Preliminary aggregate safety and immunogenicity result inactivated Zika virus vaccine candidate: phase 1, rando placebo-controlled clinical trials

Lancet, The 391, 563-571

DOI: 10.1016/s0140-6736(17)33106-9

Citation Report

#	Article	IF	Citations
1	Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice. Journal of Virology, 2018, 92, .	1.5	54
2	Immunization With a Novel Human Type 5 Adenovirus-Vectored Vaccine Expressing the Premembrane and Envelope Proteins of Zika Virus Provides Consistent and Sterilizing Protection in Multiple Immunocompetent and Immunocompromised Animal Models. Journal of Infectious Diseases, 2018, 218, 365-377.	1.9	46
3	Tradition and innovation in development of a Zika vaccine. Lancet, The, 2018, 391, 516-517.	6.3	3
4	Purified Inactivated Zika Vaccine Candidates Afford Protection against Lethal Challenge in Mice. Scientific Reports, 2018, 8, 16509.	1.6	29
5	Recent Advances in Zika Virus Vaccines. Viruses, 2018, 10, 631.	1.5	36
6	Chronicling the Risk and Risk Communication by Governmental Officials During the Zika Threat. Risk Analysis, 2018, 38, 2507-2513.	1.5	7
7	Zika Virus and Neurologic Disease. Neurologic Clinics, 2018, 36, 767-787.	0.8	13
8	Pregnant women's attitudes toward Zika virus vaccine trial participation. Vaccine, 2018, 36, 6711-6717.	1.7	8
9	Ocular Manifestations of Emerging Flaviviruses and the Blood-Retinal Barrier. Viruses, 2018, 10, 530.	1.5	49
10	Assay Challenges for Emerging Infectious Diseases: The Zika Experience. Vaccines, 2018, 6, 70.	2.1	4
11	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
12	A Recombinant Subunit Based Zika Virus Vaccine Is Efficacious in Non-human Primates. Frontiers in Immunology, 2018, 9, 2464.	2.2	36
13	Zika Virus Vaccines: Challenges and Perspectives. Vaccines, 2018, 6, 62.	2.1	17
14	Developing Zika vaccines: the lessons for disease X. Genome Medicine, 2018, 10, 47.	3.6	9
15	A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine, 2018, 36, 92-102.	2.7	37
16	In silico approaches to Zika virus drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 825-835.	2.5	9
17	Chimeric yellow fever 17D-Zika virus (ChimeriVax-Zika) as a live-attenuated Zika virus vaccine. Scientific Reports, 2018, 8, 13206.	1.6	35
18	Zika Virus Vaccine: Progress and Challenges. Cell Host and Microbe, 2018, 24, 12-17.	5.1	81

#	Article	IF	CITATIONS
19	Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nature Communications, 2018, 9, 2441.	5.8	69
20	A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, Low-Dose Protection against Zika. Molecular Therapy, 2018, 26, 2507-2522.	3.7	109
21	Zika vaccines and therapeutics: landscape analysis and challenges ahead. BMC Medicine, 2018, 16, 84.	2.3	70
22	Incorporation of NS1 and prM/M are important to confer effective protection of adenovirus-vectored Zika virus vaccine carrying E protein. Npj Vaccines, 2018, 3, 29.	2.9	38
23	Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine development. Journal of Biotechnology, 2018, 282, 86-91.	1.9	36
24	Role of Zika Virus prM Protein in Viral Pathogenicity and Use in Vaccine Development. Frontiers in Microbiology, 2018, 9, 1797.	1.5	39
25	Prevention and Control Strategies to Counter Zika Virus, a Special Focus on Intervention Approaches against Vector Mosquitoes—Current Updates. Frontiers in Microbiology, 2018, 9, 87.	1.5	39
26	Development of Zika Virus Vaccines. Vaccines, 2018, 6, 7.	2.1	24
27	Zika virus vaccines: immune response, current status, and future challenges. Current Opinion in Immunology, 2018, 53, 130-136.	2.4	45
28	Investigational Testing for Zika Virus among U.S. Blood Donors. New England Journal of Medicine, 2018, 378, 1778-1788.	13.9	62
29	Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against ZIKV challenge. PLoS ONE, 2018, 13, e0202820.	1.1	45
30	Comparative Pathogenesis of Asian and African-Lineage Zika Virus in Indian Rhesus Macaque's and Development of a Non-Human Primate Model Suitable for the Evaluation of New Drugs and Vaccines. Viruses, 2018, 10, 229.	1.5	22
31	Early cellular innate immune responses drive Zika viral persistence and tissue tropism in pigtail macaques. Nature Communications, 2018, 9, 3371.	5.8	38
32	Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. Npj Vaccines, 2018, 3, 24.	2.9	76
33	Zika virus vaccines. Nature Reviews Microbiology, 2018, 16, 594-600.	13.6	98
34	Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against Zika virus lethal infection. Antiviral Research, 2019, 170, 104578.	1.9	15
35	Zika Vaccine Developmentâ€"Current Progress and Challenges for the Future. Tropical Medicine and Infectious Disease, 2019, 4, 104.	0.9	21
36	Immunological Assays used to Support Efficacy of Zika Virus Vaccines. Tropical Medicine and Infectious Disease, 2019, 4, 97.	0.9	3

