Derivation of Human Trophoblast Stem Cells

Cell Stem Cell 22, 50-63.e6 DOI: 10.1016/j.stem.2017.11.004

Citation Report

#	Article	IF	CITATIONS
1	Hemochorial placentation: development, function, and adaptationsâ€. Biology of Reproduction, 2018, 99, 196-211.	1.2	128
2	Successful derivation of human trophoblast stem cellsâ€. Biology of Reproduction, 2018, 99, 271-272.	1.2	2
3	A niche of trophoblast progenitor cells identified by integrin α2 is present in first trimester human placentas. Development (Cambridge), 2018, 145, .	1.2	54
4	Specification of trophoblast from embryonic stem cells exposed to BMP4â€. Biology of Reproduction, 2018, 99, 212-224.	1.2	49
5	The enhancer RNA lnc-SLC4A1-1 epigenetically regulates unexplained recurrent pregnancy loss (URPL) by activating CXCL8 and NF-kB pathway. EBioMedicine, 2018, 38, 162-170.	2.7	85
6	The role of DNA methylation in human trophoblast differentiation. Epigenetics, 2018, 13, 1154-1173.	1.3	38
7	Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Frontiers in Immunology, 2018, 9, 2597.	2.2	265
8	Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature, 2018, 564, 263-267.	13.7	436
9	Isolation of villous cytotrophoblasts from second trimester human placentas. Placenta, 2018, 74, 55-58.	0.7	2
10	Reduced Uteroplacental Perfusion Pressure (RUPP) causes altered trophoblast differentiation and pericyte reduction in the mouse placenta labyrinth. Scientific Reports, 2018, 8, 17162.	1.6	30
11	Development of trophoblast cystic structures from human induced pluripotent stem cells in limited-area cell culture. Biochemical and Biophysical Research Communications, 2018, 505, 671-676.	1.0	6
12	Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genetics, 2018, 14, e1007698.	1.5	64
13	Genetic Control of Early Cell Lineages in the Mammalian Embryo. Annual Review of Genetics, 2018, 52, 185-201.	3.2	85
14	Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Reports, 2018, 11, 537-551.	2.3	273
15	Human trophoblasts are primarily distinguished from somatic cells by differences in the pattern rather than the degree of global CpG methylation. Biology Open, 2018, 7, .	0.6	6
16	Deconstructing and reconstructing the mouse and human early embryo. Nature Cell Biology, 2018, 20, 878-887.	4.6	161
17	The role of connexins during early embryonic development: pluripotent stem cells, gene editing, and artificial embryonic tissues as tools to close the knowledge gap. Histochemistry and Cell Biology, 2018, 150, 327-339.	0.8	12
	Eurotional gapatics of early human development. Current Opinion in Constiss and Development. 2018		

#	Article	IF	CITATIONS
19	Exploring early human embryo development. Science, 2018, 360, 1075-1076.	6.0	42
20	Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Scientific Reports, 2018, 8, 8977.	1.6	26
21	Human Pre-gastrulation Development. Current Topics in Developmental Biology, 2018, 128, 295-338.	1.0	59
22	Tumor Microenvironment and Cell Fusion. BioMed Research International, 2019, 2019, 1-12.	0.9	27
23	Establishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Research and Therapy, 2019, 10, 245.	2.4	41
24	The mammalian embryo's first agenda: making trophectoderm. International Journal of Developmental Biology, 2019, 63, 157-170.	0.3	13
25	Differentiation of derived rabbit trophoblast stem cells under fluid shear stress to mimic the trophoblastic barrier. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1608-1618.	1.1	11
26	Pre-eclampsia: pathophysiology and clinical implications. BMJ: British Medical Journal, 2019, 366, l2381.	2.4	613
27	Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. International Journal of Molecular Sciences, 2019, 20, 3643.	1.8	19
28	Trophoblast type-specific expression of senescence markers in the human placenta. Placenta, 2019, 85, 56-62.	0.7	15
29	Super-enhancer-guided mapping of regulatory networks controlling mouse trophoblast stem cells. Nature Communications, 2019, 10, 4749.	5.8	45
30	Dynamics of trophoblast differentiation in peri-implantation–stage human embryos. Proceedings of the United States of America, 2019, 116, 22635-22644.	3.3	68
31	An Improved Two‣tep Protocol for Trophoblast Differentiation of Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2019, 50, e96.	3.0	31
32	Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biology, 2019, 17, e3000187.	2.6	60
33	Modeling the Placenta with Stem Cells. New England Journal of Medicine, 2019, 381, 1681-1683.	13.9	7
34	Interaction of Pregnancy-Specific Glycoprotein 1 With Integrin Α5β1 Is a Modulator of Extravillous Trophoblast Functions. Cells, 2019, 8, 1369.	1.8	30
35	Regulation of human trophoblast syncytialization by histone demethylase LSD1. Journal of Biological Chemistry, 2019, 294, 17301-17313.	1.6	22
36	The underdeveloped innate immunity in embryonic stem cells: The molecular basis and biological perspectives from early embryogenesis. American Journal of Reproductive Immunology, 2019, 81, e13089.	1.2	16

#	Article	IF	CITATIONS
37	Human Trophoblast Differentiation Is Associated With Profound Gene Regulatory and Epigenetic Changes. Endocrinology, 2019, 160, 2189-2203.	1.4	35
38	Human <i>in vitro</i> fertilisation and developmental biology: a mutually influential history. Development (Cambridge), 2019, 146, .	1.2	18
39	Recent insights into the naÃ ⁻ ve state of human pluripotency and its applications. Experimental Cell Research, 2019, 385, 111645.	1.2	30
40	Imprinted MicroRNA Gene Clusters in the Evolution, Development, and Functions of Mammalian Placenta. Frontiers in Genetics, 2018, 9, 706.	1.1	67
41	Cellular systems biology identifies dynamic trophoblast populations in early human placentas. Placenta, 2019, 76, 10-18.	0.7	13
42	Paracrine action of human placental trophoblast cells attenuates cisplatin-induced acute kidney injury. Life Sciences, 2019, 230, 45-54.	2.0	5
43	On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote?. Stem Cells and Development, 2019, 28, 897-906.	1.1	10
44	Human blastocyst outgrowths recapitulate primordial germ cell specification events. Molecular Human Reproduction, 2019, 25, 519-526.	1.3	18
45	Synergistic effect of basic fibroblast growth factor (bFGF) and epidermal growth factor on derivation of camel (Camelus dromedarius) trophoblast stem cells. Zygote, 2019, 27, 255-258.	0.5	1
46	Inhibition of Phosphoinositide-3-Kinase Signaling Promotes the Stem Cell State of Trophoblast. Stem Cells, 2019, 37, 1307-1318.	1.4	10
47	Self-organization of stem cells into embryos: A window on early mammalian development. Science, 2019, 364, 948-951.	6.0	145
48	Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 2019, 21, 687-699.	4.6	261
49	Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Current Topics in Developmental Biology, 2019, 135, 35-89.	1.0	31
50	Test-tube embryos - mouse and human development in vitro to blastocyst stage and beyond. International Journal of Developmental Biology, 2019, 63, 203-215.	0.3	15
51	Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Reports, 2019, 27, 1742-1754.e6.	2.9	34
52	FGF/ERK signaling pathway: how it operates in mammalian preimplantation embryos and embryo-derived stem cells. International Journal of Developmental Biology, 2019, 63, 171-186.	0.3	14
53	Human placenta and trophoblast development: key molecular mechanisms and model systems. Cellular and Molecular Life Sciences, 2019, 76, 3479-3496.	2.4	414
54	Characterization of 5-methylcytosine and 5-hydroxymethylcytosine in human placenta cell types across gestation. Epigenetics, 2019, 14, 660-671.	1.3	9

