Synthesis of Carbon Dots with Multiple Color Emission Surface Functionalization

Advanced Materials 30, 1704740 DOI: 10.1002/adma.201704740

Citation Report

#	Article	IF	CITATIONS
2	Egg yolk-derived carbon: Achieving excellent fluorescent carbon dots and high performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 746, 567-575.	2.8	42
3	Highly Efficient Carbon Dots with Reversibly Switchable Green–Red Emissions for Trichromatic White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 16005-16014.	4.0	147
4	Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing. Journal of Materials Chemistry B, 2018, 6, 3181-3187.	2.9	54
5	Carbon Dots: Bottomâ€Up Syntheses, Properties, and Lightâ€Harvesting Applications. Chemistry - an Asian Journal, 2018, 13, 586-598.	1.7	101
6	Solventâ€Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths. Small, 2018, 14, e1800612.	5.2	449
7	Hollow carbon dots labeled with FITC or TRITC for use in fluorescent cellular imaging. Mikrochimica Acta, 2018, 185, 223.	2.5	15
8	Fluorescence Retention of Organosilane-polymerized Carbon Dots Inverse Opals in CuCl Suspension. Chinese Journal of Polymer Science (English Edition), 2018, 36, 555-562.	2.0	4
9	Biomimetic colloidal photonic crystals by coassembly of polystyrene nanoparticles and graphene quantum dots. RSC Advances, 2018, 8, 34839-34847.	1.7	16
10	Sludge degradation and microbial community structures analysis in a microbial electrolysis cell-coupled up flow anaerobic blanket reactor with an ultrasound treatment system. RSC Advances, 2018, 8, 42032-42040.	1.7	3
11	Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry. Nanoscale, 2018, 10, 21809-21817.	2.8	31
12	Solidâ€State Carbon Dots with Efficient Cyan Emission towards White Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2018, 14, 286-292.	1.7	16
13	Carbon Nanodots for Enhancing the Stress Resistance of Peanut Plants. ACS Omega, 2018, 3, 17770-17777.	1.6	44
14	Tuning Carbon Dotsâ \in ^{IM} Optoelectronic Properties with Polymers. Polymers, 2018, 10, 1312.	2.0	19
15	Highly Green Emissive Nitrogen-Doped Carbon Dots with Excellent Thermal Stability for Bioimaging and Solid-State LED. Inorganic Chemistry, 2018, 57, 15229-15239.	1.9	65
16	Inorganic Salt Incorporated Solvothermal Synthesis of Multicolor Carbon Dots, Emission Mechanism, and Antibacterial Study. ACS Applied Nano Materials, 2018, 1, 6131-6138.	2.4	61
17	Photoluminescent Composites of Lanthanide-Based Nanocrystal-Functionalized Cellulose Fibers for Anticounterfeiting Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 13960-13967.	3.2	45
18	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	2.5	87
19	Circularly Polarized Luminescent Carbon Dot Nanomaterials of Helical Superstructures for Circularly Polarized Light Detection. Advanced Optical Materials, 2018, 6, 1801246.	3.6	105

#	Article	IF	CITATIONS
20	Langmuir–Blodgett self-assembly of ultrathin graphene quantum dot films with modulated optical properties. Nanoscale, 2018, 10, 19612-19620.	2.8	23
21	Two-dimensional nanomaterial based sensors for heavy metal ions. Mikrochimica Acta, 2018, 185, 478.	2.5	48
22	Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & amp; Interfaces, 2018, 10, 39205-39213.	4.0	51
23	Exploration of the synthesis of three types of multicolor carbon dot originating from isomers. Chemical Communications, 2018, 54, 11312-11315.	2.2	42
24	Greener Luminescent Solar Concentrators with High Loading Contents Based on in Situ Cross-Linked Carbon Nanodots for Enhancing Solar Energy Harvesting and Resisting Concentration-Induced Quenching. ACS Applied Materials & Interfaces, 2018, 10, 34184-34192.	4.0	58
25	Polymethyldopa Nanoparticles-Based Fluorescent Sensor for Detection of Tyrosinase Activity. ACS Sensors, 2018, 3, 1855-1862.	4.0	48
26	The synthesis of green fluorescent carbon dots for warm white LEDs. RSC Advances, 2018, 8, 19585-19595.	1.7	37
27	Carbon dots as fluorescent probes for detection of VB ₁₂ based on the inner filter effect. RSC Advances, 2018, 8, 19786-19790.	1.7	33
28	Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 2018, 10, 11211-11221.	2.8	67
29	Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots. Nanoscale, 2018, 10, 10650-10656.	2.8	18
30	Bright-blue-emission nitrogen and phosphorus-doped carbon quantum dots as a promising nanoprobe for detection of Cr(<scp>vi</scp>) and ascorbic acid in pure aqueous solution and in living cells. New Journal of Chemistry, 2018, 42, 12990-12997.	1.4	59
31	Carbon nanodots in ZIF-8: synthesis, tunable luminescence and temperature sensing. Inorganic Chemistry Frontiers, 2018, 5, 2739-2745.	3.0	38
32	Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis. Chemical Society Reviews, 2018, 47, 6410-6444.	18.7	178
33	Selfâ€Protective Roomâ€Temperature Phosphorescence of Fluorine and Nitrogen Codoped Carbon Dots. Advanced Functional Materials, 2018, 28, 1800791.	7.8	290
34	Citrateâ€Based Fluorescent Biomaterials. Advanced Healthcare Materials, 2018, 7, e1800532.	3.9	51
35	Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs. Journal of Materials Chemistry C, 2018, 6, 5957-5963.	2.7	34
36	Conversion of Carbon Dots from Fluorescence to Ultralong Roomâ€Temperature Phosphorescence by Heating for Security Applications. Advanced Materials, 2018, 30, e1800783.	11.1	435
37	Precisely Controlled Up/Downâ€Conversion Liquid and Solid State Photoluminescence of Carbon Dots. Advanced Optical Materials, 2018, 6, 1800115.	3.6	79

#	Article	IF	CITATIONS
38	Yellow emissive carbon dots with quantum yield up to 68.6% from manganese ions. Carbon, 2018, 135, 253-259.	5.4	68
39	Hydrothermal Addition Polymerization for Ultrahighâ€Yield Carbonized Polymer Dots with Room Temperature Phosphorescence via Nanocomposite. Chemistry - A European Journal, 2018, 24, 11303-11308.	1.7	117
40	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	7.3	135
41	Transparent Wood Film Incorporating Carbon Dots as Encapsulating Material for White Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 9314-9323.	3.2	67
42	Reversible "Off–On―Fluorescence of Zn ²⁺ -Passivated Carbon Dots: Mechanism and Potential for the Detection of EDTA and Zn ²⁺ . Langmuir, 2018, 34, 7767-7775.	1.6	69
43	Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Materials, 2019, 18, 349-355.	9.5	105
44	Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11, 19214-19224.	2.8	267
45	Encapsulation of yellow phosphors into nanocrystalline metal–organic frameworks for blue-excitable white light emission. Chemical Communications, 2019, 55, 10669-10672.	2.2	32
46	The design of room-temperature-phosphorescent carbon dots and their application as a security ink. Journal of Materials Chemistry C, 2019, 7, 10605-10612.	2.7	88
47	Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines. Nanoscale, 2019, 11, 16036-16042.	2.8	60
48	A simple method for the preparation of multi-color carbon quantum dots by using reversible regulatory color transformation. Mikrochimica Acta, 2019, 186, 612.	2.5	10
49	Nâ€doped Câ€dot embedded fluorescent and thermoâ€responsive p(NIPAAm) microgel composites. Polymer Composites, 2019, 40, 3895-3903.	2.3	3
50	Carbonized Polymer Dots: A Brand New Perspective to Recognize Luminescent Carbon-Based Nanomaterials. Journal of Physical Chemistry Letters, 2019, 10, 5182-5188.	2.1	197
51	Tailoring the Photoluminescence Excitation Dependence of the Carbon Dots via an Alkali Treatment. Journal of Physical Chemistry Letters, 2019, 10, 4596-4602.	2.1	26
52	Solvent-controlled synthesis of multicolor photoluminescent carbon dots for bioimaging. RSC Advances, 2019, 9, 24057-24065.	1.7	24
53	Carbon nanotubes, graphene, porous carbon, and hybrid carbon-based materials: synthesis, properties, and functionalization for efficient energy storage. , 2019, , 1-24.		7
54	Synthesis of poly(ionic liquid)s brush-grafted carbon dots for high-performance lubricant additives of polyethylene glycol. Carbon, 2019, 154, 301-312.	5.4	63
55	Controllable Fabrication, Photoluminescence Mechanism, and Novel Application of Green–Yellow–Orange Fluorescent Carbon-Based Nanodots. ACS Biomaterials Science and Engineering, 2019, 5, 5060-5071.	2.6	8