#	Article	IF	Citations
37	Inactivation of Zika Virus by Photoactive Iodonaphthyl Azide Preserves Immunogenic Potential of the Virus. Pathogens, 2019, 8, 188.	1.2	3
38	Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Research, 2019, 274, 197770.	1.1	61
39	ZIKV infection induces robust Th1-like Tfh cell and long-term protective antibody responses in immunocompetent mice. Nature Communications, 2019, 10, 3859.	5.8	39
40	A Gorilla Adenovirus-Based Vaccine against Zika Virus Induces Durable Immunity and Confers Protection in Pregnancy. Cell Reports, 2019, 28, 2634-2646.e4.	2.9	19
41	Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals, 2019, 12, 127.	1.7	11
42	Pre-existing yellow fever immunity impairs and modulates the antibody response to tick-borne encephalitis vaccination. Npj Vaccines, 2019, 4, 38.	2.9	47
43	UK vaccines network: Mapping priority pathogens of epidemic potential and vaccine pipeline developments. Vaccine, 2019, 37, 6241-6247.	1.7	13
44	Virus-Like Particle Systems for Vaccine Development Against Viruses in the Flaviviridae Family. Vaccines, 2019, 7, 123.	2.1	11
45	A â€~Furry-Tale' of Zika Virus Infection: What Have We Learned from Animal Models?. Viruses, 2019, 11, 29.	1.5	20
46	Using Macaques to Address Critical Questions in Zika Virus Research. Annual Review of Virology, 2019, 6, 481-500.	3.0	27
47	Rational Design of Zika Virus Subunit Vaccine with Enhanced Efficacy. Journal of Virology, 2019, 93, .	1.5	32
48	Production and Biomedical Application of Flavivirus-like Particles. Trends in Biotechnology, 2019, 37, 1202-1216.	4.9	35
49	Human Monoclonal Antibodies Potently Neutralize Zika Virus and Select for Escape Mutations on the Lateral Ridge of the Envelope Protein. Journal of Virology, 2019, 93, .	1.5	12
50	Antibodies Elicited by an NS1-Based Vaccine Protect Mice against Zika Virus. MBio, 2019, 10, .	1.8	57
51	Pre-Clinical Pregnancy Models for Evaluating Zika Vaccines. Tropical Medicine and Infectious Disease, 2019, 4, 58.	0.9	6
52	Immunogenicity and protection conferred by an optimized purified inactivated Zika vaccine in mice. Vaccine, 2019, 37, 2679-2686.	1.7	9
53	Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Research, 2019, 164, 147-153.	1.9	14
54	Antimalarial drugs and their metabolites are potent Zika virus inhibitors. Journal of Medical Virology, 2019, 91, 1182-1190.	2.5	36