#	Article	IF	CITATIONS
55	Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts. Biology Open, 2019, 8, .	0.6	16
56	Early onset preeclampsia in a model for human placental trophoblast. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4336-4345.	3.3	55
57	Frontier Progress in the Establishment of Trophoblast Stem Cell and the Identification of New Cell Subtypes at the Maternal-Fetal Interface. Maternal-Fetal Medicine, 2019, 1, 105-112.	0.4	1
58	Loss of p57 ^{KIP2} expression confers resistance to contact inhibition in human androgenetic trophoblast stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26606-26613.	3.3	24
59	Low oxygen enhances trophoblast column growth by potentiating differentiation of the extravillous lineage and promoting LOX activity. Development (Cambridge), 2020, 147, .	1.2	20
60	Development of the human placenta. Development (Cambridge), 2019, 146, .	1.2	378
61	Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nature Communications, 2019, 10, 5674.	5.8	39
62	Genome-wide identification of enhancer elements in the placenta. Placenta, 2019, 79, 72-77.	0.7	7
63	Opening the black box: Stem cell–based modeling of human post-implantation development. Journal of Cell Biology, 2019, 218, 410-421.	2.3	27
64	Esrrb plays important roles in maintaining self-renewal of trophoblast stem cells (TSCs) and reprogramming somatic cells to induced TSCs. Journal of Molecular Cell Biology, 2019, 11, 463-473.	1.5	19
65	Derivation of Mouse Haploid Trophoblast Stem Cells. Cell Reports, 2019, 26, 407-414.e5.	2.9	16
66	Derivation of Haploid Trophoblast Stem Cells via Conversion InÂVitro. IScience, 2019, 11, 508-518.	1.9	24
67	Full of potential: Pluripotent stem cells for the systems biology of embryonic patterning. Developmental Biology, 2020, 460, 86-98.	0.9	17
68	Mechanisms of early placental development in mouse and humans. Nature Reviews Genetics, 2020, 21, 27-43.	7.7	274
69	Specification of the First Mammalian Cell Lineages In Vivo and In Vitro. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035634.	2.3	18
70	Bioengineered microenvironment to culture early embryos. Cell Proliferation, 2020, 53, e12754.	2.4	11
71	Human Embryogenesis: A Comparative Perspective. Annual Review of Cell and Developmental Biology, 2020, 36, 411-440.	4.0	39
72	Microphysiological systems of the placental barrier. Advanced Drug Delivery Reviews, 2020, 161-162, 161-175.	6.6	37

#	Article	IF	CITATIONS
73	Progress in deciphering trophoblast cell differentiation during human placentation. Current Opinion in Cell Biology, 2020, 67, 86-91.	2.6	41
74	Unique features and emerging in vitro models of human placental development. Reproductive Medicine and Biology, 2020, 19, 301-313.	1.0	9
75	Establishment and characterization of a new human first trimester Trophoblast cell line, AL07. Placenta, 2020, 100, 122-132.	0.7	8
76	Primary Cilia in Trophoblastic Cells. Hypertension, 2020, 76, 1491-1505.	1.3	24
77	Isolation and characterization human chorion membrane trophoblast and mesenchymal cells. Placenta, 2020, 101, 139-146.	0.7	14
78	TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17864-17875.	3.3	95
79	Bioengineered pluripotent stem cell models: new approaches to explore early human embryo development. Current Opinion in Biotechnology, 2020, 66, 52-58.	3.3	8
80	Placental energy metabolism in health and disease—significance of development and implications for preeclampsia. American Journal of Obstetrics and Gynecology, 2022, 226, S928-S944.	0.7	52
81	Induction of Human Trophoblast Stem Cells from Somatic Cells and Pluripotent Stem Cells. Cell Reports, 2020, 33, 108419.	2.9	117
82	IRF-1 expressed in the inner cell mass of the porcine early blastocyst enhances the pluripotency of induced pluripotent stem cells. Stem Cell Research and Therapy, 2020, 11, 505.	2.4	9
83	Principles of Self-Organization of the Mammalian Embryo. Cell, 2020, 183, 1467-1478.	13.5	60
84	Transcription Factor PLAGL1 Is Associated with Angiogenic Gene Expression in the Placenta. International Journal of Molecular Sciences, 2020, 21, 8317.	1.8	10
85	Keep Calm and the Placenta Will Carry On. Developmental Cell, 2020, 54, 295-296.	3.1	4
86	Trophoblast lineage specific expression of the alternative splicing factor RBFOX2 suggests a role in placental development. Placenta, 2020, 100, 142-149.	0.7	3
87	The unique applicability of the human placenta to the Adverse Outcome Pathway (AOP) concept: the placenta provides fundamental insights into human organ functions at multiple levels of biological organization. Reproductive Toxicology, 2020, 96, 273-281.	1.3	9
88	Role of Hippo signaling pathway in early placental development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20354-20356.	3.3	14
89	Innate Immune Mechanisms to Protect Against Infection at the Human Decidual-Placental Interface. Frontiers in Immunology, 2020, 11, 2070.	2.2	42
90	New era of trophoblast research: integrating morphological and molecular approaches. Human Reproduction Update, 2020, 26, 611-633.	5.2	17

#	Article	IF	CITATIONS
91	Trophoblast lineage specification in the mammalian preimplantation embryo. Reproductive Medicine and Biology, 2020, 19, 209-221.	1.0	10
92	Modelling human embryogenesis: embryo-like structures spark ethical and policy debate. Human Reproduction Update, 2020, 26, 779-798.	5.2	36
93	Developmental potential of aneuploid human embryos cultured beyond implantation. Nature Communications, 2020, 11, 3987.	5.8	66
94	Tissue-specific and transcription-dependent mechanisms regulate primary microRNA processing efficiency of the human chromosome 19 MicroRNA cluster. RNA Biology, 2021, 18, 1170-1180.	1.5	7
95	Hyperactivated Wnt-β-catenin signaling in the absence of sFRP1 and sFRP5 disrupts trophoblast differentiation through repression of Ascl2. BMC Biology, 2020, 18, 151.	1.7	12
96	Got your mother in a whirl: The role of maternal T cells and myeloid cells in pregnancy. Hla, 2020, 96, 561-579.	0.4	5
97	ReprogrammingÂroadmap reveals route toÂhuman induced trophoblast stem cells. Nature, 2020, 586, 101-107.	13.7	131
98	Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nature Protocols, 2020, 15, 3441-3463.	5.5	86
99	NLRP7 plays a functional role in regulating BMP4 signaling during differentiation of patient-derived trophoblasts. Cell Death and Disease, 2020, 11, 658.	2.7	17
100	Ultra-high-resolution 3D optical coherence tomography reveals inner structures of human placenta-derived trophoblast organoids. IEEE Transactions on Biomedical Engineering, 2020, 68, 1-1.	2.5	11
101	The Roles of the Histone Protein Modifier EZH2 in the Uterus and Placenta. Epigenomes, 2020, 4, 20.	0.8	6
102	Placenta-derived macaque trophoblast stem cells: differentiation to syncytiotrophoblasts and extravillous trophoblasts reveals phenotypic reprogramming. Scientific Reports, 2020, 10, 19159.	1.6	13
103	Use of a human embryonic stem cell model to discover GABRP, WFDC2, VTCN1 and ACTC1 as markers of early first trimester human trophoblast. Molecular Human Reproduction, 2020, 26, 425-440.	1.3	25
104	Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts. Cell Death and Disease, 2020, 11, 311.	2.7	30
105	Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13562-13570.	3.3	95
106	Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nature Communications, 2020, 11, 3182.	5.8	34
107	In Vivo and In Vitro Models of Diabetes: A Focus on Pregnancy. Advances in Experimental Medicine and Biology, 2020, 1307, 553-576.	0.8	11
108	Side-Population Trophoblasts Exhibit the Differentiation Potential of a Trophoblast Stem Cell Population, Persist to Term, and are Reduced in Fetal Growth Restriction. Stem Cell Reviews and Reports, 2020, 16, 764-775.	1.7	12

