Promoting Active Sites in Core–Shell Nanowire Array for Efficient and Stable Overall Water Splitting

Advanced Functional Materials 28, 1704447 DOI: 10.1002/adfm.201704447

Citation Report

#	Article	IF	CITATIONS
1	Vertically Aligned Oxygenated-CoS ₂ –MoS ₂ Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catalysis, 2018, 8, 4612-4621.	5.5	290
2	Electronic Tuning of Co, Niâ€Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804886.	7.8	87
3	The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 2964-2970.	3.0	76
4	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Waterâ€Splitting Performance. Small, 2018, 14, e1803666.	5.2	100
5	Engineering a stereo-film of FeNi ₃ nanosheet-covered FeOOH arrays for efficient oxygen evolution. Nanoscale, 2018, 10, 10971-10978.	2.8	40
6	Self-supported hierarchical CuO _x @Co ₃ O ₄ heterostructures as efficient bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 14431-14439.	5.2	121
7	Orienting Active Crystal Planes of New Class Lacunaris Fe ₂ PO ₅ Polyhedrons for Robust Water Oxidation in Alkaline and Neutral Media. Advanced Functional Materials, 2018, 28, 1801397.	7.8	30
8	Improving Electrocatalysts for Oxygen Evolution Using Ni _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ /Ni Hybrid Nanostructures Formed by Solvothermal Synthesis. ACS Energy Letters, 2018, 3, 1698-1707.	8.8	132
9	Electrical Behavior and Electron Transfer Modulation of Nickel–Copper Nanoalloys Confined in Nickel–Copper Nitrides Nanowires Array Encapsulated in Nitrogenâ€Đoped Carbon Framework as Robust Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1803278.	7.8	84
10	Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Nanotechnology, 2018, 29, 425703.	1.3	6
11	Electrocatalysts based on metal@carbon core@shell nanocomposites: AnÂoverview. Green Energy and Environment, 2018, 3, 335-351.	4.7	75
12	Local Charge Distribution Engineered by Schottky Heterojunctions toward Urea Electrolysis. Advanced Energy Materials, 2018, 8, 1801775.	10.2	266
13	Copper-modulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 16804-16809.	5.2	74
14	A Universal Strategy to Metal Wavy Nanowires for Efficient Electrochemical Water Splitting at pHâ€Universal Conditions. Advanced Functional Materials, 2018, 28, 1803722.	7.8	71
15	lr ⁴⁺ -Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chemical Communications, 2018, 54, 6400-6403.	2.2	114
16	Recent Progress on Nickelâ€Based Oxide/(Oxy)Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 703-713.	1.7	170
17	Inâ€situ Oneâ€Step Preparation of Nickelâ€Tipped Nâ€doped Carbon Nanotubes for Oxygen Reduction. ChemCatChem, 2019, 11, 4818-4821.	1.8	8
18	Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 20658-20666.	5.2	123

#	Article	IF	CITATIONS
19	Facile synthesis of cactus-shaped CdS-Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance. Applied Surface Science, 2019, 492, 849-855.	3.1	25
20	Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 2019, 7, 18674-18707.	5.2	277
21	Photoinduced formation of Cu@Cu ₂ O@C plasmonic nanostructures with efficient interfacial charge transfer for hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 19324-19331.	5.2	15
22	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
23	Electrodeposition of platinum nanoparticles onto porous GaN as a binder-free electrode for hydrogen evolution reaction. Chemical Physics Letters, 2019, 737, 136796.	1.2	10
24	Three-Dimensional Reduced Graphene Oxide/Poly(3,4-Ethylenedioxythiophene) Composite Open Network Architectures for Microsupercapacitors. Nanoscale Research Letters, 2019, 14, 267.	3.1	12
25	Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nature Communications, 2019, 10, 4380.	5.8	203
26	Interface Engineering of MoS ₂ for Electrocatalytic Performance Optimization for Hydrogen Generation via Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 16577-16584.	3.2	70
27	Constructing Earthâ€abundant 3D Nanoarrays for Efficient Overall Water Splitting – A Review. ChemCatChem, 2019, 11, 1550-1575.	1.8	108
28	Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon, 2019, 146, 671-679.	5.4	117
29	Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 14380-14390.	5.2	111
