science, 2022, 11, 128-139.	5.4	11
523	A healable poly(urethane-urea) elastomer with ultra-high mechanical strength enabled by tailoring multiple relaxation dynamics of hierarchical hard domains. Journal of Materials Chemistry A, 2022, 10, 24290-24300.	10.3	14
524	Ultrahigh Mechanical Strength and Robust Room-Temperature Self-Healing Properties of a Polyurethane–Graphene Oxide Network Resulting from Multiple Dynamic Bonds. ACS Nano, 2022, 16, 16724-16735.	14.6	57
525	Self-Healing Polymers for Electronics and Energy Devices. Chemical Reviews, 2023, 123, 558-612.	47.7	48
526	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, .	5.1	22
527	Self-assembly strategy based on multiple hydrogen bonds for super tough, self-healing polyurethane elastomers. Polymer, 2022, 261, 125413.	3.8	6
528	Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability. Journal of Colloid and Interface Science, 2023, 630, 909-920.	9.4	15
529	Bioinspired self-healing and robust elastomer via tailored slipping semi-crystalline arrays for multifunctional electronics. Chemical Engineering Journal, 2023, 454, 139982.	12.7	3
530	Mechanically robust, instant self-healing polymers towards elastic entropy driven artificial muscles. Chemical Engineering Journal, 2023, 454, 140100.	12.7	12
531	Infrared Spectroscopic and Mechanical Analysis of Supramolecular Self-Healing in 3D Printable Urea Photoresins. ACS Applied Polymer Materials, 2022, 4, 8825-8832.	4.4	5
532	The Multi-Step Chain Extension for Waterborne Polyurethane Binder of Para-Aramid Fabrics. Molecules, 2022, 27, 7588.	3.8	1
533	Surface Hydrophobization Provides Hygroscopic Supramolecular Plastics Based on Polysaccharides with Damageâ€Specific Healability and Roomâ€Temperature Recyclability. Advanced Materials, 2023, 35, .	21.0	7

#	Article	IF	CITATIONS
534	Biological self-healing strategies from mechanically robust heterophasic liquid metals. Matter, 2023, 6, 226-238.	10.0	5
535	Plasticization of a Semicrystalline Metallosupramolecular Polymer Network. ACS Polymers Au, 0, , .	4.1	0
536	Macromolecular architectures constructed by biscalix[5]arene–[60]fullerene host–guest interactions. Polymer Journal, 2023, 55, 95-104.	2.7	4
537	Mechanisms of the improved stiffness of flexible polymers under impact loading. Nanotechnology Reviews, 2022, 11, 3281-3291.	5.8	1
538	A variable-stiffness and healable pneumatic actuator. Materials Horizons, 2023, 10, 908-917.	12.2	2
539	Machine-learning reveals the virtual screening strategies of solid hydrogen-bonded oligomeric assemblies for thermo-responsive applications. Chemical Engineering Journal, 2023, 456, 141073.	12.7	4
540	Digital light 3D printing of a polymer composite featuring robustness, self-healing, recyclability and tailorable mechanical properties. Additive Manufacturing, 2023, 61, 103343.	3.0	6
541	A novel bio-based degradable, reinforced vitrimer regulated by intramolecular hydrogen bonding. Progress in Organic Coatings, 2023, 175, 107384.	3.9	2
542	Advanced binder with ultralow-content for high performance silicon anode. Journal of Power Sources, 2023, 556, 232237.	7.8	16
543	Blending to Make Nonhealable Polymers Healable: Nanophase Separation Observed by CP/MAS ¹³ C NMR Analysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
544	Conformational comparison of urea and thiourea near the <scp>CCSD</scp> (<scp>T</scp>) complete basis set limit. International Journal of Quantum Chemistry, 0, , .	2.0	0
545	Programming material properties by tuning intermolecular bonding. Journal of Applied Physics, 2022, 132, .	2.5	5
