Safety, tolerability, and immunogenicity of two Zika vir healthy adults: randomised, open-label, phase 1 clinical

Lancet, The 391, 552-562 DOI: 10.1016/s0140-6736(17)33105-7

Citation Report

#	Article	IF	CITATIONS
1	Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nature Communications, 2018, 9, 673.	5.8	84
2	Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice. Journal of Virology, 2018, 92, .	1.5	54
3	The countermeasure for Zika virus: a hard nut to be cracked. Future Virology, 2018, 13, 361-369.	0.9	1
4	Tradition and innovation in development of a Zika vaccine. Lancet, The, 2018, 391, 516-517.	6.3	3
5	Recent Advances in Zika Virus Vaccines. Viruses, 2018, 10, 631.	1.5	36
6	Fast Tracks and Roadblocks for Zika Vaccines. Vaccines, 2018, 6, 77.	2.1	7
7	Chronicling the Risk and Risk Communication by Governmental Officials During the Zika Threat. Risk Analysis, 2018, 38, 2507-2513.	1.5	7
8	Efficacy of a T Cell-Biased Adenovirus Vector as a Zika Virus Vaccine. Scientific Reports, 2018, 8, 18017.	1.6	33
9	An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Reports, 2018, 25, 3382-3392.e3.	2.9	79
10	The Many Faces of a Dynamic Virion: Implications of Viral Breathing on Flavivirus Biology and Immunogenicity. Annual Review of Virology, 2018, 5, 185-207.	3.0	49
11	Assay Challenges for Emerging Infectious Diseases: The Zika Experience. Vaccines, 2018, 6, 70.	2.1	4
12	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
13	A Recombinant Subunit Based Zika Virus Vaccine Is Efficacious in Non-human Primates. Frontiers in Immunology, 2018, 9, 2464.	2.2	36
14	Zika Virus Vaccines: Challenges and Perspectives. Vaccines, 2018, 6, 62.	2.1	17
15	Developing Zika vaccines: the lessons for disease X. Genome Medicine, 2018, 10, 47.	3.6	9
16	A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine, 2018, 36, 92-102.	2.7	37
17	In silico approaches to Zika virus drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 825-835.	2.5	9
18	The emergence of Zika virus and its new clinical syndromes. Nature, 2018, 560, 573-581.	13.7	303

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Zika Virus Vaccine: Progress and Challenges. Cell Host and Microbe, 2018, 24, 12-17.		5.1	81
20	Rational Zika vaccine design via the modulation of antigen membrane anchors in chimp adenoviral vectors. Nature Communications, 2018, 9, 2441.	panzee	5.8	69
21	Incorporation of NS1 and prM/M are important to confer effective protection of adeno Zika virus vaccine carrying E protein. Npj Vaccines, 2018, 3, 29.	virus-vectored	2.9	38
22	Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine developmen Biotechnology, 2018, 282, 86-91.	t. Journal of	1.9	36
23	A VSV-based Zika virus vaccine protects mice from lethal challenge. Scientific Reports,	2018, 8, 11043.	1.6	63
24	A Review of DNA Vaccines Against Influenza. Frontiers in Immunology, 2018, 9, 1568.		2.2	80
25	Role of Zika Virus prM Protein in Viral Pathogenicity and Use in Vaccine Development. I Microbiology, 2018, 9, 1797.	Frontiers in	1.5	39
26	Prevention and Control Strategies to Counter Zika Virus, a Special Focus on Interventic against Vector Mosquitoes—Current Updates. Frontiers in Microbiology, 2018, 9, 87.	on Approaches	1.5	39
27	Development of Zika Virus Vaccines. Vaccines, 2018, 6, 7.		2.1	24
28	Zika virus vaccines: immune response, current status, and future challenges. Current O Immunology, 2018, 53, 130-136.	pinion in	2.4	45
29	Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral a immune responses and protects mice and nonhuman primates against ZIKV challenge. 13, e0202820.	nd cellular PLoS ONE, 2018,	1.1	45
30	New Vaccine Technologies to Combat Outbreak Situations. Frontiers in Immunology, 2	.018, 9, 1963.	2.2	437
31	Current status of Zika vaccine development: Zika vaccines advance into clinical evaluat Vaccines, 2018, 3, 24.	ion. Npj	2.9	76
32	Zika virus vaccines. Nature Reviews Microbiology, 2018, 16, 594-600.		13.6	98
33	Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that prot against Zika virus lethal infection. Antiviral Research, 2019, 170, 104578.	tect mice	1.9	15
34	Zika Vaccine Development—Current Progress and Challenges for the Future. Tropical Infectious Disease, 2019, 4, 104.	Medicine and	0.9	21
35	Immunological Assays used to Support Efficacy of Zika Virus Vaccines. Tropical Medicir Infectious Disease, 2019, 4, 97.	ie and	0.9	3
36	Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Mice. Journal of Infectious Diseases, 2019, 220, 1577-1588.	Pregnancy in	1.9	39