30	Flower-like NiCo2O4/NiCo2S4 electrodes on Ni mesh for higher supercapacitor applications. Ceramics International, 2019, 45, 17192-17203.	2.3	52
31	Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy and Environmental Science, 2019, 12, 2620-2645.	15.6	1,052
32	Hydrogen Evolution Enhancement over a Cobalt-Based Schottky Interface. ACS Applied Materials & Interfaces, 2019, 11, 27641-27647.	4.0	34
33	Hierarchically Porous Co/Co <i>_x</i> M <i>_y</i> (M = P, N) as an Efficient Mott–Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn–Air Batteries. Small, 2019, 15, e1901518.	5.2	163
34	Effect of Ion Diffusion in Cobalt Molybdenum Bimetallic Sulfide toward Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 21634-21644.	4.0	47
35	Bifunctional Cu2S–Co(OH)2 nanotube array/Cu foam electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 316, 8-18.	2.6	56
36	General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2019, 797, 1216-1223	2.8	56

#	Article	IF	CITATIONS
37	Ru@RuO ₂ Core‣hell Nanorods: A Highly Active and Stable Bifunctional Catalyst for Oxygen Evolution and Hydrogen Evolution Reactions. Energy and Environmental Materials, 2019, 2, 201-208.	7.3	64
38	In-situ growth of iron/nickel phosphides hybrid on nickel foam as bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 424, 42-51.	4.0	56
39	Inlay of ultrafine Ru nanoparticles into a self-supported Ni(OH) ₂ nanoarray for hydrogen evolution with low overpotential and enhanced kinetics. Journal of Materials Chemistry A, 2019, 7, 11062-11068.	5.2	70
40	Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Advanced Functional Materials, 2019, 29, 1808367.	7.8	298
41	Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications. Advanced Functional Materials, 2019, 29, 1808012.	7.8	129
42	Interface Engineering of Co(OH) ₂ /Ag/FeP Hierarchical Superstructure as Efficient and Robust Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 7936-7945.	4.0	68
43	Crâ€Doped FeNi–P Nanoparticles Encapsulated into Nâ€Doped Carbon Nanotube as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Advanced Materials, 2019, 31, e1900178.	11.1	246
44	Plasmon-Induced Heterointerface Thinning for Schottky Barrier Modification of Core/Shell SiC/SiO ₂ Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 9326-9332.	4.0	16
45	Rational Design of Ruthenium and Cobalt-Based Composites with Rich Metal–Insulator Interfaces for Efficient and Stable Overall Water Splitting in Acidic Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 47894-47903.	4.0	76
46	Ultrathin carbon coated CoO nanosheet arrays as efficient electrocatalysts for the hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 6957-6964.	2.1	24
47	Metalâ€Layer Assisted Growth of Ultralong Quasiâ€2D MOF Nanoarrays on Arbitrary Substrates for Accelerated Oxygen Evolution. Small, 2019, 15, e1906086.	5.2	54
48	Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48, 5658-5716.	18.7	541
49	Ni x Co 3―x O 4 Nanoneedle Arrays Grown on Ni Foam as an Efficient Bifunctional Electrocatalyst for Full Water Splitting. Chemistry - an Asian Journal, 2019, 14, 480-485.	1.7	21
50	Uniform NiFe phosphide nanosheets arrays on carbon cloth as high-performance oxygen evolution catalysts. Materials Today Energy, 2019, 11, 192-198.	2.5	18
51	Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Research, 2019, 12, 2211-2217.	5.8	34
52	Moâ€Doped Cu/Co Hybrid Oxide Nanoarrays: An Enhanced Electrocatalytic Performance for the Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 1738-1744.	1.7	23
53	Hierarchical Cu2S NRs@CoS core-shell structure and its derivative towards synergistic electrocatalytic water splitting. Electrochimica Acta, 2019, 296, 1035-1041.	2.6	53
54	Fabricating Cu, Cu ₂ O and hybrid Cu-Cu ₂ O nanoparticles in carbon matrix and exploring catalytic activity of oxygen and hydrogen evolution and green A ³ -coupling reaction. Materials Research Express, 2019, 6, 025518.	0.8	9

	CITATION	Report	
#	Article	IF	CITATIONS
55	Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57, 1-13.	8.2	211
56	Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting – A review. Journal of Energy Chemistry, 2019, 34, 111-160.	7.1	323