#	Article	IF	CITATIONS
55	Guillain-Barre syndrome and Zika infection: identifying leading producers, countries relative specialization and collaboration. FEMS Microbiology Letters, 2019, 366, .	0.7	4
56	Zika Vaccine Development: Current Status. Mayo Clinic Proceedings, 2019, 94, 2572-2586.	1.4	69
57	Impact of age-specific immunity on the timing and burden of the next Zika virus outbreak. PLoS Neglected Tropical Diseases, 2019, 13, e0007978.	1.3	9
58	A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Science Translational Medicine, $2019,11,\ldots$	5.8	70
59	NS1 DNA vaccination protects against Zika infection through T cell–mediated immunity in immunocompetent mice. Science Advances, 2019, 5, eaax2388.	4.7	64
60	Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications, 2019, 10, 5677.	5.8	32
61	Demonstrating vaccine effectiveness during a waning epidemic: A WHO/NIH meeting report on approaches to development and licensure of Zika vaccine candidates. Vaccine, 2019, 37, 863-868.	1.7	60
62	Zika Virus Vaccine Development: Progress in the Face of New Challenges. Annual Review of Medicine, 2019, 70, 121-135.	5. O	76
63	Consumer willingness to pay for a hypothetical Zika vaccine in Brazil and the implications. Expert Review of Pharmacoeconomics and Outcomes Research, 2019, 19, 473-482.	0.7	19
64	Zika Vaccines. , 2019, , 75-88.		0
65	Drugs for the Treatment of Zika Virus Infection. Journal of Medicinal Chemistry, 2020, 63, 470-489.	2.9	63
66	Optical and biological evaluation of upconverting Gd2O3:Tb3+/Er3+ particles as microcarriers of a Zika virus antigenic peptide. Chemical Engineering Journal, 2020, 385, 123414.	6.6	15
67	Zika virus. , 2020, , 289-319.		0
68	Contemporary Understanding of Ebola and Zika Virus in Pregnancy. Clinics in Perinatology, 2020, 47, 835-846.	0.8	3
69	Live vaccine infection burden elicits adaptive humoral and cellular immunity required to prevent Zika virus infection. EBioMedicine, 2020, 61, 103028.	2.7	10
70	A Climmer of Hope: Recent Updates and Future Challenges in Zika Vaccine Development. Viruses, 2020, 12, 1371.	1.5	20
71	Cutaneous vaccination ameliorates Zika virus-induced neuro-ocular pathology via reduction of anti-ganglioside antibodies. Human Vaccines and Immunotherapeutics, 2020, 16, 2072-2091.	1.4	5
72	Zika vaccine pre-clinical and clinical data review with perspectives on the future development. Human Vaccines and Immunotherapeutics, 2020, 16, 2524-2536.	1.4	11

#	Article	IF	CITATIONS
73	Enhanced effect of modified Zika virus E antigen on the immunogenicity of DNA vaccine. Virology, 2020, 549, 25-31.	1.1	6
74	Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines, 2020, 8, 481.	2.1	10
75	Current Flavivirus Research Important for Vaccine Development. Vaccines, 2020, 8, 477.	2.1	2
76	X-ray inactivation of RNA viruses without loss of biological characteristics. Scientific Reports, 2020, 10, 21431.	1.6	8
77	Long-Term Protection of Rhesus Macaques from Zika Virus Reinfection. Journal of Virology, 2020, 94, .	1.5	7
78	Safety and immunogenicity of a Zika purified inactivated virus vaccine given via standard, accelerated, or shortened schedules: a single-centre, double-blind, sequential-group, randomised, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 1061-1070.	4.6	36
79	Immune-profiling of ZIKV-infected patients identifies a distinct function of plasmacytoid dendritic cells for immune cross-regulation. Nature Communications, 2020, 11, 2421.	5.8	6
80	Reverse genetic approaches for the development of Zika vaccines and therapeutics. Current Opinion in Virology, 2020, 44, 7-15.	2.6	3
81	Preparedness of public health-care system for Zika virus outbreak: An Indian perspective. Journal of Infection and Public Health, 2020, 13, 949-955.	1.9	9
82	Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines, 2020, 8, 266.	2.1	79
83	Sustained maternal antibody and cellular immune responses in pregnant women infected with Zika virus and mother to infant transfer of Zikaâ€specific antibodies. American Journal of Reproductive Immunology, 2020, 84, e13288.	1.2	7
84	An optimized purified inactivated Zika vaccine provides sustained immunogenicity and protection in cynomolgus macaques. Npj Vaccines, 2020, 5, 19.	2.9	14
85	What's New in Vaccine Science. Primary Care - Clinics in Office Practice, 2020, 47, 517-528.	0.7	0
86	Complete Protection in Macaques Conferred by Purified Inactivated Zika Vaccine: Defining a Correlate of Protection. Scientific Reports, 2020, 10, 3488.	1.6	16
87	Characterization of a Species E Adenovirus Vector as a Zika virus vaccine. Scientific Reports, 2020, 10, 3613.	1.6	15
88	Integrating Biomaterials and Immunology to Improve Vaccines Against Infectious Diseases. ACS Biomaterials Science and Engineering, 2020, 6, 759-778.	2.6	32
89	Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Frontiers in Immunology, 2020, 11, 592.	2.2	34
90	Defeat Dengue and Zika Viruses With a One-Two Punch of Vaccine and Vector Blockade. Frontiers in Microbiology, 2020, $11,362.$	1.5	9