546	Self-healable Poly(dimethyl siloxane) Elastomers Based on Host-guest Complexation between Methylated β-Cyclodextrin and Adamantane. Chemistry Letters, 2023, 52, 93-96.	1.3	4
547	Hydrogel and Machine Learning for Soft Robots' Sensing and Signal Processing: A Review. Journal of Bionic Engineering, 2023, 20, 845-857.	5.0	9
548	Self-Healing of Polymers and Polymer Composites. Polymers, 2022, 14, 5404.	4.5	16
549	Atomic Insights of Selfâ€Healing in Silicon Nanowires. Advanced Functional Materials, 2023, 33, .	14.9	3
550	Blending to Make Nonhealable Polymers Healable: Nanophase Separation Observed by CP/MAS ¹³ C NMR Analysis. Angewandte Chemie, 0, , .	2.0	0
551	A comprehensive review on ultrathin, multi-functionalized, and smart graphene and graphene-based composite protective coatings. Corrosion Science, 2023, 212, 110939.	6.6	20

		CITATION RE	PORT	
#	Article		IF	CITATIONS
552	Self-Healing Polymeric Soft Actuators. Chemical Reviews, 2023, 123, 736-810.		47.7	21
553	A Self-repairing transparent film with reprocessable, ultra-high strength and outstandir based on interlocking hydrogen bonds and reversible topological networks. Chemical I Journal, 2023, 456, 141137.	ng elasticity Engineering	12.7	7
554	Transparent Highâ€Performance Supramolecular Plastics Operating in Allâ€Weather E Advanced Functional Materials, 2023, 33, .	nvironments.	14.9	18
555	Improved mechanical strength and adsorption capacity of anion exchange resin by pol 123128.	y (acrylic) Tj ETQq1 1 0.78	4314 rgB7 7.9	Γ/Overlock 2
556	Emerging Hydrogen-Bond Design for High-Performance Dynamic Polymeric Materials. ,	2023, 5, 480-490.		9
557	Synthetic Design of Self-Healing Epoxy Systems. Engineering Materials, 2023, , 139-16	0.	0.6	0
558	Stimuli-responsive flexible organic crystals. Journal of Materials Chemistry C, 2023, 11,	2026-2052.	5.5	14
559	Biomimetic Hybrid Networks with Excellent Toughness and Self-Healing Ability in the C Chemistry of Materials, 2023, 35, 682-691.	lassy State.	6.7	9
560	A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked constructs an ultra-strong self-healing elastomer. Science China Chemistry, 0, , .	d unit	8.2	2
561	Assembled Morphology of Copperâ€Thiourea Coordinationâ€Mediated Metalloâ€Supr Macromolecular Rapid Communications, 2023, 44, .	amolecular Polymers.	3.9	2
562	Synthesis of Degradable Polysulfamides via Sulfur(VI) Fluoride Exchange Click Polymer AB-Type Monomers. ACS Polymers Au, 2023, 3, 259-266.	ization of	4.1	5
563	Glucoseâ€derived superabsorbent hydrogel materials based on mechanicallyâ€interloc triblock copolymer topologies. Journal of Polymer Science, 2023, 61, 937-950.	ked slideâ€ r ing and	3.8	3
564	Current Self-Healing Binders for Energetic Composite Material Applications. Molecules	, 2023, 28, 428.	3.8	4
565	Recent Advances in the Functionalization of Perovskite Solar Cells/Photodetectors. Las Photonics Reviews, 2023, 17, .	er and	8.7	5
566	Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Ch Reviews, 2023, 123, 701-735.	emical	47.7	73
567	Hydration Activates Dual onfined Shapeâ€Memory Effects of Coldâ€Reprogramma Advanced Materials, 2023, 35, .	ble Photonic Crystals.	21.0	10
568	Biodegradable smart materials with self-healing and shape memory function for wound Advances, 2023, 13, 3155-3163.	l healing. RSC	3.6	5
569	Polyhedral oligomeric silsesquioxaneâ€based functional coatings: A review. Canadian J Chemical Engineering, 2023, 101, 4979-4991.	ournal of	1.7	3

#	Article	IF	Citations
570	Self-healable and Conductive Hydrogel Coatings Based on Host-guest Complexation between β-Cyclodextrin and Adamantane. Chemistry Letters, 2023, 52, 172-176.	1.3	1
571	Rheological characterization of cellulose nanocrystal-laden self-healable polyvinyl alcohol hydrogels. Korea Australia Rheology Journal, 2023, 35, 31-38.	1.7	6