#	Article	IF	CITATIONS
37	Capsid containing virus like particle vaccine against Zika virus made from a stable cell line. Vaccine, 2019, 37, 7123-7131.	1.7	15
38	Effects of Adjuvants on the Immunogenicity and Efficacy of a Zika Virus Envelope Domain III Subunit Vaccine. Vaccines, 2019, 7, 161.	2.1	16
39	ZIKV infection induces robust Th1-like Tfh cell and long-term protective antibody responses in immunocompetent mice. Nature Communications, 2019, 10, 3859.	5.8	39
40	A Gorilla Adenovirus-Based Vaccine against Zika Virus Induces Durable Immunity and Confers Protection in Pregnancy. Cell Reports, 2019, 28, 2634-2646.e4.	2.9	19
41	Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals, 2019, 12, 127.	1.7	11
42	Safety and immunogenicity of investigational seasonal influenza hemagglutinin DNA vaccine followed by trivalent inactivated vaccine administered intradermally or intramuscularly in healthy adults: An open-label randomized phase 1 clinical trial. PLoS ONE, 2019, 14, e0222178.	1.1	18
43	UK vaccines network: Mapping priority pathogens of epidemic potential and vaccine pipeline developments. Vaccine, 2019, 37, 6241-6247.	1.7	13
44	Virus-Like Particle Systems for Vaccine Development Against Viruses in the Flaviviridae Family. Vaccines, 2019, 7, 123.	2.1	11
45	A â€~Furry-Tale' of Zika Virus Infection: What Have We Learned from Animal Models?. Viruses, 2019, 11, 29.	1.5	20
46	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	6.6	85
47	Using Macaques to Address Critical Questions in Zika Virus Research. Annual Review of Virology, 2019, 6, 481-500.	3.0	27
48	Rational Design of Zika Virus Subunit Vaccine with Enhanced Efficacy. Journal of Virology, 2019, 93, .	1.5	32
49	Serologic Tools and Strategies to Support Intervention Trials to Combat Zika Virus Infection and Disease. Tropical Medicine and Infectious Disease, 2019, 4, 68.	0.9	11
50	Human Monoclonal Antibodies Potently Neutralize Zika Virus and Select for Escape Mutations on the Lateral Ridge of the Envelope Protein. Journal of Virology, 2019, 93, .	1.5	12
51	Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nature Communications, 2019, 10, 1943.	5.8	44
52	A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines, 2019, 7, 37.	2.1	266
53	Humoral and cellular immunity against both ZIKV and poxvirus is elicited by a two-dose regimen using DNA and non-replicating vaccinia virus-based vaccine candidates. Vaccine, 2019, 37, 2122-2130.	1.7	16
54	Zika virus during pregnancy: From maternal exposure to congenital Zika virus syndrome. Prenatal Diagnosis, 2019, 39, 420-430.	1.1	54