57	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
58	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
59	In-situ synthesis strategy for CoM (MÂ= Fe, Ni, Cu) bimetallic nanoparticles decorated N-doped 1D carbon nanotubes/3D porous carbon for electrocatalytic oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 815, 152470.	2.8	43
60	Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction. Chemical Engineering Journal, 2020, 381, 122673.	6.6	75
61	Interfacial Engineering FeOOH/CoO Nanoneedle Array for Efficient Overall Water Splitting Driven by Solar Energy. Chemistry - A European Journal, 2020, 26, 4120-4127.	1.7	24
62	Copper and cobalt co-doped Ni3S2 grown on nickel foam for highly efficient oxygen evolution reaction. Applied Surface Science, 2020, 502, 144172.	3.1	65
63	Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy and Environmental Science, 2020, 13, 174-182.	15.6	109
64	MoC based Mott–Schottky electrocatalyst for boosting the hydrogen evolution reaction performance. Sustainable Energy and Fuels, 2020, 4, 407-416.	2.5	34
65	Nitrogen doped carbon fibers derived from carbonization of electrospun polyacrylonitrile as efficient metal-free HER electrocatalyst. International Journal of Hydrogen Energy, 2020, 45, 4035-4042.	3.8	22
66	<pre><mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:msup> <mml:mrow> <mml:mi mathvariant="normal"> C</mml:mi> <mml:mi mathvariant="normal">u</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>î^</mml:mi> · active sites stabilization through Mott-Schottky effect for promoting highly efficient conversion of</mml:mrow></mml:msup></mml:math></pre>	k/mm lan row:	> <b ¤vml:msup
67	Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. Journal of Catalysis, 2020, 381, 44-52.	3.1	83
68	Ni loaded on N-doped carbon encapsulated tungsten oxide nanowires as an alkaline-stable electrocatalyst for water reduction. Sustainable Energy and Fuels, 2020, 4, 788-796.	2.5	15
69	Three-Dimensional Heterostructured NiCoP@NiMn-Layered Double Hydroxide Arrays Supported on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 4385-4395.	4.0	117
70	Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12, 21743-21749.	2.8	43
71	Recent advances on hydrogen production through seawater electrolysis. Materials Science for Energy Technologies, 2020, 3, 780-807.	1.0	45
72	Nitrogenâ€doped Binary Spinel CuCo ₂ O ₄ /C Nanocomposite: An Efficient Electrocatalyst for Oxygen Evolution Reaction. ChemNanoMat, 2020, 6, 1652-1657.	1.5	12

#	Article	IF	CITATIONS
73	Accelerating charge transfer to enhance H ₂ evolution of defect-rich CoFe ₂ O ₄ by constructing a Schottky junction. Chemical Communications, 2020, 56, 14019-14022.	2.2	34
74	Selective Loading of Atomic Platinum on a RuCeO _{<i>x</i>} Support Enables Stable Hydrogen Evolution at High Current Densities. Angewandte Chemie - International Edition, 2020, 59, 20423-20427.	7.2	112
75	Nanosheet-Derived Ultrafine CoRuOx@NC Nanoparticles with a Core@Shell Structure as Bifunctional Electrocatalysts for Electrochemical Water Splitting with High Current Density or Low Power Input. ACS Sustainable Chemistry and Engineering, 2020, 8, 12089-12099.	3.2	20
76	Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with Single-Ni sites for efficient CO2 electroreduction. Nano Energy, 2020, 77, 105010.	8.2	70
77	One-step electrodeposition of carbon quantum dots and transition metal ions for N-doped carbon coupled with NiFe oxide clusters: A high-performance electrocatalyst for oxygen evolution. Nano Energy, 2020, 77, 105057.	8.2	49
78	Oxygen Vacancyâ€rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem, 2020, 13, 5004-5014.	3.6	95
79	Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie - International Edition, 2020, 59, 19215-19221.	7.2	211
80	Selective Loading of Atomic Platinum on a RuCeO _{<i>x</i>} Support Enables Stable Hydrogen Evolution at High Current Densities. Angewandte Chemie, 2020, 132, 20603-20607.	1.6	28
81	Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Applied Catalysis B: Environmental, 2020, 279, 119375.	10.8	102
82	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 422, 213468.	9.5	38