572	Highly Elastic, Healable, and Durable Anhydrous Highâ€Temperature Proton Exchange Membranes Crossâ€Linked with Highly Dense Hydrogen Bonds. Macromolecular Rapid Communications, 2023, 44, .	3.9	0
573	Construction of photoswitchable urea-based multiple H-bonding motifs. Tetrahedron, 2023, 136, 133343.	1.9	1
574	Highly Strong and Tough Supramolecular Polymer Networks Enabled by Cryptandâ€Based Hostâ€Guest Recognition. Angewandte Chemie, 2023, 135, .	2.0	2
575	Highly Strong and Tough Supramolecular Polymer Networks Enabled by Cryptandâ€Based Hostâ€Guest Recognition. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
576	Thermal-driven self-healing and green recyclable waterborne polyurethane films based on double reversible covalent bonds. Progress in Organic Coatings, 2023, 178, 107460.	3.9	5
577	Study on intermolecular hydrogen bond of uric acid water-clusters. Chemical Physics Letters, 2023, 818, 140424.	2.6	0
578	Transform waste straw into water-holding fertilizer: A targeted modification strategy of functional groups. Reactive and Functional Polymers, 2023, 186, 105571.	4.1	3
579	A novel sol-gel strategy for constructing wood fibers and aramid nanofiber nanocomposite with strong, tough and recyclable properties. Composites Science and Technology, 2023, 238, 110026.	7.8	6
580	Steering phase-separated droplets to control fibrillar network evolution of supramolecular peptide hydrogels. Matter, 2023, 6, 1945-1963.	10.0	17
581	A self-healable silk fibroin-based hydrogel electrolyte for silver-zinc batteries with high stability. Journal of Electroanalytical Chemistry, 2023, 938, 117466.	3.8	2
582	Self-Healing of a Copper(I) [2]Rotaxane Shuttle Monitored by Fluorescence. Organic Letters, 2023, 25, 933-937.	4.6	0
583	A rapid self-healing glassy polymer/metal–organic-framework hybrid membrane at room temperature. Dalton Transactions, 2023, 52, 3148-3157.	3.3	0
584	A high strength, high toughness and transparent room-temperature self-healing elastomer based on the synergy effect of quadruple dynamic bonding structure. Reactive and Functional Polymers, 2023, 185, 105531.	4.1	5
585	Sugar-painting inspired branched ureido polymers as high-performance formaldehyde-free wood adhesive. Wood Science and Technology, 0, , .	3.2	1
586	Self-Healing, Recyclable, and Degradable Castor Oil-Based Elastomers for Sustainable Soft Robotics. ACS Sustainable Chemistry and Engineering, 2023, 11, 3437-3450.	6.7	14
587	Intrinsic Antiâ€Freezing and Unique Phosphorescence of Glassy Hydrogels with Ultrahigh Stiffness and Toughness at Low Temperatures. Advanced Materials, 2023, 35, .	21.0	24

#	Article	IF	CITATIONS
588	Recent Progress in Siliconâ^'Based Materials for Performanceâ^'Enhanced Lithiumâ^'Ion Batteries. Molecules, 2023, 28, 2079.	3.8	11
589	The biomimetic design provides efficient self-healing of ultrahigh-tough and damage-warning bio-based elastomer for protective clothing of metals. Nano Research, 2023, 16, 10587-10596.	10.4	3
590	Room-Temperature Rapid Self-Healing Polymer Binders for Si Anodes in Highly Cycling-Stable and Capacity-Maintained Lithium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3538-3548.	5.1	2
591	Stretchable Superhydrophobic Supercapacitor with Excellent Self-Healing Ability. Energy & Fuels, 2023, 37, 5567-5576.	5.1	4
592	High-Performance Self-Healing Polymers. Accounts of Materials Research, 2023, 4, 323-333.	11.7	13
593	Dynamic covalent networks with tunable dynamicity by mixing acylsemicarbazides and thioacylsemicarbazides. Journal of Polymer Science, 2023, 61, 1335-1347.	3.8	1