#	Article	IF	CITATIONS
56	Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Science Bulletin, 2019, 64, 1285-1292.	4.3	240
57	Sustainable Synthesis of Bright Green Fluorescent Nitrogenâ€Doped Carbon Quantum Dots from Alkali Lignin. ChemSusChem, 2019, 12, 4202-4210.	3.6	92
58	Efficient Red/Nearâ€Infraredâ€Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence. Advanced Science, 2019, 6, 1900766.	5.6	121
59	One-step microwave-assisted preparation of oxygen-rich multifunctional carbon quantum dots and their application for Cu2+-curcumin detection. Talanta, 2019, 205, 120117.	2.9	47
60	Solvent-controlled and solvent-dependent strategies for the synthesis of multicolor carbon dots for pH sensing and cell imaging. Journal of Materials Chemistry C, 2019, 7, 9709-9718.	2.7	71
61	Wash-induced multicolor tuning of carbon nano-dot/micro-belt hybrids with full recyclability and stable color convertibility. Nanoscale, 2019, 11, 14592-14597.	2.8	3
62	Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of Chemical Research, 2019, 52, 2070-2079.	7.6	172
63	Polyacrylonitrile-Based Nitrogen-Doped Carbon Materials with Different Micro-morphology Prepared by Electrostatic Field for Supercapacitors. Journal of Electronic Materials, 2019, 48, 5264-5272.	1.0	6
64	Synthesis of dual-emission fluorescent carbon quantum dots and their ratiometric fluorescence detection for arginine in 100% water solution. New Journal of Chemistry, 2019, 43, 13234-13239.	1.4	19
65	The fluorescence mechanismÂof carbon dots, and methods for tuning their emission color: a review. Mikrochimica Acta, 2019, 186, 583.	2.5	278
66	The structure-activity relationship of hydrophilic carbon dots regulated by the nature of precursor ionic liquids. Journal of Colloid and Interface Science, 2019, 554, 722-730.	5.0	13
67	White Emissive Carbon Dots Actuated by the H-/J-Aggregates and Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2019, 10, 3849-3857.	2.1	53
68	Ultrasensitive fluorometric determination of iron(<scp>iii</scp>) and inositol hexaphosphate in cancerous and bacterial cells by using carbon dots with bright yellow fluorescence. Analyst, The, 2019, 144, 5010-5021.	1.7	27
69	In Situ Synthesis of Amino Acid Functionalized Carbon Dots with Tunable Properties and Their Biological Applications. ACS Applied Bio Materials, 2019, 2, 3393-3403.	2.3	82
70	Deep-Ultraviolet Emissive Carbon Nanodots. Nano Letters, 2019, 19, 5553-5561.	4.5	56
71	Ultrasensitive Fluorometric Angling Determination of <i>Staphylococcus aureus</i> in Vitro and Fluorescence Imaging in Vivo Using Carbon Dots with Full-Color Emission. Analytical Chemistry, 2019, 91, 14681-14690.	3.2	60
72	Orangeâ€Emissive Carbon Quantum Dots: Toward Application in Wound pH Monitoring Based on Colorimetric and Fluorescent Changing. Small, 2019, 15, e1902823.	5.2	142
73	Self-Quenching Origin of Carbon Dots and the Guideline for Their Solid-State Luminescence. Journal of Physical Chemistry C, 2019, 123, 27124-27131.	1.5	36

#	Article	IF	CITATIONS
74	Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. Journal of Molecular Liquids, 2019, 296, 111817.	2.3	161
75	High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Science Bulletin, 2019, 64, 1788-1794.	4.3	147
76	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	5.6	760
77	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie, 2019, 131, 18614-18619.	1.6	23
78	Fluorescence Solvatochromism of Carbon Dot Dispersions Prepared from Phenylenediamine and Optimization of Red Emission. Langmuir, 2019, 35, 15257-15266.	1.6	61
79	Sonochemical Synthesis of Carbon Dots/Lanthanoid MOFs Hybrids for White Light-Emitting Diodes with High Color Rendering. ACS Applied Materials & amp; Interfaces, 2019, 11, 44421-44429.	4.0	64
80	Synthesis of Multicolor Carbon Dots Based on Solvent Control and Its Application in the Detection of Crystal Violet. Nanomaterials, 2019, 9, 1556.	1.9	32
81	Carbon Dots Exhibiting Concentration-Dependent Full-Visible-Spectrum Emission for Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2019, 11, 46054-46061.	4.0	61
82	Ultrasonic-assisted melt blending for polyvinyl alcohol/carbon dots luminescent flexible films. AIP Conference Proceedings, 2019, , .	0.3	2
83	Cetyltrimethyl ammonium mediated enhancement of the red emission of carbon dots and an advanced method for fluorometric determination of iron(III). Mikrochimica Acta, 2019, 186, 791.	2.5	17
84	Quenchingâ€Resistant Polymer Carbon Dot Preserving Emission Color Consistency in Solidâ€State. Advanced Optical Materials, 2019, 7, 1900932.	3.6	41
85	Carbon Dots in a Matrix: Energyâ€Transferâ€Enhanced Roomâ€Temperature Red Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18443-18448.	7.2	125
86	Preparation and Characterization of Bacterial Cellulose-Carbon Dot Hybrid Nanopaper for Potential Sensing Applications. Applied Sciences (Switzerland), 2019, 9, 107.	1.3	7
87	Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of Nanobiotechnology, 2019, 17, 92.	4.2	324
88	pH-Responsive Mn-Doped Carbon Dots for White-Light-Emitting Diodes, Fingerprinting, and Bioimaging. ACS Applied Nano Materials, 2019, 2, 5900-5909.	2.4	51
89	Fluorescent Nano-Biomass Dots: Ultrasonic-Assisted Extraction and Their Application as Nanoprobe for Fe3+ detection. Nanoscale Research Letters, 2019, 14, 130.	3.1	40
90	Efficient perovskite solar cells enabled by ion-modulated grain boundary passivation with a fill factor exceeding 84%. Journal of Materials Chemistry A, 2019, 7, 22359-22365.	5.2	33
91	Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments. Chemistry of Materials, 2019, 31, 7979-7986.	3.2	112