83	Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie, 2020, 132, 19377-19383.	1.6	41
84	Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nature Communications, 2020, 11, 5462.	5.8	383
85	Tuning the electronic band structure of Mott–Schottky heterojunctions modified with surface sulfur vacancy achieves an oxygen electrode with high catalytic activity for lithium–oxygen batteries. Journal of Materials Chemistry A, 2020, 8, 11337-11345.	5.2	38
86	Strong electronic coupled FeNi ₃ /Fe ₂ (MoO ₄) ₃ nanohybrids for enhancing the electrocatalytic activity for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 2791-2798.	3.0	5
87	Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage. Dalton Transactions, 2020, 49, 11430-11450.	1.6	12
88	N doped carbon coated multi-metals nanoparticles decorated perovskite as electrocatalyst for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2020, 399, 125779.	6.6	21
89	Dynamically controlled growth of Cu–Mo–O nanosheets for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2020, 8, 9337-9344.	2.7	3
90	CoS ₂ @N-doped carbon core–shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 6795-6803.	5.2	75

#	Article	IF	CITATIONS
91	Rational Design of a N,S Coâ€Doped Supermicroporous CoFe–Organic Framework Platform for Water Oxidation. ChemSusChem, 2020, 13, 2564-2570.	3.6	29
92	Design of a Silicon Photocatalyst for High-Efficiency Photocatalytic Water Splitting. ACS Omega, 2020, 5, 6358-6365.	1.6	18
93	Bimetal Schottky Heterojunction Boosting Energyâ€Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000556.	7.8	216
94	Simultaneously Realizing Rapid Electron Transfer and Mass Transport in Jellyfishâ€Like Mott–Schottky Nanoreactors for Oxygen Reduction Reaction. Advanced Functional Materials, 2020, 30, 1910482.	7.8	173
95	Cu/Cu 2 O Nanoparticle–Decorated MoO 2 Nanoflowers as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Energy Technology, 2020, 8, 1901392.	1.8	8
96	Metal-organic frameworks derived carbon-incorporated cobalt/dicobalt phosphide microspheres as Mott–Schottky electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. Journal of Colloid and Interface Science, 2020, 565, 513-522.	5.0	25
97	Controlled growth of Cu _{2â^'x} S sheet-like nanoshells and Cu _{2â^'x} S–CdS p–n junctions on Au nanorods with coupled plasmon resonances and enhanced photocatalytic activities. Journal of Materials Chemistry C, 2020, 8, 3058-3068.	2.7	15
98	In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Science Bulletin, 2020, 65, 640-650.	4.3	51
99	Thermodynamic and dynamic dual regulation Bi ₂ O ₂ CO ₃ /Bi ₅ O ₇ I enabling high-flux photogenerated charge migration for enhanced visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2020, 8, 10252-10259.	5.2	45
100	Unveiling in situ evolved In/In2O3â^ heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Science Bulletin, 2020, 65, 1547-1554.	4.3	105
101	Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116, 100717.	16.0	216
102	Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. Applied Catalysis B: Environmental, 2021, 283, 119590.	10.8	84
103	Synchronous Electrocatalytic Design of Architectural and Electronic Structure Based on Bifunctional LDHâ€Co ₃ O ₄ /NF toward Water Splitting. Chemistry - A European Journal, 2021, 27, 3367-3373.	1.7	8
104	Double metal–organic frameworks derived Fe–Co–Ni phosphides nanosheets as high-performance electrocatalyst for alkaline electrochemical water splitting. Electrochimica Acta, 2021, 367, 137536.	2.6	26
105	Modification strategies on transition metal-based electrocatalysts for efficient water splitting. Journal of Energy Chemistry, 2021, 58, 446-462.	7.1	88
106	V "Bridged―CoO to Eliminate Charge Transfer Barriers and Drive Lattice Oxygen Oxidation during Waterâ€Splitting. Advanced Functional Materials, 2021, 31, 2008822.	7.8	40
107	Hierarchical TiO 2 Photoanodes with Spatial Charge Separation for Efficient Oxygen Evolution Reaction. Solar Rrl, 2021, 5, 2000449.	3.1	5
108	Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy and Environmental Science, 2021, 14, 5228-5259.	15.6	198