594	Molecular Engineering of Binder for Improving the Mechanical Properties and Recyclability of Energetic Composites. Nanomaterials, 2023, 13, 1087.	4.1	0
595	Sequence-Enhanced Self-Healing in "Lock-and-Key―Copolymers. ACS Macro Letters, 2023, 12, 475-480.	4.8	6
596	Tough, Reprocessable, and Recyclable Dynamic Covalent Polymers with Ultrastable Longâ€Lived Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	2.0	3
597	Tough, Reprocessable, and Recyclable Dynamic Covalent Polymers with Ultrastable Longâ€Lived Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	13.8	25
598	Multiple hierarchical dynamic interactions enabled a robust, stretchable and room temperature self-healing elastomer. Polymer Chemistry, 0, , .	3.9	3
599	A Strategy of Thiolactone Chemistry to Construct Strong and Tough Self-Healing Supramolecular Polyurethane Elastomers via Hierarchical Hydrogen Bonds and Coordination Bonds. Industrial & Engineering Chemistry Research, 2023, 62, 6416-6424.	3.7	10
600	Room-Temperature Self-Healing Glassy Luminescent Hybrid Film. Langmuir, 0, , .	3.5	0
602	Intrinsically Healable Fabrics. Advanced Materials Technologies, 0, , .	5.8	0
603	Role of supramolecular polymers in photo-actuation of spiropyran hydrogels. Chemical Science, 2023, 14, 6095-6104.	7.4	2
604	An intelligent polymer composite with self-lubricating and self-healing functionalities. Composites Part B: Engineering, 2023, 260, 110776.	12.0	5
605	Cooperative synergistic effects of multiple functional groups in amideâ€containing polyimides with pyridine ring and pendent tertâ€butyl. Journal of Polymer Science, 2023, 61, 1584-1595.	3.8	2
606	Introducing Dynamic Bonds in Lightâ€based 3D Printing. Advanced Functional Materials, 0, ,	14.9	13

#	Article	IF	CITATIONS
607	Fast Damage-Healing of Rigid Photocuring 3D Printing Materials Capable of Directly Recycling in 3D Printing. ACS Macro Letters, 2023, 12, 719-724.	4.8	4
608	Coir/glass hybrid fiber reinforced thermoset polymer composite laminates with room-temperature self-healing and shape memory functions. Industrial Crops and Products, 2023, 201, 116895.	5.2	3
609	Integrating high mechanical strength, excellent healing ability, and antibacterial ability into supramolecular poly(urethane–urea) elastomers by tailoring the intermolecular supramolecular interactions. Polymer Chemistry, 2023, 14, 3035-3043.	3.9	2
610	Stimuli-Responsive Self-Healing Luminescent Materials Based on Lanthanide Ions and Bipyridine Moieties. ACS Applied Polymer Materials, 2023, 5, 5716-5726.	4.4	2
611	Tough and Recyclable Polybutadiene Elastomer Based on Quadruple Hydrogen Bonding. ACS Applied Polymer Materials, 2023, 5, 5429-5435.	4.4	1
612	Improving the mechanical performances of polymer bonded explosives using monomer tuned polythioureas. Energetic Materials Frontiers, 2023, , .	3.2	0
613	A polythiourea protective layer for stable lithium metal anodes. Journal of Materials Chemistry A, 2023, 11, 10155-10163.	10.3	2
614	Smart healable polyurethanes: sustainable problem solvers based on constitutional dynamic chemistry. Materials Chemistry Frontiers, 2023, 7, 3494-3523.	5.9	11
615	Dynamic boronate esters cross-linked guanosine hydrogels: A promising biomaterial for emergent applications. Coordination Chemistry Reviews, 2023, 488, 215170.	18.8	7
616	Polythiourea Superionic Conductors for Solid-State Batteries. Macromolecules, 2023, 56, 3660-3667.	4.8	2
617	Ion conducting elastomer designed from thiourea-based dynamic covalent bonds with reprocessing capability. Materials Today Chemistry, 2023, 30, 101583.	3.5	1
618	Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers. Science, 2023, 380, 935-941.	12.6	31