#	Article	IF	CITATIONS
92	Preparation, functionalization and characterization of engineered carbon nanodots. Nature Protocols, 2019, 14, 2931-2953.	5.5	96
93	White-light emission of single carbon dots prepared by hydrothermal carbonization of poly(diallyldimethylammonium chloride): Applications to fabrication of white-light-emitting films. Journal of Colloid and Interface Science, 2019, 556, 120-127.	5.0	29
94	Carbon dots functionalized papers for high-throughput sensing of 4-chloroethcathinone and its analogues in crime sites. Royal Society Open Science, 2019, 6, 191017.	1.1	25
95	Quench-resistant and stable nanocarbon dot/sheet emitters with tunable solid-state fluorescence <i>via</i> aggregation-induced color switching. Nanoscale, 2019, 11, 2131-2137.	2.8	18
96	Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Research, 2019, 12, 815-821.	5.8	196
97	Nitrogen-doped carbon dots derived from electrospun carbon nanofibers for Cu(ii) ion sensing. New Journal of Chemistry, 2019, 43, 1812-1817.	1.4	26
98	Red Room-Temperature Phosphorescence of CDs@Zeolite Composites Triggered by Heteroatoms in Zeolite Frameworks. ACS Central Science, 2019, 5, 349-356.	5.3	128
99	Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2212-2218.	2.7	69
100	Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Advances, 2019, 1, 1413-1420.	2.2	54
101	Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale, 2019, 11, 2056-2064.	2.8	94
102	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
103	Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and ï€-Electron System. Journal of Physical Chemistry Letters, 2019, 10, 3621-3629.	2.1	61
104	Solid-State Fluorescent Carbon Dots with Aggregation-Induced Yellow Emission for White Light-Emitting Diodes with High Luminous Efficiencies. ACS Applied Materials & Interfaces, 2019, 11, 24395-24403.	4.0	162
105	Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes. Dyes and Pigments, 2019, 170, 107623.	2.0	47
106	Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon dots. Nanoscale Horizons, 2019, 4, 1227-1231.	4.1	85
107	Hyperbranched Fractal Nanocarbons for Bright Photoluminescence in Solid State. Advanced Optical Materials, 2019, 7, 1900659.	3.6	11
108	Retrosynthesis of Tunable Fluorescent Carbon Dots for Precise Longâ€Term Mitochondrial Tracking. Small, 2019, 15, e1901517.	5.2	103
109	Polymer-Assisted Self-Assembly of Multicolor Carbon Dots as Solid-State Phosphors for Fabrication of Warm, High-Quality, and Temperature-Responsive White-Light-Emitting Devices. ACS Applied Materials & Marerials & Materials & Solid - Soli	4.0	51

#	Article	IF	CITATIONS
110	Simultaneous and Reversible Triggering of the Phase Transfer and Luminescence Change of Amidine-Modified Carbon Dots by CO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 22851-22857.	4.0	7
111	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	5.2	169
112	Red carbon dots: Optical property regulations and applications. Materials Today, 2019, 30, 52-79.	8.3	221
113	Hotâ€Tailoring of Carbon Nitride Dots with Redshifted Photoluminescence for Visual Double Text Encryption and Bioimaging. Chemistry - A European Journal, 2019, 25, 10188-10196.	1.7	31
114	Efficient room temperature phosphorescence carbon dots: Information encryption and dual-channel pH sensing. Carbon, 2019, 152, 609-615.	5.4	93
115	Multifunctional sensing applications of biocompatible N-doped carbon dots as pH and Fe3+ sensors. Microchemical Journal, 2019, 149, 103981.	2.3	46
116	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	2.1	50
117	Refractive index dependent optical property of carbon dots integrated luminescent solar concentrators. Journal of Luminescence, 2019, 211, 150-156.	1.5	36
118	One-pot synthesis of aqueous soluble and organic soluble carbon dots and their multi-functional applications. Talanta, 2019, 202, 375-383.	2.9	18
119	Luminescence modulation of carbon dots assemblies. Journal of Materials Chemistry C, 2019, 7, 6337-6343.	2.7	8
120	Visual multiple color emission of solid-state carbon dots. Journal of Materials Chemistry C, 2019, 7, 7806-7811.	2.7	15
121	A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red: synthesis and applications. Journal of Materials Chemistry B, 2019, 7, 3840-3845.	2.9	22
122	Multi-color fluorescent carbon dots with single wavelength excitation for white light-emitting diodes. Journal of Alloys and Compounds, 2019, 793, 613-619.	2.8	51
123	Branched polyelectrolyte grafted carbon dots as the high-performance friction-reducing and antiwear additives of polyethylene glycol. Carbon, 2019, 149, 594-603.	5.4	64
124	The One-Step Preparation of Green-Emissioned Carbon Dots through Hydrothermal Route and Its Application. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	6
125	Electroluminescent Warm White Lightâ€Emitting Diodes Based on Passivation Enabled Bright Red Bandgap Emission Carbon Quantum Dots. Advanced Science, 2019, 6, 1900397.	5.6	174
126	Oneâ€Step Synthesis of Silicaâ€Coated Carbon Dots with Controllable Solidâ€State Fluorescence for White Lightâ€Emitting Diodes. Small, 2019, 15, e1901161.	5.2	90
127	Bright and Multicolor Chemiluminescent Carbon Nanodots for Advanced Information Encryption. Advanced Science, 2019, 6, 1802331.	5.6	120

#	Article	IF	CITATIONS
128	TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production. Rare Metals, 2019, 38, 404-412.	3.6	20
129	Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nature Communications, 2019, 10, 1789.	5.8	419
130	An easy and smart way to explore the light-emitting responses of carbon dot and doxorubicin hydrochloride assembly: white light generation and pH-dependent reversible photoswitching. Journal of Materials Chemistry C, 2019, 7, 6414-6425.	2.7	19
131	Engineered Bright Blue- and Red-Emitting Carbon Dots Facilitate Synchronous Imaging and Inhibition of Bacterial and Cancer Cell Progression via ¹ O ₂ -Mediated DNA Damage under Photoirradiation. ACS Biomaterials Science and Engineering, 2019, 5, 1987-2000.	2.6	27
132	Morphological and Interfacial Engineering of Cobalt-Based Electrocatalysts by Carbon Dots for Enhanced Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 7047-7057.	3.2	65
133	Fluorescent pH nanosensors: Design strategies and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 76-141.	5.6	85
134	Ultraviolet to blue blocking and wavelength convertible films using carbon dots for interrupting eye damage caused by general lighting. Nano Energy, 2019, 60, 87-94.	8.2	76
135	Design and fabrication of carbon dots for energy conversion and storage. Chemical Society Reviews, 2019, 48, 2315-2337.	18.7	552
136	Carbon Nanodots for Charge-Transfer Processes. Accounts of Chemical Research, 2019, 52, 955-963.	7.6	74
137	Nitrogen-doped carbon dots encapsulated in the mesoporous channels of SBA-15 with solid-state fluorescence and excellent stability. Nanoscale, 2019, 11, 7247-7255.	2.8	34
138	Multi-color carbon dots for white light-emitting diodes. RSC Advances, 2019, 9, 9700-9708.	1.7	22
139	Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu(<scp>ii</scp>)-mediated β-amyloid aggregation. Nanoscale, 2019, 11, 6297-6306.	2.8	59
140	N-CND modified NH ₂ -UiO-66 for photocatalytic CO ₂ conversion under visible light by a photo-induced electron transfer process. Chemical Communications, 2019, 55, 4845-4848.	2.2	37
141	Ag _x H _{3â^'x} PMo ₁₂ O ₄₀ /Ag nanorods/g-C ₃ N ₄ 1D/2D Z-scheme heterojunction for highly efficient visible-light photocatalysis. Dalton Transactions, 2019, 48, 6484-6491.	1.6	32
142	Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States. Nanomaterials, 2019, 9, 529.	1.9	70
143	Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. Journal of Luminescence, 2019, 211, 298-304.	1.5	82
144	3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices. Advanced Materials, 2019, 31, e1805598.	11.1	194
145	Recent Advances in Carbonâ€Based Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1806403.	11.1	222