#	Article	IF	CITATIONS
55	Identification of relevant regions on structural and nonstructural proteins of Zika virus for vaccine and diagnostic test development: an in silico approach. New Microbes and New Infections, 2019, 29, 100506.	0.8	9
56	Antibodies Elicited by an NS1-Based Vaccine Protect Mice against Zika Virus. MBio, 2019, 10, .	1.8	57
57	Pre-Clinical Pregnancy Models for Evaluating Zika Vaccines. Tropical Medicine and Infectious Disease, 2019, 4, 58.	0.9	6
58	Toward DNA-Based T-Cell Mediated Vaccines to Target HIV-1 and Hepatitis C Virus: Approaches to Elicit Localized Immunity for Protection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 91.	1.8	10
59	Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Research, 2019, 164, 147-153.	1.9	14
60	Antimalarial drugs and their metabolites are potent Zika virus inhibitors. Journal of Medical Virology, 2019, 91, 1182-1190.	2.5	36
61	HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nature Communications, 2019, 10, 798.	5.8	61
62	Simian Immunodeficiency Virus Infection of Rhesus Macaques Results in Delayed Zika Virus Clearance. MBio, 2019, 10, .	1.8	4
63	Cost-effectiveness of Prophylactic Zika Virus Vaccine in the Americas. Emerging Infectious Diseases, 2019, 25, 2191-2196.	2.0	3
64	DNA vaccination before conception protects Zika virus–exposed pregnant macaques against prolonged viremia and improves fetal outcomes. Science Translational Medicine, 2019, 11, .	5.8	31
65	Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Review of Vaccines, 2019, 18, 1127-1143.	2.0	23
66	Zika Vaccine Development: Current Status. Mayo Clinic Proceedings, 2019, 94, 2572-2586.	1.4	69
67	Impact of age-specific immunity on the timing and burden of the next Zika virus outbreak. PLoS Neglected Tropical Diseases, 2019, 13, e0007978.	1.3	9
68	NS1 DNA vaccination protects against Zika infection through T cell–mediated immunity in immunocompetent mice. Science Advances, 2019, 5, eaax2388.	4.7	64
69	Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications, 2019, 10, 5677.	5.8	32
70	Zika Virus Vaccine Development: Progress in the Face of New Challenges. Annual Review of Medicine, 2019, 70, 121-135.	5.0	76
71	Zika Vaccines. , 2019, , 75-88.		0
72	Drugs for the Treatment of Zika Virus Infection. Journal of Medicinal Chemistry, 2020, 63, 470-489.	2.9	63

#	Article	IF	Citations
73	Inhibitors of the Zika virus protease NS2B-NS3. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126965.	1.0	56
74	Zika virus. , 2020, , 289-319.		0
75	Treatment Combinations with DNA Vaccines for the Treatment of Metastatic Castration-Resistant Prostate Cancer (mCRPC). Cancers, 2020, 12, 2831.	1.7	12
76	Soil-Transmitted Helminth Vaccines: Are We Getting Closer?. Frontiers in Immunology, 2020, 11, 576748.	2.2	34
77	Contemporary Understanding of Ebola and Zika Virus in Pregnancy. Clinics in Perinatology, 2020, 47, 835-846.	0.8	3
78	Live vaccine infection burden elicits adaptive humoral and cellular immunity required to prevent Zika virus infection. EBioMedicine, 2020, 61, 103028.	2.7	10
79	Immunopathology of Zika virus infection. Advances in Virus Research, 2020, 107, 223-246.	0.9	0
80	A Glimmer of Hope: Recent Updates and Future Challenges in Zika Vaccine Development. Viruses, 2020, 12, 1371.	1.5	20
81	NS1-based DNA vaccination confers mouse protective immunity against ZIKV challenge. Infection, Genetics and Evolution, 2020, 85, 104521.	1.0	7
82	A novel concept for treatment and vaccination against Covidâ€19 with an inhaled chitosanâ€coated DNA vaccine encoding a secreted spike protein portion. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1874-1878.	0.9	29
83	Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science Advances, 2020, 6, eaba5068.	4.7	50
84	Cutaneous vaccination ameliorates Zika virus-induced neuro-ocular pathology via reduction of anti-ganglioside antibodies. Human Vaccines and Immunotherapeutics, 2020, 16, 2072-2091.	1.4	5
85	Zika vaccine pre-clinical and clinical data review with perspectives on the future development. Human Vaccines and Immunotherapeutics, 2020, 16, 2524-2536.	1.4	11
86	Protective efficacy of a polyvalent influenza A DNA vaccine against both homologous (H1N1pdm09) and heterologous (H5N1) challenge in the ferret model. Vaccine, 2020, 39, 4903-4913.	1.7	10
87	Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines, 2020, 8, 481.	2.1	10
88	Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines, 2020, 8, 492.	2.1	18
89	Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Frontiers in Immunology, 2020, 11, 2130.	2.2	77
90	Current Flavivirus Research Important for Vaccine Development. Vaccines, 2020, 8, 477.	2.1	2