619	Dynamic behavior of vitrimers under high–strain rate loadings. Polymer, 2023, 282, 126149.	3.8	0
620	Multi-scale dynamic physical networks towards ultra-tough, mechanoresponsive, and rapid autonomic self-healable elastomers. Composites Part B: Engineering, 2023, 263, 110876.	12.0	5
621	Preparation and Characterization of Polyoxime-Urethane Elastomer for Self-Healing Application. Springer Proceedings in Materials, 2023, , 33-44.	0.3	0
623	Lowâ€velocity impact and selfâ€healing behavior of <scp>CFRP</scp> laminates with poly(ethyleneâ€coâ€methacrylic acid) filament reinforcement. Polymer Composites, 2023, 44, 6012-6026.	4.6	3
624	Self-healing polymers through hydrogen-bond cross-linking: synthesis and electronic applications. Materials Horizons, 2023, 10, 4000-4032.	12.2	9
695-	$\delta \ddot{\mathbf{v}}_{2}^{0}$	7366 20	0402021 -

#	Article	IF	CITATIONS
626	Self-healing organic coatings – Fundamental chemistry to commercial application. Progress in Organic Coatings, 2023, 183, 107759.	3.9	2
627	Review on energetic copolymer binders for propulsion applications: Synthesis and properties. Journal of Polymer Science, 2023, 61, 2254-2275.	3.8	1
628	Dynamic stable interface between CNT and nanosilicon for robust anode with large capacity and high rate performance. Energy Storage Materials, 2023, 61, 102892.	18.0	4
629	Transient regulation of gel properties by chemical reaction networks. Chemical Communications, 2023, 59, 9818-9831.	4.1	4
630	A <scp>3D</scp> printable and selfâ€healing polydimethylsiloxane elastomer. Journal of Polymer Science, 2024, 62, 859-869.	3.8	1
631	Insights into the Correlation of Crossâ€inking Modes with Mechanical Properties for Dynamic Polymeric Networks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
632	Insights into the Correlation of Crossâ€linking Modes with Mechanical Properties for Dynamic Polymeric Networks. Angewandte Chemie, 0, , .	2.0	0
633	Oneâ€Step Manufacturing of Supramolecular Liquidâ€Crystal Elastomers by Stressâ€Induced Alignment and Hydrogen Bond Exchange. Angewandte Chemie, 0, , .	2.0	0
634	Oneâ€Step Manufacturing of Supramolecular Liquidâ€Crystal Elastomers by Stressâ€Induced Alignment and Hydrogen Bond Exchange. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
635	Diamines, CS2 and Monoisocyanide-participated Polymerizations for Large-scale Synthesis of Polythioureas and Thioformamide. Chinese Journal of Polymer Science (English Edition), 2023, 41, 1563-1576.	3.8	1
636	Multifunctional Polyurethane Networks Combining Strength, Toughness, and Fast Autonomous Self-Healing via the Synergy of Multiple Dynamic Bonds. Chemistry of Materials, 2023, 35, 6332-6345.	6.7	5
637	Tough citric acid-modified cellulose-containing polymer composites with three components consisting of movable cross-links and hydrogen bonds. Polymer Journal, 0, , .	2.7	0
638	Copolymer Brush Particle Hybrid Materials with "Recall-and-Repair―Capability. Chemistry of Materials, 2023, 35, 6990-6997.	6.7	5
639	Recent Progress in Polymers with Dynamic Covalent Bonds. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	1
640	A Multifunctional Interlocked Binder with Synergistic In Situ Covalent and Hydrogen Bonding for Highâ€Performance Si Anode in Liâ€ion Batteries. Advanced Science, 2023, 10, .	11.2	2
641	High-Performance Branched Polymer Elastomer Based on a Topological Network Structure and Dynamic Bonding. ACS Applied Materials & Interfaces, 0, , .	8.0	0
642	66â€2: Highly Transparent, Colorless Optical Film with Outstanding Mechanical Strength and Folding Reliability Using Mismatched Chargeâ€Transfer Complex Intensification. Digest of Technical Papers SID International Symposium, 2023, 54, 936-939.	0.3	0