#	Article	IF	CITATIONS
109	Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal–fetal exchange interface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14280-14291.	3.3	14
110	Organoid technology in female reproductive biomedicine. Reproductive Biology and Endocrinology, 2020, 18, 64.	1.4	37
111	Efficient differentiation and purification of human induced pluripotent stem cell-derived endothelial progenitor cells and expansion with the use of inhibitors of ROCK, TGF-β, and GSK3β. Heliyon, 2020, 6, e03493.	1.4	11
112	Abnormal Cullin1 neddylation-mediated p21 accumulation participates in the pathogenesis of recurrent spontaneous abortion by regulating trophoblast cell proliferation and differentiation. Molecular Human Reproduction, 2020, 26, 327-339.	1.3	10
113	InÂvitro modeling of early mammalian embryogenesis. Current Opinion in Biomedical Engineering, 2020, 13, 134-143.	1.8	13
114	The TGFβ Family in Human Placental Development at the Fetal-Maternal Interface. Biomolecules, 2020, 10, 453.	1.8	23
115	A comparative study of key physiological stem cell parameters between three human trophoblast cell lines. Biochemical and Biophysical Research Communications, 2020, 525, 1038-1045.	1.0	2
116	Tracking placental development in health and disease. Nature Reviews Endocrinology, 2020, 16, 479-494.	4.3	173
117	Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Stem Cell Reports, 2020, 15, 198-213.	2.3	129
118	The role of extracellular matrix in normal and pathological pregnancy: Future applications of microphysiological systems in reproductive medicine. Experimental Biology and Medicine, 2020, 245, 1163-1174.	1.1	37
119	Expanded potential: the key to synthetic embryo?. Current Opinion in Genetics and Development, 2020, 64, 72-77.	1.5	2
120	IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nature Communications, 2020, 11, 764.	5.8	41
121	Review: Histotrophic nutrition and the placental-endometrial dialogue during human early pregnancy. Placenta, 2020, 102, 21-26.	0.7	46
122	Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta, 2020, 102, 4-9.	0.7	39
123	Adapting the 14-day rule for embryo research to encompass evolving technologies. Reproductive Biomedicine and Society Online, 2020, 10, 1-9.	0.9	19
124	A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature, 2020, 577, 537-542.	13.7	277
125	Hypomethylation of PRDM1 is associated with recurrent pregnancy loss. Journal of Cellular and Molecular Medicine, 2020, 24, 7072-7077.	1.6	10
126	Shedding light into the black box: Advances in in vitro systems for studying implantation. Developmental Biology, 2020, 463, 1-10.	0.9	11

#	Article	IF	CITATIONS
127	Synthetic human embryology: towards a quantitative future. Current Opinion in Genetics and Development, 2020, 63, 30-35.	1.5	9
128	Establishment of macaque trophoblast stem cell lines derived from cynomolgus monkey blastocysts. Scientific Reports, 2020, 10, 6827.	1.6	10
129	A Novel Human Placental Barrier Model Based on Trophoblast Stem Cells Derived from Human Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2020, 26, 780-791.	1.6	12
130	Placental imprinting: Emerging mechanisms and functions. PLoS Genetics, 2020, 16, e1008709.	1.5	50
131	The Transcription Factor OVOL2 Represses ID2 and Drives Differentiation of Trophoblast Stem Cells and Placental Development in Mice. Cells, 2020, 9, 840.	1.8	24
132	Organoid systems to study the human female reproductive tract and pregnancy. Cell Death and Differentiation, 2021, 28, 35-51.	5.0	59
133	Stem-cell-based embryo models for fundamental research and translation. Nature Materials, 2021, 20, 132-144.	13.3	86
134	Modeling human embryo development with embryonic and extra-embryonic stem cells. Developmental Biology, 2021, 474, 91-99.	0.9	35
135	Air pollution and pre-eclampsia; associations and potential mechanisms. Placenta, 2021, 104, 188-194.	0.7	15
136	PlacentaCellEnrich: A tool to characterize gene sets using placenta cell-specific gene enrichment analysis. Placenta, 2021, 103, 164-171.	0.7	24
137	The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in uteroâ€. Biology of Reproduction, 2021, 104, 27-57.	1.2	7
139	Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics, 2021, 13, 122.	2.0	112
140	Isolation of Primary Cytotrophoblasts From Human Placenta at Term. Bio-protocol, 2021, 11, e4185.	0.2	3
141	Embryo implantation in the laboratory: an update on current techniques. Human Reproduction Update, 2021, 27, 501-530.	5.2	41
142	The Role of Junctional Adhesion Molecule-C in Trophoblast Differentiation and Function During Pregnancy and Preeclampsia. SSRN Electronic Journal, 0, , .	0.4	0
143	Induction of trophoblast differentiation in human-induced pluripotent stem cells by cell adhesion restriction. , 2021, , 167-189.		0
144	Maintenance of mouse trophoblast stem cells in KSR-based medium allows conventional 3D culture. Journal of Reproduction and Development, 2021, 67, 197-205.	0.5	4
146	Organoids of the female reproductive tract. Journal of Molecular Medicine, 2021, 99, 531-553.	1.7	42

#	Article	IF	CITATIONS
147	Chromatin Regulation in Development: Current Understanding and Approaches. Stem Cells International, 2021, 2021, 1-12.	1.2	5
148	From Snapshots to Development: Identifying the Gaps in the Development of Stem Cellâ€based Embryo Models along the Embryonic Timeline. Advanced Science, 2021, 8, 2004250.	5.6	5
149	Modeling preeclampsia using human induced pluripotent stem cells. Scientific Reports, 2021, 11, 5877.	1.6	26
150	Progress and challenges in developing organoids in farm animal species for the study of reproduction and their applications to reproductive biotechnologies. Veterinary Research, 2021, 52, 42.	1.1	18
151	A crossroad between placental and tumor biology: What have we learnt?. Placenta, 2021, 116, 12-30.	0.7	29
153	ASCL2 reciprocally controls key trophoblast lineage decisions during hemochorial placenta development. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53
154	Blastocyst-like structures generated from human pluripotent stem cells. Nature, 2021, 591, 620-626.	13.7	275
156	Organoids as Novel Models for Embryo Implantation Study. Reproductive Sciences, 2021, 28, 1637-1643.	1.1	6
157	Roles of TGF-Î ² Superfamily Proteins in Extravillous Trophoblast Invasion. Trends in Endocrinology and Metabolism, 2021, 32, 170-189.	3.1	52
159	Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature, 2021, 591, 627-632.	13.7	211
160	Modeling human peri-implantation placental development and function. Biology of Reproduction, 2021, 105, 40-51.	1.2	19
162	Stability of Imprinting and Differentiation Capacity in NaÃ ⁻ ve Human Cells Induced by Chemical Inhibition of CDK8 and CDK19. Cells, 2021, 10, 876.	1.8	0
163	Long noncoding RNA expression profiling identifies MIR210HG as a novel molecule in severe preeclampsia. Life Sciences, 2021, 270, 119121.	2.0	8
164	Chemically defined and xeno-free culture condition for human extended pluripotent stem cells. Nature Communications, 2021, 12, 3017.	5.8	16
165	Molecular characteristics of established trophoblast-derived cell lines. Placenta, 2021, 108, 122-133.	0.7	22
166	Biomedical and societal impacts of inÂvitro embryo models of mammalian development. Stem Cell Reports, 2021, 16, 1021-1030.	2.3	13
167	Opportunities and challenges with stem cell-based embryo models. Stem Cell Reports, 2021, 16, 1031-1038.	2.3	52
168	All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports, 2021, 16, 1117-1141.	2.3	24