#	Article	IF	CITATIONS
146	Remarkable Improvement in Photocatalytic Performance for Tannery Wastewater Processing via SnS ₂ Modified with Nâ€Doped Carbon Quantum Dots: Synthesis, Characterization, and 4â€Nitrophenolâ€Aided Cr(VI) Photoreduction. Small, 2019, 15, e1804515.	5.2	44
147	Spectrally Tunable Solid State Fluorescence and Roomâ€Temperature Phosphorescence of Carbon Dots Synthesized via Seeded Growth Method. Advanced Optical Materials, 2019, 7, 1801599.	3.6	122
148	<i>In situ</i> fabrication of carbon dots-based lubricants using a facile ultrasonic approach. Green Chemistry, 2019, 21, 2279-2285.	4.6	70
149	Synthesis and Applications of Redâ€Emissive Carbon Dots. Chemical Record, 2019, 19, 2083-2094.	2.9	56
150	Lignite-derived carbon quantum dot/TiO2 heterostructure nanocomposites: photoinduced charge transfer properties and enhanced visible light photocatalytic activity. New Journal of Chemistry, 2019, 43, 18355-18368.	1.4	28
151	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
152	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale, 2019, 11, 20411-20428.	2.8	96
153	Rational Design of Oxygen-Enriched Carbon Dots with Efficient Room-Temperature Phosphorescent Properties and High-Tech Security Protection Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 19918-19924.	3.2	47
154	Designing Highly Luminescent Cellulose Nanocrystals with Modulated Morphology for Multifunctional Bioimaging Materials. ACS Applied Materials & Interfaces, 2019, 11, 48192-48201.	4.0	39
155	The Influence of Functional Group on Photoluminescence Properties of Carbon Dots. ECS Journal of Solid State Science and Technology, 2019, 8, R176-R182.	0.9	5
156	Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism of their multiple color emission. Lab on A Chip, 2019, 19, 3974-3978.	3.1	33
157	Hydrochromic carbon dots as smart sensors for water sensing in organic solvents. Nanoscale Advances, 2019, 1, 4258-4267.	2.2	36
158	Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. Journal of Materials Science, 2019, 54, 1171-1183.	1.7	74
159	Ethanothermal synthesis of phenol-derived carbon dots with multiple color emission via a versatile oxidation strategy. Optical Materials, 2019, 88, 412-416.	1.7	22
160	Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier To Eliminate the Light-Soaking Effect. ACS Applied Materials & Interfaces, 2019, 11, 2243-2253.	4.0	94
161	Graphitic Nitrogen and Highâ€Crystalline Triggered Strong Photoluminescence and Roomâ€Temperature Ferromagnetism in Carbonized Polymer Dots. Advanced Science, 2019, 6, 1801192.	5.6	98
162	Fluorescent Self-Healing Carbon Dot/Polymer Gels. ACS Nano, 2019, 13, 1433-1442.	7.3	73
163	Ultra-small amorphous carbon dots: preparation, photoluminescence properties, and their application as TiO2 photosensitizers. Journal of Materials Science, 2019, 54, 5280-5293.	1.7	24

#	Article	IF	CITATIONS
164	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie, 2020, 132, 1279-1285.	1.6	18
165	Carbon Dots with Dualâ€Emissive, Robust, and Aggregationâ€Induced Roomâ€Temperature Phosphorescence Characteristics. Angewandte Chemie - International Edition, 2020, 59, 1263-1269.	7.2	198
166	Creation of Nonspherical Microparticles through Osmosisâ€Driven Arrested Coalescence of Microfluidic Emulsions. Small, 2020, 16, e1903884.	5.2	18
167	Oxygen/nitrogen-related surface states controlled carbon nanodots with tunable full-color luminescence: Mechanism and bio-imaging. Carbon, 2020, 160, 298-306.	5.4	49
168	A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solidâ€state nuclear magnetic resonance. Magnetic Resonance in Chemistry, 2020, 58, 1130-1138.	1.1	34
169	Carbon Dots Doped with N and S towards Controlling Emitting. Journal of Fluorescence, 2020, 30, 81-89.	1.3	15
170	Luminescent carbon dots with concentration-dependent emission in solution and yellow emission in solid state. Journal of Colloid and Interface Science, 2020, 565, 77-85.	5.0	57
171	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	1.7	9
172	Green Synthesis of Carbon Dots toward Anti-Counterfeiting. ACS Sustainable Chemistry and Engineering, 2020, 8, 1566-1572.	3.2	114
173	Bright tricolor ultrabroad-band emission carbon dots for white light-emitting diodes with a 96.5 high color rendering index. Journal of Materials Chemistry C, 2020, 8, 1286-1291.	2.7	45
174	Multiple color emission of solid-state hybrid material containing carbon dots and Europium(III) complexes. Journal of Luminescence, 2020, 220, 116959.	1.5	9
175	Fluorometric detection of pH and quercetin based on nitrogen and phosphorus co-doped highly luminescent graphene-analogous flakes. Analyst, The, 2020, 145, 115-121.	1.7	7
176	Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale, 2020, 12, 1589-1601.	2.8	89
177	Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4, 449-471.	3.2	101
178	Visible-Transparent Luminescent Solar Concentrators Based on Carbon Nanodots in the Siloxane Matrix with Ultrahigh Quantum Yields and Optical Transparency at High-Loading Contents. Journal of Physical Chemistry Letters, 2020, 11, 567-573.	2.1	28
179	Designing Multicolor Dualâ€Mode Lanthanideâ€Đoped NaLuF ₄ /Y ₂ O ₃ Composites for Advanced Anticounterfeiting. Advanced Optical Materials, 2020, 8, 1901209.	3.6	67
180	Pattern-based recognition of proteins by an array of fluorescent carbon-nanodot receptors. Talanta, 2020, 209, 120551.	2.9	7
181	The formation mechanism and fluorophores of carbon dots synthesized <i>via</i> a bottom-up route. Materials Chemistry Frontiers, 2020, 4, 400-420.	3.2	166