#	ARTICLE	IF	CITATIONS
91	Two Is Better Than One: Evidence for T-Cell Cross-Protection Between Dengue and Zika and Implications on Vaccine Design. Frontiers in Immunology, 2020, 11, 517.	2.2	31
92	Generation and preliminary characterization of vertebrate-specific replication-defective Zika virus. Virology, 2021, 552, 73-82.	1.1	3
93	Zika virus pathogenesis and current therapeutic advances. Pathogens and Global Health, 2021, 115, 21-39.	1.0	23
94	Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. Infection, Genetics and Evolution, 2021, 92, 104680.	1.0	6
95	Modeling Zika Vaccination Combined With Vector Interventions in DoD Populations. Military Medicine, 2021, 186, 82-90.	0.4	1
96	The Zika virus NS1 protein as a vaccine target. , 2021, , 367-376.		0
97	Pre-existing Immunity to Japanese Encephalitis Virus Alters CD4 T Cell Responses to Zika Virus Inactivated Vaccine. Frontiers in Immunology, 2021, 12, 640190.	2.2	10
98	Landscape of Monoclonal Antibodies Targeting Zika and Dengue: Therapeutic Solutions and Critical Insights for Vaccine Development. Frontiers in Immunology, 2020, 11, 621043.	2.2	16
99	Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Neglected Tropical Diseases, 2021, 15, e0009195.	1.3	14
100	Evaluation of Vertebrate-Specific Replication-Defective Zika Virus, a Novel Single-Cycle Arbovirus Vaccine, in a Mouse Model. Vaccines, 2021, 9, 338.	2.1	0
101	Induction of protective immune responses against a lethal Zika virus challenge post-vaccination with a dual serotype of recombinant vesicular stomatitis virus carrying the genetically modified Zika virus E protein gene. Journal of General Virology, 2021, 102, .	1.3	2
102	A Double-Blind, Randomized, Placebo-Controlled Phase 1 Study of Ad26.ZIKV.001, an Ad26-Vectored Anti–Zika Virus Vaccine. Annals of Internal Medicine, 2021, 174, 585-594.	2.0	44
103	SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand?. Advanced Drug Delivery Reviews, 2021, 172, 314-338.	6.6	75
104	Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. Journal of Inorganic Biochemistry, 2021, 219, 111454.	1.5	29
105	Kinetics of Asian and African Zika virus lineages over singleâ€cycle and multiâ€cycle growth in culture: Gene expression, cell killing, virus production, and mathematical modeling. Biotechnology and Bioengineering, 2021, 118, 4231-4245.	1.7	2
106	Current development of Zika virus vaccines with special emphasis on virus-like particle technology. Expert Review of Vaccines, 2021, 20, 1483-1498.	2.0	8
107	Cinnamic acid inhibits Zika virus by inhibiting RdRp activity. Antiviral Research, 2021, 192, 105117.	1.9	29
108	An update on preclinical pregnancy models of Zika virus infection for drug and vaccine discovery. Expert Opinion on Drug Discovery, 2022, 17, 19-25.	2.5	7