#	Article	IF	Citations
169	Molecular and immunological developments in placentas. Human Immunology, 2021, 82, 317-324.	1.2	13
170	A simple method to isolate term trophoblasts and maintain them in extended culture. Placenta, 2021, 108, 1-10.	0.7	8
171	Omics Approaches to Study Formation and Function of Human Placental Syncytiotrophoblast. Frontiers in Cell and Developmental Biology, 2021, 9, 674162.	1.8	26
172	Cell dynamics in human villous trophoblast. Human Reproduction Update, 2021, 27, 904-922.	5.2	30
173	Transcriptomic analysis of primate placentas and novel rhesus trophoblast cell lines informs investigations of human placentation. BMC Biology, 2021, 19, 127.	1.7	9
174	A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nature Communications, 2021, 12, 3679.	5.8	63
176	Building a stem cell-based primate uterus. Communications Biology, 2021, 4, 749.	2.0	12
177	Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell, 2021, 28, 1040-1056.e6.	5.2	201
178	Capturing human trophoblast development with naive pluripotent stem cells inÂvitro. Cell Stem Cell, 2021, 28, 1023-1039.e13.	5.2	164
179	BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. ELife, 2021, 10, .	2.8	27
180	Integrating High-Throughput Approaches and in vitro Human Trophoblast Models to Decipher Mechanisms Underlying Early Human Placenta Development. Frontiers in Cell and Developmental Biology, 2021, 9, 673065.	1.8	6
181	Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Reports, 2021, 35, 109233.	2.9	28
182	Elevated Circulating and Placental SPINT2 Is Associated with Placental Dysfunction. International Journal of Molecular Sciences, 2021, 22, 7467.	1.8	9
183	Mechanobiology of the female reproductive system. Reproductive Medicine and Biology, 2021, 20, 371-401.	1.0	12
184	Generation of Trophoblast-Like Cells From Hypomethylated Porcine Adult Dermal Fibroblasts. Frontiers in Veterinary Science, 2021, 8, 706106.	0.9	3
185	Endogenous Retroviruses Drive Lineage-Specific Regulatory Evolution across Primate and Rodent Placentae. Molecular Biology and Evolution, 2021, 38, 4992-5004.	3.5	23
187	Downregulation of IncRNA IGF2-AS-encoded peptide induces trophoblast – cycle arrest. Reproductive BioMedicine Online, 2021, 43, 598-606.	1.1	5
189	Placental Findings in Preterm and Term Preeclampsia: An Integrative Review of the Literature. Revista Brasileira De Ginecologia E Obstetricia, 2021, 43, 560-569.	0.3	7

#	Article	IF	CITATIONS
190	Prostaglandin E2 Receptor 4 (EP4) Affects Trophoblast Functions via Activating the cAMP-PKA-pCREB Signaling Pathway at the Maternal-Fetal Interface in Unexplained Recurrent Miscarriage. International Journal of Molecular Sciences, 2021, 22, 9134.	1.8	2
191	Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria. Scientific Reports, 2021, 11, 16595.	1.6	5
192	Efficient derivation of human trophoblast stem cells from primed pluripotent stem cells. Science Advances, 2021, 7, .	4.7	60
194	Human embryonic development: from peri-implantation to gastrulation. Trends in Cell Biology, 2022, 32, 18-29.	3.6	35
195	TGFβ signalling is required to maintain pluripotency of human naÃ⁻ve pluripotent stem cells. ELife, 2021, 10, .	2.8	24
196	Comparison of Histone H3K4me3 between IVF and ICSI Technologies and between Boy and Girl Offspring. International Journal of Molecular Sciences, 2021, 22, 8574.	1.8	9
197	Transposable elements shape the evolution of mammalian development. Nature Reviews Genetics, 2021, 22, 691-711.	7.7	133
198	Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell, 2021, 28, 1549-1565.e12.	5.2	78
199	Endocytosis in the placenta: An undervalued mediator of placental transfer. Placenta, 2021, 113, 67-73.	0.7	14
200	MSX2 safeguards syncytiotrophoblast fate of human trophoblast stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
201	Transcriptomic Drivers of Differentiation, Maturation, and Polyploidy in Human Extravillous Trophoblast. Frontiers in Cell and Developmental Biology, 2021, 9, 702046.	1.8	21
202	Generation of human blastocyst-like structures from pluripotent stem cells. Cell Discovery, 2021, 7, 81.	3.1	73
203	Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nature Communications, 2021, 12, 5550.	5.8	107
204	BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo. Biology Open, 2021, 10, .	0.6	30
205	Paradigms for investigating invasive trophoblast cell development and contributions to uterine spiral artery remodeling. Placenta, 2021, 113, 48-56.	0.7	19
206	Syncytins expressed in human placental trophoblast. Placenta, 2021, 113, 8-14.	0.7	40
207	Establishment of human induced trophoblast stem-like cells from term villous cytotrophoblasts. Stem Cell Research, 2021, 56, 102507.	0.3	18
208	Placental Changes in the serotonin transporter (Slc6a4) knockout mouse suggest a role for serotonin in controlling nutrient acquisition. Placenta, 2021, 115, 158-168.	0.7	8

	CITATION R	EPORT	
#	Article	IF	CITATIONS
209	The epigenetic regulation of the immune system during pregnancy. , 2021, , 365-385.		2
210	Is SARS-CoV-2 Infection a Risk Factor for Early Pregnancy Loss? ACE2 and TMPRSS2 Coexpression and Persistent Replicative Infection in Primitive Trophoblast. Journal of Infectious Diseases, 2021, 224, S660-S669.	1.9	10
211	Using Stem Cells and Synthetic Scaffolds to Model Ethically Sensitive Human Placental Tissue. Fundamental Biomedical Technologies, 2021, , 219-234.	0.2	0
212	Two distinct trophectoderm lineage stem cells from human pluripotent stem cells. Journal of Biological Chemistry, 2021, 296, 100386.	1.6	48
213	Deciphering a distinct regulatory network of TEAD4, CDX2 and GATA3 in humans for trophoblast transition from embryonic stem cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118736.	1.9	13
214	Human embryonic stem cell–derived blastocyst-like spheroids resemble human trophectoderm during early implantation process. Fertility and Sterility, 2020, 114, 653-664.e6.	0.5	16
215	Investigation of human trophoblast invasion <i>in vitro</i> . Human Reproduction Update, 2020, 26, 501-513.	5.2	155
216	Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Human Reproduction Update, 2021, 27, 531-569.	5.2	54
223	Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia. JCl Insight, 2019, 4, .	2.3	24
224	Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction, 2020, 160, R1-R11.	1.1	37
225	Laminin is the ECM niche for trophoblast stem cells. Life Science Alliance, 2020, 3, e201900515.	1.3	19
226	Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610544.	2.0	68
227	Forskolin promotes vasculogenic mimicry and invasion via Notch‑1‑activated epithelial‑to‑mesenchyma transition in syncytiolization of trophoblast cells in choriocarcinoma. International Journal of Oncology, 2020, 56, 1129-1139.	 1.4	4
228	miR‑181b‑5p inhibits trophoblast cell migration and invasion through targeting S1PR1 in multiple abnormal trophoblast invasion‑related events. Molecular Medicine Reports, 2020, 22, 4442-4451.	1.1	7
229	Derivation of trophoblast stem cells from na $ ilde{A}$ ve human pluripotent stem cells. ELife, 2020, 9, .	2.8	203
230	DNA Methylation and Recurrent Pregnancy Loss: A Mysterious Compass?. Frontiers in Immunology, 2021, 12, 738962.	2.2	28
232	Super Enhancer Profiles Identify Key Cell Identity Genes During Differentiation From Embryonic Stem Cells to Trophoblast Stem Cells Super Enhencers in Trophoblast Differentiation. Frontiers in Genetics, 2021, 12, 762529.	1.1	3
234	Characterization of primary models of human trophoblast. Development (Cambridge), 2021, 148, .	1.2	50