#	Article	IF	CITATIONS
182	Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Research, 2020, 13, 52-60.	5.8	126
183	Self-Illuminating Photodynamic Therapy with Enhanced Therapeutic Effect by Optimization of the Chemiluminescence Resonance Energy Transfer Step to the Photosensitizer. Bioconjugate Chemistry, 2020, 31, 595-604.	1.8	26
184	Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells. Journal of the American Chemical Society, 2020, 142, 512-519.	6.6	102
185	One step synthesis of N-doped carbon dots/hydroxyapatite:Eu,Gd composite with dual-emissive and solid-state photoluminescence. Applied Surface Science, 2020, 508, 144862.	3.1	12
186	Polarity-Sensitive Polymer Carbon Dots Prepared at Room-Temperature for Monitoring the Cell Polarity Dynamics during Autophagy. ACS Applied Materials & Interfaces, 2020, 12, 4815-4820.	4.0	50
187	Full-color fluorescent carbon quantum dots. Science Advances, 2020, 6, .	4.7	344
189	Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink. International Journal of Biological Macromolecules, 2020, 164, 4289-4298.	3.6	45
190	Synthesis and modification of biomass derived carbon dots in ionic liquids and their application: A mini review. Green Chemical Engineering, 2020, 1, 94-108.	3.3	38
191	Indole Carbonized Polymer Dots Boost Full-Color Emission by Regulating Surface State. IScience, 2020, 23, 101546.	1.9	17
192	Orange-emissive carbon dot phosphors for warm white light-emitting diodes with high color rendering index. Optical Materials, 2020, 109, 110346.	1.7	17
193	Accurate regulation of pore distribution and atomic arrangement enabling highly efficient dual-carbon lithium ion capacitors. Journal of Materials Chemistry A, 2020, 8, 22230-22239.	5.2	7
194	Carbon nanodots revised: the thermal citric acid/urea reaction. Chemical Science, 2020, 11, 8256-8266.	3.7	81
195	Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas. ACS Applied Materials & Interfaces, 2020, 12, 36628-36638.	4.0	112
196	Acetone-derived luminescent polymer dots: a facile and low-cost synthesis leads to remarkable photophysical properties. RSC Advances, 2020, 10, 38437-38445.	1.7	7
197	Solid-state fluorescent carbon dots: quenching resistance strategies, high quantum efficiency control, multicolor tuning, and applications. Materials Advances, 2020, 1, 3122-3142.	2.6	39
198	Photomodulating Carbon Dots for Spatiotemporal Suppression of Alzheimer's β-Amyloid Aggregation. ACS Nano, 2020, 14, 16973-16983.	7.3	69
199	Exploring Solvent-Related Reactions and Corresponding Band Gap Tuning Strategies for Carbon Nanodots Based on Solvothermal Synthesis. Journal of Physical Chemistry Letters, 2020, 11, 10439-10445.	2.1	9
200	Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials. Nano Research, 2020, 13, 3012-3018.	5.8	48

#	Article	IF	CITATIONS
201	Novel carbon dots with dual excitation for imaging and silver ion detection in living cells. Dyes and Pigments, 2020, 183, 108723.	2.0	23
202	Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Applied Materials & Interfaces, 2020, 12, 38593-38601.	4.0	90
203	A ratiometric fluorescent probe for pH detection based on Ag ₂ S quantum dots–carbon dots nanohybrids. Royal Society Open Science, 2020, 7, 200482.	1.1	8
204	Facile Fabrication of Superhydrophobic and Photoluminescent TEMPO-Oxidized Cellulose-Based Paper for Anticounterfeiting Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 13176-13184.	3.2	21
205	Flexible, Transparent, and Hazy Cellulose Nanopaper with Efficient Near-Infrared Luminescence Fabricated by 2D Lanthanide (Ln = Nd, Yb, or Er) Metal–Organic-Framework-Grafted Oxidized Cellulose Nanofibrils. Inorganic Chemistry, 2020, 59, 16611-16621.	1.9	27
206	Optoelectronic and photocatalytic properties of l–Ill–VI QDs: Bridging between traditional and emerging new QDs. Journal of Semiconductors, 2020, 41, 091701.	2.0	13
207	Colloidal semiconductor nanocrystals for biological photodynamic therapy applications: Recent progress and perspectives. Progress in Natural Science: Materials International, 2020, 30, 443-455.	1.8	17
208	Carbon-based dot nanoclusters with enhanced roles of defect states in the fluorescence and singlet oxygen generation. New Journal of Chemistry, 2020, 44, 16461-16467.	1.4	7
209	Polyene-Free Photoluminescent Polymers via Hydrothermal Hydrolysis of Polyacrylonitrile in Neutral Water. ACS Macro Letters, 2020, 9, 1403-1408.	2.3	8
210	Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields. ACS Nano, 2020, 14, 14761-14768.	7.3	143
211	Imidazolium-type ionic liquid-based carbon quantum dot doped gels for information encryption. Nanoscale, 2020, 12, 20965-20972.	2.8	19
212	Multicenter-Emitting Carbon Dots: Color Tunable Fluorescence and Dynamics Monitoring Oxidative Stress In Vivo. Chemistry of Materials, 2020, 32, 8146-8157.	3.2	33
213	Luminescent Sulfur Quantum Dots: Synthesis, Properties and Potential Applications. ChemPhotoChem, 2020, 4, 5235-5244.	1.5	49
214	One-pot fabrication of dual-emission and single-emission biomass carbon dots for Cu2+ and tetracycline sensing and multicolor cellular imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 7481-7489.	1.9	36
215	The Elusive Nature of Carbon Nanodot Fluorescence: An Unconventional Perspective. Journal of Physical Chemistry C, 2020, 124, 22314-22320.	1.5	31
216	Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127.	2.1	34
217	Facile synthesis of ultrahigh fluorescence N,S-self-doped carbon nanodots and their multiple applications for H ₂ S sensing, bioimaging in live cells and zebrafish, and anti-counterfeiting. Nanoscale, 2020, 12, 20482-20490.	2.8	24
218	Progress Report on Property, Preparation, and Application of Bi ₂ O ₂ Se. Advanced Functional Materials, 2020, 30, 2004480.	7.8	72

#	Article	IF	CITATIONS
219	Smartphone-Assisted Robust Sensing Platform for On-Site Quantitation of 2,4-Dichlorophenoxyacetic Acid Using Red Emissive Carbon Dots. Analytical Chemistry, 2020, 92, 12716-12724.	3.2	58
220	Aggregation-Induced Emission Behavior of Dual-NIR-Emissive Zinc-Doped Carbon Nanosheets for Ratiometric Anthrax Biomarker Detection. ACS Applied Bio Materials, 2020, 3, 9031-9042.	2.3	9
221	Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 2020, 6, 2179-2195.	5.3	793
222	Dual-emissive carbon dots for dual-channel ratiometric fluorometric determination of pH and mercury ion and intracellular imaging. Mikrochimica Acta, 2020, 187, 307.	2.5	35
223	In Situ Chromophore Doping: A New Mechanism for the Long-Wavelength Emission of Carbon Dots. Journal of Physical Chemistry C, 2020, 124, 10638-10646.	1.5	27
224	Nonlinear Optics to Glucose Sensing: Multifunctional Nitrogen and Boron Doped Carbon Dots with Solidâ€State Fluorescence in Nanoporous Silica Films. Particle and Particle Systems Characterization, 2020, 37, 2000093.	1.2	15
225	Graphitic nanorings for super-long lifespan lithium-ion capacitors. Nano Research, 2020, 13, 2909-2916.	5.8	14
226	Preparation of shape-specific (trilateral and quadrilateral) carbon quantum dots towards multiple color emission. Nanoscale, 2020, 12, 11947-11959.	2.8	33
227	Role of alkan-1-ol solvents in the synthesis of yellow luminescent carbon quantum dots (CQDs): van der Waals force-caused aggregation and agglomeration. RSC Advances, 2020, 10, 14396-14402.	1.7	7
228	A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene. Nanoscale, 2020, 12, 11971-11978.	2.8	12
229	Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. Nanoscale, 2020, 12, 12317-12328.	2.8	23
230	Earth abundant colloidal carbon quantum dots for luminescent solar concentrators. Materials Advances, 2020, 1, 119-138.	2.6	37
231	Direct conjugation of distinct carbon dots as Lego-like building blocks for the assembly of versatile drug nanocarriers. Journal of Colloid and Interface Science, 2020, 576, 412-425.	5.0	35
232	Promoting the Growth of Mung Bean Plants through Uptake and Light Conversion of NaYF ₄ :Yb,Er@CDs Nanocomposites. ACS Sustainable Chemistry and Engineering, 2020, 8, 9751-9762.	3.2	40
233	Novel fluorescence probe based on bright emitted carbon dots for ClOâ^' detection in real water samples and living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118592.	2.0	14
234	Tunable multicolour S/N coâ€doped carbon quantum dots synthesized from waste foam and application to detection of Cr ³⁺ ions. Luminescence, 2020, 35, 1373-1383.	1.5	12
235	An excitation-dependent ratiometric dual-emission strategy for the large-scale enhancement of fluorescent tint control. Nanoscale, 2020, 12, 12773-12778.	2.8	9
236	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	1.1	180