#	Article	IF	CITATIONS
91	Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. Frontiers in Medical Technology, 2020, 2, 571030.	1.3	29
92	Vaccines for COVID-19. Clinical and Experimental Immunology, 2020, 202, 162-192.	1.1	185
93	Immune-profiling of ZIKV-infected patients identifies a distinct function of plasmacytoid dendritic cells for immune cross-regulation. Nature Communications, 2020, 11, 2421.	5.8	6
94	Reverse genetic approaches for the development of Zika vaccines and therapeutics. Current Opinion in Virology, 2020, 44, 7-15.	2.6	3
95	Preparedness of public health-care system for Zika virus outbreak: An Indian perspective. Journal of Infection and Public Health, 2020, 13, 949-955.	1.9	9
96	Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. Future Drug Discovery, 2020, 2, FDD25.	0.8	1
97	Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines, 2020, 8, 266.	2.1	79
98	Distinct neutralizing antibody correlates of protection among related Zika virus vaccines identify a role for antibody quality. Science Translational Medicine, 2020, 12, .	5.8	30
99	The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Review of Vaccines, 2020, 19, 175-194.	2.0	16
100	An optimized purified inactivated Zika vaccine provides sustained immunogenicity and protection in cynomolgus macaques. Npj Vaccines, 2020, 5, 19.	2.9	14
101	Immune responses and protective effects against Japanese encephalitis induced by a DNA vaccine encoding the prM/E proteins of the attenuated SA14-14-2 strain. Infection, Genetics and Evolution, 2020, 85, 104443.	1.0	7
102	Characterization of a Species E Adenovirus Vector as a Zika virus vaccine. Scientific Reports, 2020, 10, 3613.	1.6	15
103	Plasmablast, Memory B Cell, CD4+ T Cell, and Circulating Follicular Helper T Cell Responses to a Non-Replicating Modified Vaccinia Ankara Vaccine. Vaccines, 2020, 8, 69.	2.1	4
104	Understanding Flavivirus Capsid Protein Functions: The Tip of the Iceberg. Pathogens, 2020, 9, 42.	1.2	34
105	COVID-19 vaccines: breaking record times to first-in-human trials. Npj Vaccines, 2020, 5, 34.	2.9	92
106	Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Frontiers in Immunology, 2020, 11, 592.	2.2	34
107	Defeat Dengue and Zika Viruses With a One-Two Punch of Vaccine and Vector Blockade. Frontiers in Microbiology, 2020, 11, 362.	1.5	9
108	The biomedical and bioengineering potential of protein nanocompartments. Biotechnology Advances, 2020, 41, 107547.	6.0	25

		CITATION RE	PORT	
#	Article		IF	CITATIONS
109	DNA vaccines: prime time is now. Current Opinion in Immunology, 2020, 65, 21-27.		2.4	123
110	Homologous prime-boost with Zika virus envelope protein and poly (I:C) induces robus humoral and cellular immune responses. Vaccine, 2020, 38, 3653-3664.	t specific	1.7	17
111	A combination of two human monoclonal antibodies limits fetal damage by Zika virus i Proceedings of the National Academy of Sciences of the United States of America, 202	n macaques. 0, 117, 7981-7989.	3.3	24
112	Two Is Better Than One: Evidence for T-Cell Cross-Protection Between Dengue and Zika Implications on Vaccine Design. Frontiers in Immunology, 2020, 11, 517.	and	2.2	31
113	Zika virus—an update on the current efforts for vaccine development. Human Vaccin Immunotherapeutics, 2021, 17, 904-908.	es and	1.4	7
114	Zika virus pathogenesis and current therapeutic advances. Pathogens and Global Healt 21-39.	h, 2021, 115,	1.0	23
115	Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emerge chikungunya and Zika viruses. Infection, Genetics and Evolution, 2021, 92, 104680.	nce of	1.0	6
116	Development and optimization of a Zika virus antibody-dependent cell-mediated cytote assay. Journal of Immunological Methods, 2021, 488, 112900.	oxicity (ADCC)	0.6	6
117	Advanced Nanobiomedical Approaches to Combat Coronavirus Disease of 2019. Advar Research, 2021, 1, 2000063.	iced NanoBiomed	1.7	5
118	Clinical neurological spectrum of adult and congenital ZIKV infection: An overview of vipathogenesis, and management. , 2021, , 15-28.	rology,		Ο
119	The combined vaccination protocol of DNA/MVA expressing Zika virus structural protei inducer of T and B cell immune responses. Emerging Microbes and Infections, 2021, 10	ns as efficient), 1441-1456.	3.0	6
120	SARS-CoV-2: vaccines in the pandemic era. Military Medical Research, 2021, 8, 1.		1.9	104
121	The Zika virus NS1 protein as a vaccine target. , 2021, , 367-376.			0
122	Pre-existing Immunity to Japanese Encephalitis Virus Alters CD4 T Cell Responses to Zik Inactivated Vaccine. Frontiers in Immunology, 2021, 12, 640190.	ta Virus	2.2	10
123	The Key Role of Nucleic Acid Vaccines for One Health. Viruses, 2021, 13, 258.		1.5	19
124	Introductory Chapter: Zika 2015-2020 - Knowledge and Experience in the Americas. , 0	, , .		0
125	Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cel 881-898.	l, 2021, 184,	13.5	56
126	Small animal jet injection technique results in enhanced immunogenicity of hantavirus Vaccine, 2021, 39, 1101-1110.	DNA vaccines.	1.7	8