#	Article	IF	CITATIONS
235	MNSFÎ ² regulates placental development by conjugating IGF2BP2 to enhance trophoblast cell invasiveness. Cell Proliferation, 2021, 54, e13145.	2.4	5
237	Derivation of Haploid Trophoblast Stem Cells <1>Via 1 Conversion <1>In Vitro 1 . SSRN Electronic Journal, 0, , .	0.4	0
241	Optimized protocol for naive human pluripotent stem cell-derived trophoblast induction. STAR Protocols, 2021, 2, 100921.	0.5	5
242	Human placenta-derived stem cells - recent findings based on the molecular science. Medical Journal of Cell Biology (discontinued), 2020, 8, 164-169.	0.2	2
244	Computer Designed PRC2 Inhibitor, EBdCas9, Reveals Functional TATA Boxes in Distal Promoter Regions. SSRN Electronic Journal, 0, , .	0.4	0
246	Trophoblast stem cells - methods of isolation, histological and cellular characteristic, and their possible applications in human and animal models. Medical Journal of Cell Biology (discontinued), 2020, 8, 95-100.	0.2	1
247	Using Mitochondrial Trifunctional Protein Deficiency to Understand Maternal Health. Journal of Cellular Signaling, 2020, 1, 97-101.	0.5	0
248	Malaria in Pregnancy: From Placental Infection to Its Abnormal Development and Damage. Frontiers in Microbiology, 2021, 12, 777343.	1.5	18
249	Role of autocrine bone morphogenetic protein signaling in trophoblast stem cells. Biology of Reproduction, 2022, 106, 540-550.	1.2	4
250	From stem cells to spiral arteries: A journey through early placental development. Placenta, 2022, 125, 68-77.	0.7	10
251	Stem Cell-Based Embryo Models: En Route to a Programmable Future. Journal of Molecular Biology, 2022, 434, 167353.	2.0	4
253	Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues—Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells, 2021, 10, 3278.	1.8	24
254	Establishment of Trophoblastâ€Like Tissue Model from Human Pluripotent Stem Cells in Threeâ€Dimensional Culture System. Advanced Science, 2022, 9, e2100031.	5.6	7
255	Single-Cell Analysis of Embryoids Reveals Lineage Diversification Roadmaps of Early Human Development. SSRN Electronic Journal, 0, , .	0.4	1
256	Identification of Optimal Conditions for Human Placental Explant Culture and Extracellular Vesicle Release. SSRN Electronic Journal, 0, , .	0.4	0
258	Sequestration of elF4A by angiomotin: A novel mechanism to restrict global protein synthesis in trophoblast cells. Stem Cells, 2021, 39, 210-226.	1.4	8
259	Intersection of regulatory pathways controlling hemostasis and hemochorial placentation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
260	Early human embryonic development: Blastocyst formation to gastrulation. Developmental Cell, 2022, 57, 152-165.	3.1	64

ARTICLE IF CITATIONS # ZBED1 Regulates Genes Important for Multiple Biological Processes of the Placenta. Genes, 2022, 13, 261 1.0 2 133. Cell trajectory modeling identifies a primitive trophoblast state defined by BCAM enrichment. 1.2 39 Development (Cambridge), 2022, 149, . Human placental mesenchymal stromal cells are ciliated and their ciliation is compromised in 263 2.37 preeclampsia. BMC Medicine, 2022, 20, 35. The impact of bisphenol A on the placenta. Biology of Reproduction, 2022, 106, 826-834. 1.2 264 Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial 265 0.4 28 cells during human embryo implantation. Human Reproduction, 2022, 37, 777-792. Human placenta and trophoblasts simultaneously express three isoforms of atypical protein kinase-c. Placenta, 2022, 119, 39-43. 268 Human blastoids model blastocyst development and implantation. Nature, 2022, 601, 600-605. 13.7 220 Strategies for investigating hemochorial placentation., 2022, , 1339-1353. Leveraging Optimized Transcriptomic and Personalized Stem Cell Technologies to Better Understand 273 1.1 1 Syncytialization Defects in Preeclampsia. Frontiers in Genetics, 2022, 13, 872818. 274 Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature, 2022, 605, 315-324. 13.7 dCas9 fusion to computer-designed PRC2 inhibitor reveals functional TATA box in distal promoter 275 2.9 12 region. Cell Reports, 2022, 38, 110457. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Frontiers in Cell and 1.8 Developmental Biology, 2022, 10, 838356. UHRF1 shapes both the trophoblast invasion and decidual macrophage differentiation in early 277 0.2 4 pregnancy. FASEB Journal, 2022, 36, e22247. Modeling Trophoblast Cell-Guided Uterine Spiral Artery Transformation in the Rat. International 279 1.8 24 Journal of Molecular Sciences, 2022, 23, 2947 In vitro investigation of mammalian peri-implantation embryogenesis. Biology of Reproduction, 2022, , . 280 1.2 0 Derivation of human triploid trophoblast stem cells. Journal of Assisted Reproduction and Genetics, 1.2 2022, 39, 1183-1193. RhoA/ROCK signaling antagonizes bovine trophoblast stem cell self-renewal and regulates 282 1.2 4 preimplantation embryo size and differentiation. Development (Cambridge), 2022, 149, . Functional antagonism between î"Np63î± and GCM1 regulates human trophoblast stemness and 5.8 differentiation. Nature Communications, 2022, 13, 1626.