#	Article	IF	Citations
237	Cobalt–carbon/silica nanocomposites prepared by pyrolysis of a cobalt 2,2′-bipyridine terephthalate complex for remediation of cationic dyes. RSC Advances, 2020, 10, 17660-17672.	1.7	18
238	Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass. Nanomaterials, 2020, 10, 1063.	1.9	15
239	S,N-Doped carbon dots for tetracyclines sensing with a fluorometric spectral response. Microchemical Journal, 2020, 157, 105065.	2.3	55
240	Amphiphilic Carbon Dots with Excitationâ€Independent Doubleâ€Emissions. Particle and Particle Systems Characterization, 2020, 37, 2000146.	1.2	13
241	C-Dot TiO ₂ nanorod composite for enhanced quantum efficiency under direct sunlight. RSC Advances, 2020, 10, 19490-19500.	1.7	5
242	Low-dimensional carbon-based nanomaterials for energy conversion and storage applications. , 2020, , 15-68.		2
243	Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. Small, 2020, 16, e2001295.	5.2	113
244	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 2020, 167, 322-344.	5.4	164
245	White luminescent single-crystalline chlorinated graphene quantum dots. Nanoscale Horizons, 2020, 5, 928-933.	4.1	47
246	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	3.2	208
247	Supramolecular Chiral Nanoarchitectonics. Advanced Materials, 2020, 32, e1905657.	11.1	150
248	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	11.1	271
249	Nanoassembled Peptide Biosensors for Rapid Detection of Matrilysin Cancer Biomarker. Small, 2020, 16, e1905994.	5.2	18
250	Recent advance of carbon dots in bio-related applications. JPhys Materials, 2020, 3, 022003.	1.8	36
251	Oneâ€pot synthesis of carbon dots@ZrO 2 nanoparticles with tunable solidâ€state fluorescence. Polymers for Advanced Technologies, 2020, 31, 1744-1751.	1.6	6
252	Preparation and Biomedical Applications of Multicolor Carbon Dots: Recent Advances and Future Challenges. Particle and Particle Systems Characterization, 2020, 37, 1900489.	1.2	27
253	One-step synthesis of green emission carbon dots for selective and sensitive detection of nitrite ions and cellular imaging application. RSC Advances, 2020, 10, 10067-10075.	1.7	11
254	Nearâ€Infrared Chemiluminescent Carbon Nanodots and Their Application in Reactive Oxygen Species Bioimaging. Advanced Science, 2020, 7, 1903525.	5.6	143

#	Article	IF	Citations
# 255	A Smartphone-Based Sensing System for On-Site Quantitation of Multiple Heavy Metal Ions Using Fluorescent Carbon Nanodots-Based Microarrays. ACS Sensors, 2020, 5, 870-878.	4.0	127
256	Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 5566-5575.	3.2	81
257	Stable nitrogen and sulfur co-doped carbon dots for selective folate sensing, in vivo imaging and drug delivery. Diamond and Related Materials, 2020, 105, 107791.	1.8	23
258	High-performance thermoplastic polyurethane elastomer/carbon dots bulk nanocomposites with strong luminescence. High Performance Polymers, 2020, 32, 857-867.	0.8	14
259	Blood compatible heteratom-doped carbon dots for bio-imaging of human umbilical vein endothelial cells. Chinese Chemical Letters, 2020, 31, 769-773.	4.8	35
260	A facile synthesis of CDs from quinoa for nanosensors and bio-imagining. Nano Express, 2020, 1, 020001.	1.2	4
261	Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion. Nanoscale, 2020, 12, 15823-15831.	2.8	39
262	Carbon Dots as Nano-Organocatalysts for Synthetic Applications. ACS Catalysis, 2020, 10, 8090-8105.	5.5	111
263	Biomass-Based Polymer Nanoparticles With Aggregation-Induced Fluorescence Emission for Cell Imaging and Detection of Fe3+ Ions. Frontiers in Chemistry, 2020, 8, 563.	1.8	6
264	Fabrication of Porous Carbon Nanosheets with the Engineered Graphitic Structure for Electrochemical Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 13623-13630.	1.8	12
265	Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. Journal of Colloid and Interface Science, 2020, 580, 88-98.	5.0	31
266	Design of Red Emissive Carbon Dots: Robust Performance for Analytical Applications in Pesticide Monitoring. Analytical Chemistry, 2020, 92, 3198-3205.	3.2	129
267	Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 2020, 12, 5494-5500.	2.8	68
268	Spatiotemporally Monitoring Cell Viability through Programmable Mitochondrial Membrane Potential Transformation by Using Fluorescent Carbon Dots. Advanced Biology, 2020, 4, 1900261.	3.0	10
269	Superhydrophobic paper fabricated via nanostructured titanium dioxide-functionalized wood cellulose fibers. Journal of Materials Science, 2020, 55, 7084-7094.	1.7	52
270	Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. Bioresource Technology, 2020, 305, 123043.	4.8	29
271	Carbon source self-heating: ultrafast, energy-efficient and room temperature synthesis of highly fluorescent N, S-codoped carbon dots for quantitative detection of Fe(<scp>iii</scp>) ions in biological samples. Nanoscale Advances, 2020, 2, 1483-1492.	2.2	17
272	Water-soluble carbon dots with blue, yellow and red emissions: mechanism investigation and array-based fast sensing application. Chemical Communications, 2020, 56, 4074-4077.	2.2	30