643	Highly Stretchable, Resilient, Adhesive, and Selfâ€Healing Ionic Hydrogels for Thermoelectric Application. Advanced Functional Materials, 2023, 33, .	14.9	7

	CITATION R	EPORT	
# 644	ARTICLE Morphological Transitions in Solutions of Macromolecules with Solvophilic Backbone and Orientationally Mobile Solvophobic Side Groups. Polymer Science - Series A, 0, , .	IF 1.0	CITATIONS 0
645	Self-healing of fractured diamond. Nature Materials, 2023, 22, 1317-1323.	27.5	4
646	Mechanical property-enhanced thermally conductive self-healing composites: preparation using designed self-healing matrix phase and hyBNNSs. Nanoscale, 2023, 15, 13428-13436.	5.6	0
647	Highâ€performance healable plastics: Focusing topological structure design based on constitutional dynamic chemistry. EcoMat, 2023, 5, .	11.9	2
648	Self-healing Superhydrophobic Coatings. , 2023, , 403-427.		0
649	Block copolymer electrolytes for lithium metal batteries: Strategies to boost both ionic conductivity and mechanical strength. Progress in Polymer Science, 2023, 146, 101743.	24.7	3
650	Dual bio-based epoxy resin as green substitute for DGEBA analogue with high performances. Reactive and Functional Polymers, 2023, 191, 105687.	4.1	2
651	Healable, luminescent, notch-insensitive waterborne polyurethane via noncovalent crosslinking with hydrogen bonds and ionic interactions. Chemical Engineering Journal, 2023, 475, 146393.	12.7	2
652	Toughening self-healing elastomer crosslinked by metal–ligand coordination through mixed counter anion dynamics. Nature Communications, 2023, 14, .	12.8	1
653	Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications. Chemical Engineering Journal, 2023, 476, 146536.	12.7	5
654	Well-Tunable, 3D-printable, and Fast Autonomous Self-Healing Elastomers. , 2023, , 100042.		0
655	Strong and flexible lignocellulosic film fabricated via a feasible molecular remodeling strategy. International Journal of Biological Macromolecules, 2023, 253, 126521.	7.5	0
656	Stoichiometric Imbalance-promoted Step-growth Polymerization Based on Self-accelerating Three-component Reaction. Chemical Research in Chinese Universities, 2023, 39, 822-828.	2.6	0
657	Highly Stretchable Stress–Strain Sensor from Elastomer Nanocomposites with Movable Cross-links and Ketjenblack. ACS Polymers Au, 2023, 3, 394-405.	4.1	3
658	Preparation and properties of dynamic crosslinked styrene butadiene rubber. Journal of Polymer Engineering, 2023, 43, 801-809.	1.4	0
659	Using an Interlayer to Toughen Flexible Colorless Polyimide-Based Cover Windows. Coatings, 2023, 13, 1597.	2.6	0
661	Molecular dynamics interpretation of hydrogen bonds for colorless, water-resistant, tough, and self-healable elastomers. Journal of Materials Chemistry A, 2023, 11, 22737-22748.	10.3	4
662	A UV-responsive mechanically robust insulating polymer that achieves intrinsic self-healing of electrical tree damage based on reversible anthracene photodimerization. Journal of Materials Chemistry C, 0, , .	5.5	0

#	Article	IF	CITATIONS
663	Catalyst-free, atom-economical and regioselective multicomponent polymerizations of diamines, CS ₂ , and diepoxides toward functional polydithiourethanes. Polymer Chemistry, 0, , .	3.9	0
664	Healable Ionic Conductors with Extremely Lowâ€Hysteresis and High Mechanical Strength Enabled by Hydrophobic Domain‣ocked Reversible Interactions. Advanced Materials, 2023, 35, .	21.0	3
665	Autonomous self-healing organic crystals for nonlinear optics. Nature Communications, 2023, 14, .	12.8	4
666	Manipulating Cisâ€Trans Copolymer Chain Conformation to Simultaneously Improve Permittivity and DC Breakdown Strength in Polythiourea. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