#	Article	IF	CITATIONS
285	Modeling the Human Placenta to Investigate Viral Infections During Pregnancy. Frontiers in Virology, 2022, 2, .	0.7	1
286	PSG7 and 9 (Pregnancyâ€Specific βâ€1 Glycoproteins 7 and 9): Novel Biomarkers for Preeclampsia. Journal of the American Heart Association, 2022, 11, e024536.	1.6	5
287	Human placental development and function. Seminars in Cell and Developmental Biology, 2022, 131, 66-77.	2.3	54
288	Bioethics in human embryology: the double-edged sword of embryo research. Systems Biology in Reproductive Medicine, 2022, 68, 169-179.	1.0	3
289	Syncytin, envelope protein of human endogenous retrovirus (HERV): no longer â€~fossil' in human genome. Animal Cells and Systems, 2021, 25, 358-368.	0.8	15
290	Differentiation and Expansion of Human Extra-Embryonic Endoderm Cell Lines from NaÃ⁻ve Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2416, 105-116.	0.4	1
291	Placental Development and Pregnancy-Associated Diseases. Maternal-Fetal Medicine, 2022, 4, 36-51.	0.4	2
292	Joan Hunt Senior award lecture: New tools to shed light on the †black box' of pregnancy. Placenta, 2022, 125, 54-60.	0.7	2
294	Generating Trophoblast Stem Cells from Human NaÃ⁻ve Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2416, 91-104.	0.4	9
295	Dysregulated BMP2 in the Placenta May Contribute to Early-Onset Preeclampsia by Regulating Human Trophoblast Expression of Extracellular Matrix and Adhesion Molecules. Frontiers in Cell and Developmental Biology, 2021, 9, 768669.	1.8	14
296	PCR amplicons identify widespread copy number variation in human centromeric arrays and instability in cancer. Cell Genomics, 2021, 1, 100064.	3.0	14
298	In Vitro Model of Human Trophoblast in Early Placentation. Biomedicines, 2022, 10, 904.	1.4	8
299	LMNA Determines Nuclear Morphology During Syncytialization of Human Trophoblast Stem Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 836390.	1.8	6
300	Amniogenesis occurs in two independent waves in primates. Cell Stem Cell, 2022, 29, 744-759.e6.	5.2	48
301	Porcine Pluripotent Stem Cells Established from LCDM Medium with Characteristics Differ from Human and Mouse Extended Pluripotent Stem Cells. Stem Cells, 2022, 40, 751-762.	1.4	3
302	Current understanding in deciphering trophoblast cell differentiation during human placentation. Biology of Reproduction, 2022, 107, 317-326.	1.2	3
303	Chronic Inflammatory Placental Disorders Associated With Recurrent Adverse Pregnancy Outcome. Frontiers in Immunology, 2022, 13, 825075.	2.2	31
304	The amnion as a window into human pluripotency. Cell Stem Cell, 2022, 29, 661-662.	5.2	2

#		IF	CITATIONS
π 205	Induction of human trophoblast stem-like cells from primed pluripotent stem cells. Proceedings of	11 9 9	22
303	the National Academy of Sciences of the United States of America, 2022, 119, e2115709119.	0.0	23
306	Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell, 2022, 29, 810-825.e8.	5.2	65
307	WNT and NOTCH signaling in human trophoblast development and differentiation. Cellular and Molecular Life Sciences, 2022, 79, 292.	2.4	30
308	Zika virus impacts extracellular vesicle composition and cellular gene expression in macaque early gestation trophoblasts. Scientific Reports, 2022, 12, 7348.	1.6	5
309	A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells. Nature Communications, 2022, 13, 2548.	5.8	25
310	Deconstructing human peri-implantation embryogenesis based on embryos and embryoids. Biology of Reproduction, 2022, 107, 212-225.	1.2	3
311	An improved in vitro model simulating the feto-maternal interface to study developmental effects of potentially toxic compounds: The example of titanium dioxide nanoparticles. Toxicology and Applied Pharmacology, 2022, 446, 116056.	1.3	4
312	Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Frontiers in Immunology, 2022, 13, .	2.2	9
313	Gal-2 Increases H3K4me3 and H3K9ac in Trophoblasts and Preeclampsia. Biomolecules, 2022, 12, 707.	1.8	2
314	Mapping Human Reproduction with Single-Cell Genomics. Annual Review of Genomics and Human Genetics, 2022, 23, 523-547.	2.5	5
316	The product of BMP-directed differentiation protocols for human primed pluripotent stem cells is placental trophoblast and not amnion. Stem Cell Reports, 2022, 17, 1289-1302.	2.3	12
319	Comparative Functional Microrna Landscape of Trophoblast Stem Cell- And Mesenchymal Stem Cell-Derived Exosomes Using Small RNA Profiling. SSRN Electronic Journal, 0, , .	0.4	0
320	<i>BCL6</i> , a key oncogene, in the placenta, pre-eclampsia and endometriosis. Human Reproduction Update, 2022, 28, 890-909.	5.2	8
322	Derivation of functional trophoblast stem cells from primed human pluripotent stem cells. Stem Cell Reports, 2022, 17, 1303-1317.	2.3	24
323	NRF2 Serves a Critical Role in Regulation of Immune Checkpoint Proteins (ICPs) During Trophoblast Differentiation. Endocrinology, 2022, 163, .	1.4	6
325	Transcription factor networks in trophoblast development. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	30
326	The microRNA cluster C19MC confers differentiation potential into trophoblast lineages upon human pluripotent stem cells. Nature Communications, 2022, 13, .	5.8	20
327	Development of an Improved in vitro Model of Bovine Trophectoderm Differentiation. Frontiers in Animal Science, 0, 3, .	0.8	1

#	Article	IF	CITATIONS
328	Human leukocyte antigens: the unique expression in trophoblasts and their crosstalk with local immune cells. International Journal of Biological Sciences, 2022, 18, 4043-4052.	2.6	8
330	Cell fate roadmap of human primed-to-naive transition reveals preimplantation cell lineage signatures. Nature Communications, 2022, 13, .	5.8	10
331	Recapitulating early human development with 8C-like cells. Cell Reports, 2022, 39, 110994.	2.9	26
332	Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction. Nature Cell Biology, 2022, 24, 858-871.	4.6	30
334	Spatial profiling of early primate gastrulation in utero. Nature, 2022, 609, 136-143.	13.7	56
335	Stem Cell-Based Trophoblast Models to Unravel the Genetic Causes of Human Miscarriages. Cells, 2022, 11, 1923.	1.8	6
336	Delamination of trophoblast-like syncytia from the amniotic ectodermal analogue in human primed embryonic stem cell-based differentiation model. Cell Reports, 2022, 39, 110973.	2.9	4
337	A Single-Cell Characterization of Human Post-implantation Embryos Cultured In Vitro Delineates Morphogenesis in Primary Syncytialization. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
338	Downregulation of CDC42 inhibits the proliferation and stemness of human trophoblast stem cell via EZRIN/YAP inactivation. Cell and Tissue Research, 0, , .	1.5	3
339	Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal–fetal interface. Scientific Reports, 2022, 12, .	1.6	8
340	Preeclampsia is Associated With Reduced ISG15 Levels Impairing Extravillous Trophoblast Invasion. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	9
341	Modelling human placental villous development: designing cultures that reflect anatomy. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	13
342	Fluidic Flow Enhances the Differentiation of Placental Trophoblast-Like 3D Tissue from hiPSCs in a Perfused Macrofluidic Device. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
343	An integrated atlas of human placental development delineates essential regulators of trophoblast stem cells. Development (Cambridge), 2022, 149, .	1.2	14
344	Regionally distinct trophoblast regulate barrier function and invasion in the human placenta. ELife, 0, 11, .	2.8	17
345	Dynamic reprogramming of H3K9me3 at hominoid-specific retrotransposons during human preimplantation development. Cell Stem Cell, 2022, 29, 1031-1050.e12.	5.2	34
346	Beyond fusion: A novel role for ERVW-1 in trophoblast proliferation and type I interferon receptor expression. Placenta, 2022, 126, 150-159.	0.7	6
347	How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	23