ARTICLE IF CITATIONS # Synthesis of multiple-color emissive carbon dots towards white-light emission. Nanotechnology, 273 1.3 7 2020, 31, 245001. Lipophilic Red-Emitting Oligomeric Organic Dots for Moisture Detection and Cell Imaging. ACS Applied Nano Materials, 2020, 3, 1942-1949. 274 2.4 Incorporating self-assembled silane-crosslinked carbon dots into perovskite solar cells to improve 275 5.223 efficiency and stability. Journal of Materials Chemistry A, 2020, 8, 5629-5637. Polyaromatic hydrocarbon inner-structured carbon nanodots for interfacial enhancement of carbon fibér composité. RSC Advances, 2020, 10, 411-423. Facile Preparation of Stable Solid-State Carbon Quantum Dots with Multi-Peak Emission. 277 1.9 23 Nanomaterials, 2020, 10, 303. Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. ChemSusChem, 2020, 13, 1715-1719. 278 3.6 Surface modification strategy for fluorescence solvatochromism of carbon dots prepared from 279 2.2 44 <i>p</i>-phenylenediamine. Chemical Communications, 2020, 56, 2174-2177. Twoâ \in step fabrication of ligninâ \in based flame retardant for enhancing the thermal and fire retardancy 280 2.3 38 properties of epoxy resin composites. Polymer Composites, 2020, 41, 2025-2035. A sensitive "ON–OFF†fluorescent probe based on carbon dots for Fe²⁺ detection and cell 281 1.7 45 imaging. Analyst, The, 2020, 145, 2357-2366. Rapid synthesis of B-N co-doped yellow emissive carbon quantum dots for cellular imaging. Optical 1.7 Materials, 2020, 100, 109647. Gramâ€Scale Synthesis of 41% Efficient Singleâ€Component Whiteâ€Lightâ€Emissive Carbonized Polymer Dots with Hybrid Fluorescence/Phosphorescence for White Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 283 122 5.6 1902688. Sustainable carbon dots as "turn-off―fluorescence sensor for highly sensitive Pb2+ detection. 284 3.2 Emergent Materials, 2020, 3, 51-56. Carbon Nanolights in Piezopolymers are Selfâ€Organizing Toward Color Tunable Luminous Hybrids for 285 5.2 13 Kinetic Energy Harvesting. Small, 2020, 16, e1905703. Scalable Synthesis of Green Fluorescent Carbon Dot Powders with Unprecedented Efficiency. 3.6 74 Advanced Optical Materials, 2020, 8, 1901938. Enhancing photoluminescence of carbon quantum dots doped PVA films with randomly dispersed 287 9 1.6 silica microspheres. Scientific Reports, 2020, 10, 5710. Unraveling the Fluorescence Mechanism of Carbon Dots with <i>Sub</i>-Single-Particle Resolution. ACS Nano, 2020, 14, 6127-6137. UV–VIs–NIR Fullâ€Range Responsive Carbon Dots with Large Multiphoton Absorption Cross Sections 289 5.2143 and Deepâ€Red Fluorescence at Nucleoli and In Vivo. Small, 2020, 16, e2000680. Fluorescence mechanism of xylan-derived carbon dots: Toward investigation on excitation-related 290 1.5 emission behaviors. Journal of Luminescence, 2020, 223, 117199.

#	Article	IF	CITATIONS
291	The Rapid and Large cale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie - International Edition, 2021, 60, 8585-8595.	7.2	88
292	The Rapid and Large cale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie, 2021, 133, 8668-8678.	1.6	9
293	Microfluidic synthesis of robust carbon dots-functionalized photonic crystals. Chemical Engineering Journal, 2021, 405, 126539.	6.6	13
294	Full-wood photoluminescent and photothermic materials for thermal energy storage. Chemical Engineering Journal, 2021, 403, 126406.	6.6	59
295	Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for in vitro bioimaging. Journal of Colloid and Interface Science, 2021, 581, 21-30.	5.0	23
296	Efficient one step synthesis of green carbon quantum dots catalyzed by tin oxide. Materials Today Communications, 2021, 26, 101762.	0.9	8
297	Conjugate area-controlled synthesis of multiple-color carbon dots and application in sensors and optoelectronic devices. Sensors and Actuators B: Chemical, 2021, 329, 129263.	4.0	28
298	Controllable excitation-dependent fluorescence triggered by the increasing graphitic nitrogen in carbon dots and its application in multi-analyte detection. Dyes and Pigments, 2021, 184, 108772.	2.0	5
299	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
300	Rational Design of Multi olorâ€Emissive Carbon Dots in a Single Reaction System by Hydrothermal. Advanced Science, 2021, 8, 2001453.	5.6	194
301	Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets. Applied Surface Science, 2021, 542, 148471.	3.1	19
302	Rapid microwave-assisted green synthesis of guanine-derived carbon dots for highly selective detection of Ag+ in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119208.	2.0	31
303	Facile one-pot synthesis of multifunctional protamine sulfate-derived carbon dots for antibacterial applications and fluorescence imaging of bacteria. New Journal of Chemistry, 2021, 45, 1010-1019.	1.4	18
304	The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. Environmental Research, 2021, 194, 110593.	3.7	36
305	Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 2021, 66, 839-856.	4.3	288
306	Review of long wavelength luminescent carbon-based nanomaterials: preparation, biomedical application and future challenges. Journal of Materials Science, 2021, 56, 2814-2837.	1.7	16
307	The Behavior of Carbonized Polymer Dots at the <scp>Nanoâ€Bio</scp> Interface and Their Luminescent Mechanism: A Physical Chemistry Perspective. Chinese Journal of Chemistry, 2021, 39, 265-273.	2.6	12
308	Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing. NPG Asia Materials, 2021, 13, .	3.8	23

#	Article	IF	CITATIONS
309	Semi-transparent luminescent solar concentrators based on plasmon-enhanced carbon dots. Journal of Materials Chemistry A, 2021, 9, 23345-23352.	5.2	23
310	Novel fluorescent probes based on nitrogen–sulfur co-doped carbon dots for chromium ion detection. New Journal of Chemistry, 2021, 45, 4828-4834.	1.4	10
311	Recent advances in persistent luminescence based on molecular hybrid materials. Chemical Society Reviews, 2021, 50, 5564-5589.	18.7	331
312	Lasting Tracking and Rapid Discrimination of Live Gram-Positive Bacteria by Peptidoglycan-Targeting Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2021, 13, 1277-1287.	4.0	40
313	Recent advances in room temperature phosphorescent carbon dots: preparation, mechanism, and applications. Journal of Materials Chemistry C, 2021, 9, 4425-4443.	2.7	61
314	Surface chemistry in calcium capped carbon quantum dots. Nanoscale, 2021, 13, 12149-12156.	2.8	16
315	Ultraâ€Bright and Stable Pure Blue Lightâ€Emitting Diode from O, N Coâ€Doped Carbon Dots. Laser and Photonics Reviews, 2021, 15, 2000412.	4.4	54
316	Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators. Materials Chemistry Frontiers, 2021, 5, 4746-4755.	3.2	21
317	<i>In situ</i> synthesis of holey g-C ₃ N ₄ nanosheets decorated by hydroxyapatite nanosheres as efficient visible light photocatalyst. RSC Advances, 2021, 11, 31174-31188.	1.7	9
318	Multicolor polymeric carbon dots: synthesis, separation and polyamide-supported molecular fluorescence. Chemical Science, 2021, 12, 2441-2455.	3.7	82
319	N, B-Codoping Induces High-Efficiency Solid-State Fluorescence and Dual Emission of Yellow/Orange Carbon Dots. ACS Sustainable Chemistry and Engineering, 2021, 9, 2224-2236.	3.2	76
320	Biomass carbon dots derived from <i>Wedelia trilobata</i> for the direct detection of glutathione and their imaging application in living cells. Journal of Materials Chemistry B, 2021, 9, 5670-5681.	2.9	23
321	One-step hydrothermal synthesis of nitrogen-doped carbon dots for high-sensitivity visual detection of nitrite and ascorbic acid. Analytical Methods, 2021, 13, 3685-3692.	1.3	10
322	Effect of nitrogen type on carbon dot photocatalysts for visible-light-induced atom transfer radical polymerization. Polymer Chemistry, 2021, 12, 3060-3066.	1.9	17
323	Fundamental photophysical properties of fluorescent carbon dots and their applications in metal ion sensing and bioimaging. , 2021, , 159-209.		0
324	Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Research, 2021, 14, 2231-2240.	5.8	41
325	Red, orange, yellow and green luminescence by carbon dots: hydrogen-bond-induced solvation effects. Nanoscale, 2021, 13, 6846-6855.	2.8	49
326	White-Light Emissive Materials Based on Supramolecular Approach. , 2021, , 409-443.		Ο