667	Aziridine-derived poly(sulfonamide thioether)s: Synthesis and the self-healing elastomeric properties. European Polymer Journal, 2023, 201, 112547.	5.4	0
668	Self-healing polymer electrolytes with nitrogen‑boron coordinated boroxine for all-solid-state lithium metal batteries. Journal of Energy Storage, 2023, 74, 109485.	8.1	1
669	All-in-one benzophenone structure realizes the simultaneous improvement of flexibility and radiation resistance of polyurethane. Polymer, 2023, 289, 126485.	3.8	0
670	Fabrication of recyclable and biodegradable PBAT vitrimer via construction of highly dynamic cross-linked network. Polymer Degradation and Stability, 2024, 219, 110602.	5.8	1
671	Highly entangled elastomer with ultra-fast self-healing capability and high mechanical strength. Chemical Engineering Journal, 2024, 479, 147689.	12.7	1
673	Polydopamine inâ€situ polymerized on graphene oxide for nitrile butadiene rubber with high strength, elasticity and aging resistance. Polymer Composites, 0, , .	4.6	0
674	Challenge for Trade-Off Relationship between the Mechanical Property and Healing Efficiency of Self-Healable Polyimide. ACS Applied Materials & amp; Interfaces, 2023, 15, 54923-54932.	8.0	0
675	Improvement for the mechanical performance of boroxineâ€based selfâ€healing polyurethane by quadruple hydrogen bonds. Journal of Polymer Science, 0, , .	3.8	0
676	Therapeutic supramolecular polymers: Designs and applications. Progress in Polymer Science, 2024, 148, 101769.	24.7	1
677	Thermomechanically stable supramolecular elastomers inspired by heat shock proteins. Materials Horizons, 2024, 11, 1014-1022.	12.2	0
678	Material Design of Citric Acid-Modified Cellulose Composite Polymeric Materials with Both Tough and Sustainable Enhancement by Multiple Noncovalent Bonds. ACS Applied Polymer Materials, 2023, 5, 10334-10341.	4.4	0
679	Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics. Molecules, 2023, 28, 8025.	3.8	0
680	Physical Properties of Poly(ether-thiourea)-Based Elastomer Formed by Zigzag Hydrogen Bonding and Slidable Cross-Linking. ACS Macro Letters, 2023, 12, 1558-1563.	4.8	0
683	Recent Progress in the Field of Intrinsic Self-Healing Elastomers. Polymers, 2023, 15, 4596.	4.5	0

	CITATION	CITATION REPORT		
#	Article	IF	Citations	
684	Supramolecular lonogels for Use in Locating Damage to Underwater Infrastructure. Small, 0, , .	10.0	1	
685	The Post-Curing of Waterborne Polyurethane–Acrylate Composite Latex with the Dynamic Disulfide-Bearing Crosslinking Agent. Molecules, 2023, 28, 8122.	3.8	0	
686	Photoswitchable Quadruple Hydrogen-Bonding Motif. Journal of the American Chemical Society, 0, , .	13.7	0	
687	The Importance of Bulk Viscoelastic Properties in "Self-Healing―of Acrylate-Based Copolymer Materials. ACS Macro Letters, 2024, 13, 1-7.	4.8	1	
688	Harnessing Activated Alkyne-Hydroxyl "Click―Chemistry for Degradable and Self-Healing Poly(urea) Tj ETC	2q0 0 0 rgB1 4.8	[/Qverlock 10	
689	Topology-Enabled Simultaneous Enhancement of Mechanical and Healable Properties in Glassy Polymeric Materials Using Larger POSS. Chemistry of Materials, 0, , .	6.7	0	
690	Fabrication of robust and color-tunable luminescent elastomers via the high-functionality crosslinker strategy using vinyl-functionalized conjugated polymers. Dyes and Pigments, 2024, 222, 111915.	3.7	0	
691	Enhancing the Toughness and Strength of Polymers Using Mechanically Interlocked Hydrogen Bonds. Journal of the American Chemical Society, 2024, 146, 1109-1121.	13.7	1	

A comprehensive study on the advancements of self-healing materials. , 2023, , .