#	Article	IF	CITATIONS
348	Human Chorionic Villous Differentiation and Placental Development. International Journal of Molecular Sciences, 2022, 23, 8003.	1.8	11
349	Transforming growth factor-l ² signaling governs the differentiation program of extravillous trophoblasts in the developing human placenta. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	31
350	Epidermal growth factor induces a trophectoderm lineage transcriptome resembling that of human embryos during reconstruction of blastoids from extended pluripotent stem cells. Cell Proliferation, 0, , .	2.4	4
351	The role of BMP4 signaling in trophoblast emergence from pluripotency. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	12
352	Microgel culture and spatial identity mapping elucidate the signalling requirements for primate epiblast and amnion formation. Development (Cambridge), 0, , .	1.2	6
353	Genome Maintenance in Mammalian Stem Cells. Annual Review of Genetics, 2022, 56, 145-164.	3.2	2
354	Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface. ELife, 0, 11, .	2.8	26
355	Primary specification of blastocyst trophectoderm by scRNA-seq: New insights into embryo implantation. Science Advances, 2022, 8, .	4.7	19
357	Using high throughput screens to predict miscarriages with placental stem cells and longâ€ŧerm stress effects with embryonic stem cells. Birth Defects Research, 2022, 114, 1014-1036.	0.8	3
359	Protocol to derive human trophoblast stem cells directly from primed pluripotent stem cells. STAR Protocols, 2022, 3, 101638.	0.5	0
360	Hippo signaling cofactor, WWTR1, at the crossroads of human trophoblast progenitor self-renewal and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
361	Inhibition of YAP/TAZ-TEAD activity induces cytotrophoblast differentiation into syncytiotrophoblast in human trophoblast. Molecular Human Reproduction, 2022, 28, .	1.3	3
362	Extracellular vesicles secreted by human uterine stromal cells regulate decidualization, angiogenesis, and trophoblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
363	Engineering placentaâ€like organoids containing endogenous vascular cells from humanâ€induced pluripotent stem cells. Bioengineering and Translational Medicine, 2023, 8, .	3.9	8
364	Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell, 2022, 29, 1346-1365.e10.	5.2	35
365	Characterization of Three-Dimensional Trophoblast Spheroids: An Alternative Model to Study the Physiological Properties of the Placental Unit. Cells, 2022, 11, 2884.	1.8	6
366	Sex at the interface: the origin and impact of sex differences in the developing human placenta. Biology of Sex Differences, 2022, 13, .	1.8	18
367	Modeling human pregastulation development by 3D culture of blastoids generated from primed-to-naÃ ⁻ ve transitioning intermediates. Protein and Cell, 0, , .	4.8	5

# 368	ARTICLE Trophoblast Exosomal UCA1 Induces Endothelial Injury through the PFN1-RhoA/ROCK Pathway in Preeclampsia: A Human-Specific Adaptive Pathogenic Mechanism. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	IF 1.9	Citations
369	S100P promotes trophoblast syncytialization during early placenta development by regulating YAP1. Frontiers in Endocrinology, 0, 13, .	1.5	2
370	Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell, 2022, 29, 1402-1419.e8.	5.2	18
371	Progesterone suppresses podocalyxin partly by up-regulating miR-145 and miR-199 in human endometrial epithelial cells to enhance receptivity in in-vitro models. Molecular Human Reproduction, 0, , .	1.3	1
372	Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nature Reviews Immunology, 2023, 23, 222-235.	10.6	29
373	Conservation at the uterine–placental interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
374	Stem cell-based models of early mammalian development. Development (Cambridge), 2022, 149, .	1.2	8
375	Placental galectin-3 is reduced in early-onset preeclampsia. Frontiers in Physiology, 0, 13, .	1.3	2
376	Induction of human trophoblast stem cells. Nature Protocols, 0, , .	5.5	5
377	Establishment of human induced trophoblast stem cells via reprogramming of fibroblasts. Nature Protocols, 2022, 17, 2739-2759.	5.5	12
378	Transcriptomic analysis of the human placenta reveals trophoblast dysfunction and augmented Wnt signalling associated with spontaneous preterm birth. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
379	Redeployment of Placental Gene Programming: Can Invasive Placentation Molecular Switches Complement the Hallmarks of Cancer?. Journal of Clinical and Medical Research, 0, , .	0.0	0
380	Modeling placental development and disease using human pluripotent stem cells. Placenta, 2023, 141, 18-25.	0.7	4
381	Human primed and naÃ ⁻ ve PSCs are both able to differentiate into trophoblast stem cells. Stem Cell Reports, 2022, 17, 2484-2500.	2.3	16
382	Alternative mammalian strategies leading towards gastrulation: losing polar trophoblast (Rauber's) Tj ETQqO O O Sciences, 2022, 377, .	rgBT /Ove 1.8	rlock 10 Tf 50 7
383	Distinctive aspects of the placental epigenome and theories as to how they arise. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	3
385	Transcriptomic mapping of the metzincin landscape in human trophoblasts. Gene Expression Patterns, 2022, 46, 119283.	0.3	3
386	Placental microRNAs relate to early childhood growth trajectories. Pediatric Research, 2023, 94, 341-348.	1.1	2

#	Article	IF	CITATIONS
387	Here and there a trophoblast, a transcriptional evaluation of trophoblast cell models. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	5
389	Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell Reports Medicine, 2022, 3, 100849.	3.3	12
390	Cadmium inhibits differentiation of human trophoblast stem cells into extravillous trophoblasts and disrupts epigenetic changes within the promoter region of the <i>HLA-G</i> gene. Toxicological Sciences, 0, , .	1.4	2
391	Podocalyxinâ€Like Protein 1 Regulates Pluripotency through the Cholesterol Biosynthesis Pathway. Advanced Science, 2023, 10, .	5.6	4
393	Update on placenta accreta spectrum disorders by considering epidemiological factors, ultrasound diagnosis and pathological exam – literature review and authors' experience. Romanian Journal of Morphology and Embryology, 2022, 63, 293-305.	0.4	4
395	Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. Science of the Total Environment, 2023, 860, 160403.	3.9	12
396	Genomic imprinting in human placentation. Reproductive Medicine and Biology, 2022, 21, .	1.0	2
397	Generation of Human Trophoblast Stem Cell-Dependent Placental In Vitro Models. Methods in Molecular Biology, 2022, , 43-52.	0.4	2
398	Naive Pluripotent and Trophoblastic Stem Cell Lines as a Model for Detecting Missing Proteins in the Context of the Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 0, , .	1.8	4
399	The multifaceted role of GCM1 during trophoblast differentiation in the human placenta. Proceedings of the United States of America, 2022, 119, .	3.3	26
400	Accessing the humanÂtrophoblast stem cell state from pluripotent and somatic cells. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	5
401	Identifying novel regulators of placental development using time-series transcriptome data. Life Science Alliance, 2023, 6, e202201788.	1.3	1
403	Cyclosporin A promotes invasion and migration of extravillous trophoblast cells derived from human induced pluripotent stem cells and human embryonic stem cells. Stem Cells and Development, 0, , .	1.1	1
404	3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell, 2022, 29, 1703-1717.e7.	5.2	4
406	Workflow for Performing Genetic Manipulation in Human Trophoblast Stem Cells Using CRISPR/Cas9 Technology. Methods in Molecular Biology, 2023, , 53-62.	0.4	1
407	Human Maternal-Fetal Interface Cellular Models to Assess Antiviral Drug Toxicity during Pregnancy. Reproductive Medicine, 2022, 3, 303-319.	0.3	0
408	New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. American Journal of Reproductive Immunology, 2023, 89, .	1.2	5
409	Targeted bisulfite resequencing of differentially methylated cytosines in pre-eclampsia reveals a skewed dynamic balance in the DNA methylation of enhancers. Clinical Science, 2023, 137, 265-279.	1.8	2