#	Article	IF	CITATIONS
109	Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research?. Pathogens, 2021, 10, 1233.	1.2	6
110	Safety and immunogenicity of a purified inactivated Zika virus vaccine candidate in healthy adults: an observer-blind, randomised, phase 1 trial. Lancet Infectious Diseases, The, 2021, 21, 1282-1292.	4.6	23
111	Conjugation of Zika virus EDIII with CRM197, 8-arm PEG and mannan for development of an effective Zika virus vaccine. International Journal of Biological Macromolecules, 2021, 190, 713-721.	3.6	7
112	Introduction to Flaviviruses and Their Global Prevalence. , 2021, , 411-439.		1
113	Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine, 2020, 26, 228-235.	15.2	61
116	The Impact of IgG Transplacental Transfer on Early Life Immunity. ImmunoHorizons, 2018, 2, 14-25.	0.8	152
117	Zika virus: A global public health menace: A comprehensive update. Journal of International Society of Preventive and Community Dentistry, 2019, 9, 316.	0.4	11
118	Hide and Seek: The Interplay Between Zika Virus and the Host Immune Response. Frontiers in Immunology, 2021, 12, 750365.	2.2	16
119	Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. Vaccines, 2021, 9, 1142.	2.1	9
120	"They Say My Baby's Head Is Too Small― , 2019, , 453-475.		0
121	Expected future developments in child neurology. Journal of International Child Neurology Association, 0 , , .	0.0	0
123	Current Perspective of Zika Virus and Vaccine Development. Exploratory Research and Hypothesis in Medicine, 2020, 000, 1-9.	0.1	1
124	Recent Expansion of Mosquito-Borne Pathogens Into Texas. , 2020, , 339-358.		0
126	Efficacy of an inactivated Zika vaccine against virus infection during pregnancy in mice and marmosets. Npj Vaccines, 2022, 7, 9.	2.9	13
127	Nonhuman Primates in Translational Research. Annual Review of Animal Biosciences, 2022, 10, 441-468.	3.6	11
128	Challenges for Vaccinologists in the First Half of the Twenty-First Century. Methods in Molecular Biology, 2022, 2410, 3-25.	0.4	3
129	Single dose of chimeric dengue-2/Zika vaccine candidate protects mice and non-human primates against Zika virus. Nature Communications, 2021, 12, 7320.	5.8	1
130	Measles-based Zika vaccine induces long-term immunity and requires NS1 antibodies to protect the female reproductive tract. Npj Vaccines, 2022, 7, 43.	2.9	12

#	Article	IF	Citations
132	Maternal immune protection against infectious diseases. Cell Host and Microbe, 2022, 30, 660-674.	5.1	18
133	A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biology, 2022, 20, .	1.7	3
134	Zika virus-like particle vaccine fusion loop mutation increases production yield but fails to protect AG129 mice against Zika virus challenge. PLoS Neglected Tropical Diseases, 2022, 16, e0010588.	1.3	2
135	Safety and immunogenicity of Zika virus vaccine: AÂsystematic review of clinical trials. Reviews in Medical Virology, 2023, 33, .	3.9	10
136	Host immune response against DENV and ZIKV infections. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	1.8	6
137	Zika Virus Vaccine: The Current State of Affairs and Challenges Posed by Antibody-Dependent Enhancement Reaction. Viral Immunology, 0, , .	0.6	3
138	Modulation of cellular machineries by Zika virusâ€encoded proteins. Journal of Medical Virology, 2023, 95, .	2.5	3
139	A randomized, placebo-controlled, blinded phase 1 study investigating a novel inactivated, Vero cell-culture derived Zika virus vaccine. Journal of Travel Medicine, 0 , , .	1.4	2
140	Persistence of Immunogenicity of a Purified Inactivated Zika Virus Vaccine Candidate in Healthy Adults: 2 Years of Follow-up Compared With Natural Infection. Journal of Infectious Diseases, 2023, 227, 1303-1312.	1.9	1
141	A safe replication-defective Zika virus vaccine protects mice from viral infection and vertical transmission. Antiviral Research, 2023, 211, 105549.	1.9	O
142	Evaluation of the immunogenicity and efficacy of an rVSV vaccine against Zika virus infection in macaca nemestrina. Frontiers in Virology, 0, 3, .	0.7	2
143	The Anti-Dengue Virus Peptide DV2 Inhibits Zika Virus Both In Vitro and In Vivo. Viruses, 2023, 15, 839.	1.5	2
144	A Perspective on Current Flavivirus Vaccine Development: A Brief Review. Viruses, 2023, 15, 860.	1.5	11
150	Zika Virus Vaccines. , 2023, , 1322-1333.e7.		O