#	Article	IF	CITATIONS
127	Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Neglected Tropical Diseases, 2021, 15, e0009195.	1.3	14
128	Plant-made vaccines against parasites: bioinspired perspectives to fight against Chagas disease. Expert Review of Vaccines, 2021, 20, 1373-1388.	2.0	5
129	Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines, 2021, 9, 307.	2.1	28
130	Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Advanced Drug Delivery Reviews, 2021, 170, 113-141.	6.6	71
131	Zika virus outbreak in Brazil—Lessons learned and perspectives for a safe and effective vaccine. Anatomical Record, 2021, 304, 1194-1201.	0.8	3
132	Dengue Virus and Vaccines: How Can DNA Immunization Contribute to This Challenge?. Frontiers in Medical Technology, 2021, 3, 640964.	1.3	4
133	Induction of protective immune responses against a lethal Zika virus challenge post-vaccination with a dual serotype of recombinant vesicular stomatitis virus carrying the genetically modified Zika virus E protein gene. Journal of General Virology, 2021, 102, .	1.3	2
134	A Double-Blind, Randomized, Placebo-Controlled Phase 1 Study of Ad26.ZIKV.001, an Ad26-Vectored Anti–Zika Virus Vaccine. Annals of Internal Medicine, 2021, 174, 585-594.	2.0	44
135	A vaccine inducing solely cytotoxic T lymphocytes fully prevents Zika virus infection and fetal damage. Cell Reports, 2021, 35, 109107.	2.9	18
136	Limited Flavivirus Cross-Reactive Antibody Responses Elicited by a Zika Virus Deoxyribonucleic Acid Vaccine Candidate in Humans. Journal of Infectious Diseases, 2021, 224, 1550-1555.	1.9	5
137	A Comparison of Zika Virus and COVIDâ€19: Clinical Overview and Public Health Messaging. Journal of Midwifery and Women's Health, 2021, 66, 334-342.	0.7	12
138	Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine, 2021, 39, 4108-4116.	1.7	85
139	Recent advances in mechanical force-assisted transdermal delivery of macromolecular drugs. International Journal of Pharmaceutics, 2021, 602, 120598.	2.6	18
140	Identification of naturally processed Zika virus peptides by mass spectrometry and validation of memory T cell recall responses in Zika convalescent subjects. PLoS ONE, 2021, 16, e0252198.	1.1	9
141	Optimization of Zika DNA vaccine by delivery systems. Virology, 2021, 559, 10-14.	1.1	5
142	Early approval of COVID-19 vaccines: Pros and cons. Human Vaccines and Immunotherapeutics, 2021, 17, 3288-3296.	1.4	14
143	Identification of potential ZIKV NS2B-NS3 protease inhibitors from <i>Andrographis paniculata</i> : An insilico approach. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11203-11215.	2.0	6
144	Current development of Zika virus vaccines with special emphasis on virus-like particle technology. Expert Review of Vaccines, 2021, 20, 1483-1498.	2.0	8