#	Article	IF	Citations
109	Tuning the effective utilization of adsorption sites in La-MOFs <i>via</i> a steric hindrance effect towards enhanced As(<scp>iii</scp>) removal. Environmental Science: Nano, 2021, 8, 3387-3394.	2.2	8
110	"Superaerophobic―NiCo bimetallic phosphides for highly efficient hydrogen evolution reaction electrocatalysts. Chemical Communications, 2021, 57, 6173-6176.	2.2	13
111	Interfacial La Diffusion in the CeO ₂ /LaFeO ₃ Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2021, 13, 2799-2806.	4.0	38
112	Nano-mediated uniform ternary Cu–Co–Ni-based nitrogen-doped carbon nanotubes with synergistic reactivity for high-performance oxygen reduction. Nano Express, 2021, 2, 010026.	1.2	1
113	Maximized Schottky Effect: The Ultrafine V ₂ O ₃ /Ni Heterojunctions Repeatedly Arranging on Monolayer Nanosheets for Efficient and Stable Waterâ€ŧoâ€Hydrogen Conversion. Small, 2021, 17, e2005769.	5.2	42
114	Synergistically Integrating Nickel Porous Nanosheets with 5d Transition Metal Oxides Enabling Efficient Electrocatalytic Overall Water Splitting. Inorganic Chemistry, 2021, 60, 8189-8199.	1.9	27
115	Improving oxygen vacancies by cobalt doping in MoO ₂ nanorods for efficient electrocatalytic hydrogen evolution reaction. Nano Select, 2021, 2, 2148-2158.	1.9	9
116	Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. Journal of Catalysis, 2021, 398, 54-66.	3.1	58
117	Optimizing the metal-support interactions at the Pd-polymer carbon nitride Mott-Schottky heterojunction interface for an enhanced electrocatalytic hydrodechlorination reaction. Journal of Hazardous Materials, 2021, 411, 125119.	6.5	27
118	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	23.0	156
119	In situ construction of γ-MoC/VN heterostructured electrocatalysts with strong electron coupling for highly efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 416, 129130.	6.6	31
120	Construction of Nickelâ€Based Dual Heterointerfaces towards Accelerated Alkaline Hydrogen Evolution via Boosting Multiâ€Step Elementary Reaction. Advanced Functional Materials, 2021, 31, 2104827.	7.8	42
121	Assembly of Cobalt Layered Double Hydroxide on Cuprous Phosphide Nanowire with Strong Builtâ€In Potential for Accelerated Overall Water Splitting. Small, 2021, 17, e2101725.	5.2	26
122	Monodisperse Cu Cluster-Loaded Defective ZrO ₂ Nanofibers for Ambient N ₂ Fixation to NH ₃ . ACS Applied Materials & Interfaces, 2021, 13, 40724-40730.	4.0	13
123	Mn-Doped NiFe Layered Double Hydroxide Nanosheets Decorated by Co(OH)2 Nanosheets: A 3-Dimensional Core–Shell Catalyst for Efficient Oxygen Evolution Reaction. Catalysis Letters, 2022, 152, 1719-1728.	1.4	5
124	Hollow Carbon Nanoballs on Graphene as Metalâ€Free Catalyst for Overall Electrochemical Water Splitting. Advanced Materials Interfaces, 2021, 8, 2101265.	1.9	5
125	Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott–Schottky electrocatalysts in neutral rechargeable Zn–Air batteries. Journal of Energy Chemistry, 2022, 68, 113-123.	7.1	51
126	Focused Plasma- and Pure Water-Enabled, Electrode-Emerged Nanointerfaced NiCo Hydroxide–Oxide for Robust Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 45566-45577.	4.0	15

#	Article	IF	CITATIONS
127	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
128	lrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weak‣ightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie, 2021, 133, 26994-27001.	1.6	4
129	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	9
130	IrO _{<i>x</i>} @In ₂ O ₃ Heterojunction from Individually Crystallized Oxides for Weakâ€Lightâ€Promoted Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 26790-26797.	7.2	23
131	Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels. Journal of Energy Chemistry, 2021, 61, 304-318.	7.1	50
132	Facile controlled formation of CoNi alloy and CoO embedded in N-doped carbon as advanced electrocatalysts for oxygen evolution and zinc-air battery. Electrochimica Acta, 2021, 395, 139204.	2.6	11
133	Carbon wrapped bimetallic NiCo nanospheres toward excellent HER and OER performance. Journal of Alloys and Compounds, 2021, 889, 161528.	2.8	46