#	Article	IF	CITATIONS
410	Roles of human trophoblasts' patternÂrecognition receptors in host defense and pregnancy complications. Journal of Reproductive Immunology, 2023, 156, 103811.	0.8	6
412	CITED2 is a conserved regulator of the uterine–placental interface. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	10
413	Identification of desoxyrhapontigenin as a novel antiviral agent against congenital Zika virus infection. Antiviral Research, 2023, 211, 105542.	1.9	2
414	Natural Killer Cells in the Human Uterine Mucosa. Annual Review of Immunology, 2023, 41, 127-151.	9.5	8
415	Endometrial organoids and trophoblast organoids: Novel models for investigation of maternal-fetal interactions. , 0, 1, .		0
416	Human Placental Endothelial Cell and Trophoblast Heterogeneity and Differentiation Revealed by Single-Cell RNA Sequencing. Cells, 2023, 12, 87.	1.8	7
417	<scp>Colonyâ€stimulating factor 1 positive (CSF1⁺)</scp> secretory epithelial cells induce excessive trophoblast invasion in tubal pregnancy rupture. Cell Proliferation, 2023, 56, .	2.4	1
418	Cancer Is Associated with the Emergence of Placenta-Reactive Autoantibodies. Biomedicines, 2023, 11, 316.	1.4	0
420	Barriers to progress in pregnancy research: How can we break through?. Science, 2023, 380, 150-153.	6.0	3
421	Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nature Cell Biology, 2023, 25, 579-591.	4.6	2
422	Physiologically relevant culture medium Plasmax improves human placental trophoblast stem cell function. American Journal of Physiology - Cell Physiology, 2023, 324, C878-C885.	2.1	1
423	Epidermal growth factor represses differentiation of mouse trophoblast stem cells into spongiotrophoblast cells via epidermal growth factor receptor. Biochemical and Biophysical Research Communications, 2023, 657, 100-107.	1.0	1
424	Elucidating the dynamics of polypeptide hormones in the physiological and preeclampsic placental trophoblast cells across gestation at single-cell level. , 2023, 2, .		3
425	Expanded Potential Stem Cells from Human Embryos Have an Open Chromatin Configuration with Enhanced Trophoblast Differentiation Ability. Advanced Science, 2023, 10, .	5.6	1
427	Generating human blastoids modeling blastocyst-stage embryos and implantation. Nature Protocols, 2023, 18, 1584-1620.	5.5	11
428	Regulation of endogenous retrovirus–derived regulatory elements by GATA2/3 and MSX2 in human trophoblast stem cells. Genome Research, 2023, 33, 197-207.	2.4	6
429	Du nouveau dans les modèles d'étude de l'embryon humain. Medecine/Sciences, 2023, 39, 129-136.	0.0	0
430	Activation of the Interferon Pathway in Trophoblast Cells Productively Infected with SARS-CoV-2. Stem Cells and Development, 0, , .	1.1	2

#	Article	IF	CITATIONS
431	Chemical conversion of human conventional <scp>PSCs</scp> to <scp>TSCs</scp> following transient naive gene activation. EMBO Reports, 2023, 24, .	2.0	4
432	Endogenous retrovirus-derived enhancers confer the transcriptional regulation of human trophoblast syncytialization. Nucleic Acids Research, 2023, 51, 4745-4759.	6.5	9
434	Circulating Chemerin Is Elevated in Women With Preeclampsia. Endocrinology, 2023, 164, .	1.4	4
435	Early differentiation and gene expression characteristics of trophoblast lineages. Biology of Reproduction, 0, , .	1.2	0
436	Modeling the human placental barrier to understand Toxoplasma gondii´s vertical transmission. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	2
437	The Influence of Exercise-Associated Small Extracellular Vesicles on Trophoblasts In Vitro. Biomedicines, 2023, 11, 857.	1.4	0
438	Single-nuclei RNA sequencing (snRNA-seq) uncovers trophoblast cell types and lineages in the mature bovine placenta. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	7
439	Application of a JEG-3 organoid model to study HLA-G function in the trophoblast. Frontiers in Immunology, 0, 14, .	2.2	0
440	The immune checkpoint molecule, VTCN1/B7-H4, guides differentiation and suppresses proinflammatory responses and MHC class I expression in an embryonic stem cell-derived model of human trophoblast. Frontiers in Endocrinology, 0, 14, .	1.5	1
441	Super-enhancer-associated transcription factors collaboratively regulate trophoblast-active gene expression programs in human trophoblast stem cells. Nucleic Acids Research, 2023, 51, 3806-3819.	6.5	8
442	Laminin switches terminal differentiation fate of human trophoblast stem cells under chemically defined culture conditions. Journal of Biological Chemistry, 2023, 299, 104650.	1.6	1
443	Spatial multiomics map of trophoblast development in early pregnancy. Nature, 2023, 616, 143-151.	13.7	54
444	Regulation of human trophoblast gene expression by endogenous retroviruses. Nature Structural and Molecular Biology, 2023, 30, 527-538.	3.6	17
446	Genome-Wide Analysis of Hypoxia-Inducible Factor Binding Reveals Targets Implicated in Impaired Human Placental Syncytiotrophoblast Formation under Low Oxygen. American Journal of Pathology, 2023, 193, 846-865.	1.9	1
447	Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell, 2023, 30, 362-377.e7.	5.2	33
448	Identifying a dynamic transcriptomic landscape of the cynomolgus macaque placenta during pregnancy at single-cell resolution. Developmental Cell, 2023, 58, 806-821.e7.	3.1	3
449	Derivation of new pluripotent stem cells from human extended pluripotent stem cells with formative features and trophectoderm potential. Cell Proliferation, 2023, 56, .	2.4	0
451	In vitro models of human blastocysts and early embryogenesis. , 2023, , 311-328.		0

#	Article	IF	CITATIONS
466	Endometrial and placental stem cells in successful and pathological pregnancies. Journal of Assisted Reproduction and Genetics, 2023, 40, 1509-1522.	1.2	2
481	Generation of 3D Trophoblast Organoids from Human NaÃ⁻ve Pluripotent Stem Cells. Methods in Molecular Biology, 2023, , 85-103.	0.4	1
521	Functional Role of MicroRNAs in Embryogenesis. , 0, , .		0
522	Vitamin D and the placenta. , 2024, , 761-776.		0
525	Trophoblast Organoids as a Novel Tool to Study Human Placental Development and Function. Methods in Molecular Biology, 2024, , 195-222.	0.4	0
526	Enzymatic Digestion and Single Cell Isolation of Peri-implantation Stage Human Trophoblast Cells. Methods in Molecular Biology, 2024, , 25-34.	0.4	0
527	Three-Dimensional In Vitro Human Placental Organoids from Mononuclear Villous Trophoblasts or Trophoblast Stem Cells to Understand Trophoblast Dysfunction in Fetal Growth Restriction. Methods in Molecular Biology, 2024, , 235-245.	0.4	0
528	Analyzing Trophoblast Fusion Using Immunofluorescence and Split Protein Complementation Assays. Methods in Molecular Biology, 2024, , 87-98.	0.4	0
543	Transformation of Pluripotency States during Morphogenesis of Mouse and Human Epiblast. Russian Journal of Developmental Biology, 2023, 54, 276-291.	0.1	0
552	Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. Journal of Assisted Reproduction and Genetics, 2024, 41, 591-608.	1.2	0
565	Placental Trophoblast Cell Isolation from the Term Placenta. Methods in Molecular Biology, 2024, , 131-142.	0.4	0