694	Anomalous strengthening behavior of nanocrystal-reinforced polyurethane fibers. Materials Today, 2024, 72, 87-96.	14.2	0
695	Ionic Polyimineâ€Based Composite Membrane with Inductive and Complexation Synergistic Effects for Sensitive and Onâ€Site Fluorescent Detection of Volatile Iodine. Advanced Materials, 2024, 36, .	21.0	0
696	Research progress of robust binders with superior mechanical properties for high-performance silicon-based lithium-ion batteries. Materials Chemistry Frontiers, 2024, 8, 1480-1512.	5.9	0
697	Molecular Plastics Programming: Squaramide as a Building Block. Macromolecules, 2024, 57, 2306-2316.	4.8	0
698	Fire-retardant, anti-dripping, biodegradable and biobased polyurethane elastomers enabled by hydrogen-bonding with cellulose nanocrystals. Nano Research, 2024, 17, 2186-2194.	10.4	2
699	Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
700	Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Angewandte Chemie, 2024, 136, .	2.0	0
701	Preparation and application of self-healing elastomers and coatings at ambient temperature based on semi-interpenetrating polymer networks. Chemical Engineering Journal, 2024, 482, 148987.	12.7	1
702	Decoding Polymeric Additiveâ€Driven Selfâ€Healing Processes in Perovskite Solar Cells from Chemical and Physical Bonding Perspectives. Advanced Energy Materials, 2024, 14, .	19.5	1

0

	Сітатіс	CITATION REPORT		
#	Article	IF	CITATIONS	
703	Advanced Ceramics with Dual Functions of Healing and Decomposition. Materials, 2024, 17, 647.	2.9	0	
704	Global advances and smart innovations in supramolecular polymers. Journal of Molecular Structure, 2024, 1304, 137665.	3.6	0	
705	Revealing Pathway Complexity and Helical Inversion in Supramolecular Assemblies Through Solventâ€Induced Radical Disparities. Advanced Science, 2024, 11, .	11.2	0	
706	Intensified cross-linking dramatically improved the mechanical properties of hydroxyapatite and cellulose composites for repairing bone segmental defects. Materials Advances, 2024, 5, 2556-2569.	5.4	0	
707	Dynamic Chemistry Toolbox for Advanced Sustainable Materials. Advanced Science, 2024, 11, .	11.2	0	
708	Viscoelasticity and self-healing property of dynamic covalent polymers: A molecular dynamics simulation. Polymer, 2024, 295, 126775.	3.8	0	
709	Orthogonal dynamic covalent boroxine-crosslinked poly(disulfide) networks for chemically recyclable encryption materials. Chemical Engineering Journal, 2024, 484, 149564.	12.7	0	
710	Synergistic Enhancement of Low-Temperature Self-Repairing Polyurethane Elastomers through Quadruple Hydrogen Bonds and Coordination Bonds. ACS Applied Polymer Materials, 2024, 6, 2284-2293.	4.4	0	
711	Directly using H ₂ S to Synthesize Crystalline Poly(thioetherâ€ester)s via Organocatalysis. Macromolecular Chemistry and Physics, 2024, 225, .	2.2	0	
712	Building water molecule chains in polybenzimidazole membrane toward superior vanadium redox flow battery. Chemical Engineering Journal, 2024, 485, 149838.	12.7	Ο	
713	Self-Healing and shape memory reconfigurable Poly(urethane-urea-amide) elastomers containing multiple dynamic bonds for improving performance of 4D printout. Chemical Engineering Journal, 2024, 485, 149933.	12.7	0	
714	Dynamic Interfaces in Self-Healable Polymers. Langmuir, 2024, 40, 7268-7285.	3.5	0	
715	Shape-adaptive and recyclable radio-frequency devices based on polymer with variable stiffness. Cell Reports Physical Science, 2024, 5, 101882.	5.6	0	
716	Supramolecular polymer network constructed by a functionalized polyimidazolium salt derived from metal-carbene template approach. Science China Chemistry, 2024, 67, 1224-1228.	8.2	0	