134	Coaxial Ni–S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H ₂ Production <i>via</i> Urea Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 3937-3948.	4.0	45
135	Core-corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H ₂ production. Journal of Materials Chemistry A, 2021, 9, 10893-10908.	5.2	56
136	A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 7606-7616.	5.2	17
137	A Co/CoO hybrid rooted on carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction in alkaline solution. Sustainable Energy and Fuels, 2020, 4, 1924-1932.	2.5	19
138	Improved Interface Charge Transfer and Redistribution in CuOâ€CoOOH pâ€n Heterojunction Nanoarray Electrocatalyst for Enhanced Oxygen Evolution Reaction. Advanced Science, 2021, 8, e2103314.	5.6	100
139	Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Applied Catalysis B: Environmental, 2022, 302, 120838.	10.8	124
140	Understanding the Effect of Second Metal on CoM (M = Ni, Cu, Zn) Metal–Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction. Small, 2021, 17, e2105150.	5.2	76
141	Critical Review, Recent Updates on Zeolitic Imidazolate Frameworkâ€67 (ZIFâ€67) and Its Derivatives for Electrochemical Water Splitting. Advanced Materials, 2022, 34, e2107072.	11.1	183
142	Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@CoP2 heterostructure electrocatalyst for efficient overall water splitting. Chemical Engineering Journal, 2022, 433, 133684.	6.6	29
143	Hierarchically hexagon-like NiCoP/Co(PO3)2 composites supported on Ni foam as multifunction electrodes for supercapacitors and overall water splitting. Journal of Physics and Chemistry of Solids, 2022, 162, 110511.	1.9	5
144	Triple Product Overall Water Splitting – An Environment Friendly and New Direction Water Splitting in Seaâ€Water Mimicking Electrolyte. ChemistrySelect, 2021, 6, 12316-12322.	0.7	4

щ	Article	IF	Citations
#	AkticLE Alkaline oxygen evolution: exploring synergy between fcc and hcp cobalt nanoparticles entrapped in	IF	CHATIONS
145	N-doped graphene. Materials Today Chemistry, 2022, 23, 100668.	1.7	20
146	Lessâ€Energy Consumed Hydrogen Evolution Coupled with Electrocatalytic Removal of Ethanolamine Pollutant in Saline Water over Ni@Ni ₃ S ₂ /CNT Nanoâ€Heterostructured Electrocatalysts. Small Methods, 2022, 6, e2101195.	4.6	10
147	Heterogeneity in a metal–organic framework <i>in situ</i> guides engineering Co@CoO heterojunction for electrocatalytic H ₂ production in tandem with glucose oxidation. Journal of Materials Chemistry A, 2022, 10, 4791-4799.	5.2	35
148	N-doped M/CoO (M=Ni, Co, and Mn) hybrid grown on nickel foam as efficient electrocatalyst for the chemical-assisted water electrolysis. International Journal of Hydrogen Energy, 2022, 47, 5766-5778.	3.8	14
149	Hydrogen and electricity co-generation from hydrazine-assisted water electrolysis on hierarchical porous heteroatoms-doped CoCu catalysts. Applied Catalysis B: Environmental, 2022, 306, 121132.	10.8	23
150	Computation-assisted performance optimization for photoelectrochemical photoelectrodes. Applied Physics Letters, 2022, 120, .	1.5	4
151	Zn-Doped CoS ₂ Nanoarrays for an Efficient Oxygen Evolution Reaction: Understanding the Doping Effect for a Precatalyst. ACS Applied Materials & amp; Interfaces, 2022, 14, 14235-14242.	4.0	35
152	Electrochemically Driven Interfacial Transformation For Highâ€Performing Solarâ€Toâ€Fuel Electrocatalytic Conversion. Advanced Energy Materials, 2022, 12, .	10.2	25
153	Construction of Heterostructured Sn/TiO ₂ /Si Photocathode for Efficient Photoelectrochemical CO ₂ Reduction. ChemSusChem, 2022, 15, .	3.6	11
154	Inkjetâ€Printed rGO/binary Metal Oxide Sensor for Predictive Gas Sensing in a Mixed Environment. Advanced Functional Materials, 2022, 32, .	7.8	38
155	Heterostructure of Semiconductors on Self-Supported Cuprous Phosphide Nanowires for Enhanced Overall Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 17520-17530.	4.0	6
156	Interface oxygen vacancy enhanced alkaline hydrogen evolution activity of cobalt-iron phosphide/CeO2 hollow nanorods. Chemical Engineering Journal, 2022, 437, 135376.	6.6	35
157	Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2022, 308, 121229.	10.8	69