	CHATION	REPORT	
#	Article	IF	Citations
145	Cinnamic acid inhibits Zika virus by inhibiting RdRp activity. Antiviral Research, 2021, 192, 105117.	1.9	29
146	Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine, 2021, 38, 101020.	3.2	121
147	Vaccines and treatments for Zika virus infection: patent status, triumphsÂand challenges. Pharmaceutical Patent Analyst, 2021, 10, 209-213.	0.4	2
148	Current Progress in the Development of Zika Virus Vaccines. Vaccines, 2021, 9, 1004.	2.1	18
149	Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research?. Pathogens, 2021, 10, 1233.	1.2	6
150	pDNA and mRNA vaccines. , 2022, , 157-205.		1
151	Introduction to Flaviviruses and Their Global Prevalence. , 2021, , 411-439.		1
153	Long-term stability of antibody responses elicited by Dengue virus envelope DIII-based DNA vaccines. Journal of General Virology, 2018, 99, 1078-1085.	1.3	4
157	DNA priming and gp120 boosting induces HIV-specific antibodies in a randomized clinical trial. Journal of Clinical Investigation, 2019, 129, 4769-4785.	3.9	27
158	Vaccines for Perinatal and Congenital Infections—How Close Are We?. Frontiers in Pediatrics, 2020, 8, 569.	0.9	11
159	A Review on the Current Knowledge on ZIKV Infection and the Interest of Organoids and Nanotechnology on Development of Effective Therapies against Zika Infection. International Journal of Molecular Sciences, 2021, 22, 35.	1.8	13
160	Zika virus: A global public health menace: A comprehensive update. Journal of International Society of Preventive and Community Dentistry, 2019, 9, 316.	0.4	11
161	Hide and Seek: The Interplay Between Zika Virus and the Host Immune Response. Frontiers in Immunology, 2021, 12, 750365.	2.2	16
162	Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. Vaccines, 2021, 9, 1142.	2.1	9
163	Strategies for vaccine-product innovation: Creating an enabling environment for product development to uptake in low- and middle-income countries. Vaccine, 2021, 39, 7208-7219.	1.7	11
164	"They Say My Baby's Head Is Too Small― , 2019, , 453-475.		0
165	Novel Vaccination Tools and Methods. , 2019, , 57-65.		0
167	Recent Expansion of Mosquito-Borne Pathogens Into Texas. , 2020, , 339-358.		0

	CITATION	Report	
#	Article	IF	CITATIONS
170	Novel suction-based in vivo cutaneous DNA transfection platform. Science Advances, 2021, 7, eabj0611.	4.7	17
172	Viral-vectored vaccinesÂagainst SARS-CoV-2. , 2022, , 115-127.		1
173	A novel DNA platform designed for vaccine use with high transgene expression and immunogenicity. Vaccine, 2021, 39, 7175-7181.	1.7	3
174	Jet injectors: Perspectives for small volume delivery with lasers. Advanced Drug Delivery Reviews, 2022, 182, 114109.	6.6	30
175	Nonhuman Primates in Translational Research. Annual Review of Animal Biosciences, 2022, 10, 441-468.	3.6	11
176	Adjuvants Differentially Modulate the Immunogenicity of Lassa Virus Glycoprotein Subunits in Mice. Frontiers in Tropical Diseases, 2022, 3, .	0.5	0
177	DNA vaccines join the fight against COVID-19. Lancet, The, 2022, 399, 1281-1282.	6.3	17
178	Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. Npj Vaccines, 2021, 6, 156.	2.9	15
179	Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods in Molecular Biology, 2022, 2410, 229-263.	0.4	1
180	Measles-based Zika vaccine induces long-term immunity and requires NS1 antibodies to protect the female reproductive tract. Npj Vaccines, 2022, 7, 43.	2.9	12
182	Maternal immune protection against infectious diseases. Cell Host and Microbe, 2022, 30, 660-674.	5.1	18
183	Self-Assembling Nanovaccine Confers Complete Protection Against Zika Virus Without Causing Antibody-Dependent Enhancement. Frontiers in Immunology, 2022, 13, .	2.2	4
184	Design of Vaccine Targeting Zika Virus Polyprotein by Immunoinformatics Technique. International Journal of Peptide Research and Therapeutics, 2022, 28, .	0.9	0
185	A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biology, 2022, 20, .	1.7	3
186	SARS-CoV-2 Doggybone DNA Vaccine Produces Cross-Variant Neutralizing Antibodies and Is Protective in a COVID-19 Animal Model. Vaccines, 2022, 10, 1104.	2.1	4
187	Zika virus-like particle vaccine fusion loop mutation increases production yield but fails to protect AG129 mice against Zika virus challenge. PLoS Neglected Tropical Diseases, 2022, 16, e0010588.	1.3	2
188	Novel microparticulate Zika vaccine induces a significant immune response in a preclinical murine model after intramuscular administration. International Journal of Pharmaceutics, 2022, 624, 121975.	2.6	9
189	A clade C HIV-1 vaccine protects against heterologous SHIV infection by modulating IgG glycosylation and T helper response in macaques. Science Immunology, 2022, 7, .	5.6	7