158	Activating Cu/Fe2O3 nanoislands rooted on N-rich porous carbon nanosheets via the Mott-Schottky effect for rechargeable Zn-air battery. Chemical Engineering Journal, 2022, 442, 136128.	6.6	38
159	Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction. Nano Research, 2022, 15, 2952-2960.	5.8	15
160	Heterostructure of core–shell IrCo@IrCoO _x as efficient and stable catalysts for oxygen evolution reaction. Nanotechnology, 2022, 33, 125702.	1.3	6
161	A Mott–Schottky Heterogeneous Layer for Li–S Batteries: Enabling Both High Stability and Commercialâ€Sulfur Utilization. Advanced Energy Materials, 2022, 12, .	10.2	74
162	Superhydrophilic/Superaerophobic Hierarchical NiP ₂ @MoO ₂ /Co(<i>Ni</i>)MoO ₄ Core–Shell Array Electrocatalysts for Efficient Hydrogen Production at Large Current Densities. ACS Applied Materials & amp: Interfaces 2022 14 19448-19458	4.0	23

#	Article	IF	CITATIONS
163	Hybrid-metal hydroxyl fluoride nanosheet arrays as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Materials Chemistry A, 2022, 10, 11774-11783.	5.2	11
164	Interfaces joining for modifying transition metal oxides. , 2022, , 191-216.		Ο
165	A multi-dimensional hierarchical strategy building melamine sponge-derived tetrapod carbon supported cobalt–nickel tellurides 0D/3D nanohybrids for boosting hydrogen evolution and triiodide reduction reaction. Journal of Colloid and Interface Science, 2022, 624, 650-669.	5.0	17
167	Universal avenue to metal-transition metal carbide grafted N-doped carbon framework as efficient dual Mott-Schottky electrocatalysts for water splitting. Sustainable Materials and Technologies, 2022, 33, e00451.	1.7	10
168	Nickel-induced charge redistribution in Ni-Fe/Fe3C@nitrogen-doped carbon nanocage as a robust Mott-Schottky bi-functional oxygen catalyst for rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2022, 625, 521-531.	5.0	22
169	Enhanced oxygen evolution reaction activity of Ni(OH)2 nanosheets via the modified effect of sulfur. Journal of Chemical Sciences, 2022, 134, .	0.7	6
170	Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. Journal of Alloys and Compounds, 2022, 922, 166113.	2.8	66
171	Interfacing nickel with molybdenum oxides as monolithic catalyst to accelerate alkaline hydrogen electrocatalysis with robust stability. Applied Catalysis B: Environmental, 2022, 317, 121786.	10.8	19
172	Interfacial engineering of Cu–Fe ₂ O ₃ nanotube arrays with built-in electric field and oxygen vacancies for boosting the electrocatalytic reduction of nitrates. Materials Advances, 2022, 3, 7107-7115.	2.6	5
173	Defect Engineering of a Mottâ€Schottkyâ€Type Selfâ€Supporting Electrode for Rechargeable Zincâ€Air Battery. ChemistrySelect, 2022, 7, .	0.7	0
174	Ni3Sn2/nitrogen-doped graphene composite with chemisorption and electrocatalysis as advanced separator modifying material for lithium sulfur batteries. Journal of Colloid and Interface Science, 2022, 628, 896-910.	5.0	10
175	Interfacial component coupling effects towards precise heterostructure design for efficient electrocatalytic water splitting. Nano Energy, 2022, 103, 107753.	8.2	47
176	Trimetallic CoFeCr-LDH@MoS2 as a highly efficient bifunctional electrocatalyst for overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130146.	2.3	5
177	The polyoxometalates mediated preparation of phosphate-modified NiMoO4â^'x with abundant O-vacancies for H2 production via urea electrolysis. Journal of Colloid and Interface Science, 2023, 629, 297-309.	5.0	35
178	Ex situ flame vapor-doped oxophilic metals on WP/WOx nanowires for enhanced alkaline hydrogen evolution activity. Applied Surface Science, 2023, 608, 155044.	3.1	2
179	Self-construction of pea-like Cu/Cu2S Mott-Schottky electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, , .	3.8	4
180	Regulation Strategy of Transition Metal Oxide-Based Electrocatalysts for Enhanced Oxygen Evolution Reaction. Accounts of Materials Research, 2022, 3, 1088-1100.	5.9	29
181	Ni ₂ P–Co ₂ P Nanowire Arrays on Nickel Foam as a Robust pH-Universal Electrocatalyst for High-Efficiency Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 12059-12066.	2.5	10

#	Article	IF	Citations
182	Synergizing Cobalt Ruthenium Alloy with Chromium Oxyhydroxide for Highly Efficient Electrocatalytic Water Splitting. Inorganic Chemistry, 2022, 61, 17557-17567.	1.9	8
183	Stepwise dispersion of nickel species for efficient coupling of electrocatalytic redox reactions. Chemical Engineering Journal, 2023, 454, 140062.	6.6	3
184	Lattice Strain and Schottky Junction Dual Regulation Boosts Ultrafine Ruthenium Nanoparticles Anchored on a N-Modified Carbon Catalyst for H ₂ Production. Journal of the American Chemical Society, 2022, 144, 19619-19626.	6.6	99
185	Mott-Schottky heterojunction of Se/NiSe2 as bifunctional electrocatalyst for energy efficient hydrogen production via urea assisted seawater electrolysis. Journal of Colloid and Interface Science, 2023, 630, 844-854.	5.0	19
186	Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chemical Engineering Journal, 2023, 454, 140230.	6.6	32
187	Design of the Synergistic Rectifying Interfaces in Mott–Schottky Catalysts. Chemical Reviews, 2023, 123, 1-30.	23.0	69
188	Mott Schottky CoSx-MoOx@NF heterojunctions electrode for H2 production and urea-rich wastewater purification. Science of the Total Environment, 2023, 858, 160170.	3.9	10
189	A metal/semiconductor contact induced Mott–Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustainable Energy and Fuels, 2022, 7, 12-30.	2.5	7
190	Preparation of Flower-Shaped Co-Fe Layer Double Hydroxide Nanosheets Loaded with Pt Nanoparticles by Corrosion Engineering for Efficient Electrocatalytic Water Splitting. ACS Applied Energy Materials, 2022, 5, 15269-15281.	2.5	9
191	Highâ€Density Frustrated Lewis Pair for Highâ€Performance Hydrogen Evolution. Advanced Energy Materials, 2023, 13, .	10.2	6
192	Boosting cathodic hydrogen evolution with furfuryl alcohol oxidation as the anodic half-reaction for hybrid water splitting. Electrochimica Acta, 2023, 441, 141736.	2.6	1
193	Circumventing Challenges: Design of Anodic Electrocatalysts for Hybrid Water Electrolysis Systems. Advanced Energy Materials, 2023, 13, .	10.2	42
195	A 3D hierarchical electrocatalyst: Core-shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction. Nano Research, 2023, 16, 8012-8017.	5.8	13
196	Recent progress in C–N coupling for electrochemical CO2 reduction with inorganic nitrogenous species in aqueous solution. Materials Reports Energy, 2023, 3, 100178.	1.7	2
197	Roles of Metal Oxide Nanostructure-Based Substrates in Sustainable Electrochemical Water Splitting: Recent Development and Future Perspective. ACS Applied Nano Materials, 2023, 6, 1631-1647.	2.4	22
198	Constructing ultrafine monodispersed Co2P/(0.59-Cu3P) on Cu doped CoZn-ZIF derived porous N-doped carbon for highly efficient dehydrogenation of ammonia borane. Nano Research, 2023, 16, 6687-6700.	5.8	11
199	Role of vanadium ions substitution on spinel MnCo2O4 towards enhanced electrocatalytic activity for hydrogen generation. Scientific Reports, 2023, 13, .	1.6	12
200	Ni@TiO ₂ Nanoarray with the Schottky Junction for the Highly Selective Electrochemical Reduction of Nitrite to Ammonia. ACS Sustainable Chemistry and Engineering, 2023, 11, 2686-2691.	3.2	8

#	Article	IF	CITATIONS
201	Novel insights into Co synergy and electron-transfer pathways during the oxidation of contaminants by Cu-OOSO3- in CuCo2Ox/peroxymonosulfate system. Journal of Environmental Chemical Engineering, 2023, 11, 109594.	3.3	0
202	Effects of Group IB Metals of Au/Ag/Cu on Boosting Oxygen Evolution Reaction of Cobalt Hydroxide. ChemCatChem, 2023, 15, .	1.8	3
203	Hierarchically Structured CoNiP/CoNi Nanoparticle/Graphene/Carbon Foams as Effective Bifunctional Electrocatalysts for HER and OER. Industrial & Engineering Chemistry Research, 2023, 62, 4987-4994.	1.8	4
204	Doping of Cr to Regulate the Valence State of Cu and Co Contributes to Efficient Water Splitting. ACS Applied Materials & Interfaces, 2023, 15, 16552-16561.	4.0	12
208	Heterojunction Engineering for Electrocatalytic Applications. ACS Applied Energy Materials, 2023, 6, 7737-7784.	2.5	5
212	High entropy alloying strategy for accomplishing quintuple-nanoparticles grafted carbon towards exceptional high-performance overall seawater splitting. Materials Horizons, 2023, 10, 5032-5044.	6.4	1