#	Article	IF	CITATIONS
191	Safety and immunogenicity of Zika virus vaccine: AÂsystematic review of clinical trials. Reviews in Medical Virology, 2023, 33, .	3.9	10
192	Zika Virus Vaccine: The Current State of Affairs and Challenges Posed by Antibody-Dependent Enhancement Reaction. Viral Immunology, 0, , .	0.6	3
193	Virus-like Particles (VLPs) as Important Tools for Flavivirus Vaccine Development. Biologics, 2022, 2, 226-242.	2.3	2
194	Current Advances in Zika Vaccine Development. Vaccines, 2022, 10, 1816.	2.1	27
195	Evaluation of Zika virus DNA vaccines based on NS1 and domain III of E. International Immunopharmacology, 2022, 113, 109308.	1.7	1
196	A randomized, placebo-controlled, blinded phase 1 study investigating a novel inactivated, Vero cell-culture derived Zika virus vaccine. Journal of Travel Medicine, 0, , .	1.4	2
197	Improved DNA Vaccine Delivery with Needle-Free Injection Systems. Vaccines, 2023, 11, 280.	2.1	21
198	Preclinical safety assessment of the suction-assisted intradermal injection of the SARS-CoV-2 DNA vaccine candidate pGO-1002 in white rabbit. Archives of Toxicology, 2023, 97, 1177-1189.	1.9	1
199	A safe replication-defective Zika virus vaccine protects mice from viral infection and vertical transmission. Antiviral Research, 2023, 211, 105549.	1.9	0
200	DNA Aβ42 immunization via needle-less Jet injection in mice and rabbits as potential immunotherapy for Alzheimer's disease. Journal of the Neurological Sciences, 2023, 446, 120564.	0.3	1
201	Vaccine Design Strategies: Pathogens to Genomes. , 2021, , 440-488.		0
202	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194.	1.2	2
203	Needle-Free Devices and CpG-Adjuvanted DNA Improve Anti-HIV Antibody Responses of Both DNA and Modified Vaccinia Ankara-Vectored Candidate Vaccines. Vaccines, 2023, 11, 376.	2.1	0
204	Evaluation of an Engineered Zika Virus-Like Particle Vaccine Candidate in a Mosquito-Mouse Transmission Model. MSphere, 2023, 8, .	1.3	1
205	Zika Vaccine Microparticles (MPs)-Loaded Dissolving Microneedles (MNs) Elicit a Significant Immune Response in a Pre-Clinical Murine Model. Vaccines, 2023, 11, 583.	2.1	2
206	Evaluation of the immunogenicity and efficacy of an rVSV vaccine against Zika virus infection in macaca nemestrina. Frontiers in Virology, 0, 3, .	0.7	2
207	Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells. Frontiers in Immunology, 0, 14, .	2.2	1
208	The Anti-Dengue Virus Peptide DV2 Inhibits Zika Virus Both In Vitro and In Vivo. Viruses, 2023, 15, 839.	1.5	2

#	Article	IF	CITATIONS
209	Nucleic acid-based vaccine platforms against the coronavirus disease 19 (COVID-19). Archives of Microbiology, 2023, 205, .	1.0	9
216	Zika Virus Vaccines. , 2023, , 1322-1333.e7.		0
223	Vaccines and sera. , 2024, , 15-62.		0