#	Article	IF	CITATIONS
327	Effect of heteroatoms on the optical properties and enzymatic activity of N-doped carbon dots. RSC Advances, 2021, 11, 18776-18782.	1.7	8
328	Preparation and photocatalytic activity of red light-emitting carbon dots/P25 heterojunction photocatalyst with ultra-wide absorption spectrum. Materials Research Express, 2021, 8, 025002.	0.8	7
329	Integration of Functionalized Polyelectrolytes onto Carbon Dots for Synergistically Improving the Tribological Properties of Polyethylene Glycol. ACS Applied Materials & Interfaces, 2021, 13, 8794-8807.	4.0	43
330	Formation of nitrogen-doped blue- and green-emitting fluorescent carbon dots via a one-step solid-phase pyrolysis. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	8
331	Insights into Fluorophores of Dual-Emissive Carbon Dots Derived by Naphthalenediol Solvothermal Synthesis. Journal of Physical Chemistry C, 2021, 125, 5207-5216.	1.5	18
332	Carbon Nanoparticles as Versatile Auxiliary Components of Perovskiteâ€Based Optoelectronic Devices. Advanced Functional Materials, 2021, 31, 2010768.	7.8	31
333	Applications of Carbon Dots in Optoelectronics. Nanomaterials, 2021, 11, 364.	1.9	51
334	Preparation and characterization of F-, O-, and N-containing carbon nanoparticles for pH sensing. Applied Nanoscience (Switzerland), 0, , 1.	1.6	7
335	One-step straightfoward solid synthesis of high yield white fluorescent carbon dots for white light emitting diodes. Chinese Chemical Letters, 2021, 32, 591-593.	4.8	16
336	Lifetimeâ€Engineered Carbon Nanodots for Time Division Duplexing. Advanced Science, 2021, 8, 2003433.	5.6	54
337	Clusteringâ€Induced White Light Emission from Carbonized Polymer Dots. Advanced Photonics Research, 2021, 2, 2000161.	1.7	8
338	Carbon Dots and Stability of Their Optical Properties. Particle and Particle Systems Characterization, 2021, 38, 2000271.	1.2	45
339	Green synthesis of multifunctional carbon dots for anti-cancer and anti-fungal applications. Chinese Journal of Chemical Engineering, 2021, 37, 97-104.	1.7	11
340	Luminescent Erbiumâ€Doped Silicon Thin Films for Advanced Antiâ€Counterfeit Labels. Advanced Materials, 2021, 33, e2005886.	11.1	35
341	Hydroxypropylmethyl Cellulose Modified with Carbon Dots Exhibits Light-Responsive and Reversible Optical Switching. ACS Applied Materials & Interfaces, 2021, 13, 12375-12382.	4.0	17
341 342		4.0 3.2	17 46
	Óptical Świtching. ÁCS Applied Materials & amp; Interfaces, 2021, 13, 12375-12382. Color Emission Carbon Dots with Quench-ResixAstant Solid-State Fluorescence for Light-Emitting		

#	Article	IF	CITATIONS
345	Study on luminescence mechanism of nitrogen-doped carbon quantum dots with different fluorescence properties and application in Fe3+ detection. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	7
346	Carbonâ€Dotâ€Based White‣ightâ€Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angewandte Chemie - International Edition, 2021, 60, 12585-12590.	7.2	60
347	Regulation of fluorescence emission of carbon dots via hydrogen bonding assembly. Inorganic Chemistry Communication, 2021, 126, 108500.	1.8	4
348	Blue and green double band luminescent carbon quantum dots: Synthesis, origin of photoluminescence, and application in white light-emitting devices. Applied Physics Letters, 2021, 118, .	1.5	35
349	Nanoplatform based on GSH-responsive mesoporous silica nanoparticles for cancer therapy and mitochondrial targeted imaging. Mikrochimica Acta, 2021, 188, 154.	2.5	28
350	Renalâ€Clearable Nickelâ€Doped Carbon Dots with Boosted Photothermal Conversion Efficiency for Multimodal Imagingâ€Guided Cancer Therapy in the Second Nearâ€Infrared Biowindow. Advanced Functional Materials, 2021, 31, 2100549.	7.8	107
351	Carbonâ€Dotâ€Based Whiteâ€Lightâ€Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angewandte Chemie, 2021, 133, 12693-12698.	1.6	8
352	Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics, 2021, 10, 623.	1.5	48
353	A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea. Scientific Reports, 2021, 11, 10554.	1.6	47
354	Synthesis and size-exclusion fractionation of luminescent carbon nanostructures. , 2021, , .		0
355	Single, dual and multi-emission carbon dots based optosensing for food safety. Trends in Food Science and Technology, 2021, 111, 388-404.	7.8	43
356	Highly efficient optoelectronic devices based on colloidal heterostructured quantum dots. APL Materials, 2021, 9, 050701.	2.2	2
357	Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Current Pharmaceutical Design, 2021, 27, .	0.9	4
358	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	5.2	105
359	Orange-Emissive Sulfur-Doped Organosilica Nanodots for Metal Ion/Glutathione Detection and Normal/Cancer Cell Identification. ACS Applied Nano Materials, 2021, 4, 6083-6092.	2.4	16
360	Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Research, 2022, 15, 942-949.	5.8	91
361	Fe-Coordinated Carbon Nanozyme Dots as Peroxidase-Like Nanozymes and Magnetic Resonance Imaging Contrast Agents. ACS Applied Bio Materials, 2021, 4, 5520-5528.	2.3	21
362	Fluorescent carbon dots in solid-state: From nanostructures to functional devices. Progress in Solid State Chemistry, 2021, 62, 100295.	3.9	67

#	Article	IF	CITATIONS
363	Multicolor Carbon Dots Prepared by Singleâ€Factor Control of Graphitization and Surface Oxidation for Highâ€Quality White Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100688.	3.6	79
364	Facile Synthesis of Water-Stable Multicolor Carbonized Polymer Dots from a Single Unconjugated Glucose for Engineering White Light-Emitting Diodes with a High Color Rendering Index. ACS Applied Materials & Interfaces, 2021, 13, 30098-30105.	4.0	53
365	Excellent color rendering index single system white light emitting carbon dots for next generation lighting devices. Scientific Reports, 2021, 11, 11594.	1.6	24
366	Composite Nanospheres Comprising Luminescent Carbon Dots Incorporated into a Polyhedral Oligomeric Silsesquioxane Matrix. Journal of Physical Chemistry C, 2021, 125, 15094-15102.	1.5	4
367	Temperature triggered high-performance carbon dots with robust solvatochromic effect and self-quenching-resistant deep red solid state fluorescence for specific lipid droplet imaging. Chemical Engineering Journal, 2021, 415, 128984.	6.6	57
368	Nitrogen-doped carbon quantum dots fabricated from cellulolytic enzyme lignin and its application to the determination of cytochrome c and trypsin. Analytical and Bioanalytical Chemistry, 2021, 413, 5239-5249.	1.9	22
369	Two-dimensional closely-packed gold nanoislands: A platform for optical data storage and carbon dot generation. Applied Surface Science, 2021, 555, 149586.	3.1	5
370	Reversible and color-variable afterglow luminescence of carbon dots triggered by water for multi-level encryption and decryption. Chemical Engineering Journal, 2021, 415, 128999.	6.6	48
371	Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light: Science and Applications, 2021, 10, 142.	7.7	104
372	Efficient Full-Color Boron Nitride Quantum Dots for Thermostable Flexible Displays. ACS Nano, 2021, 15, 14610-14617.	7.3	32
373	An Ultrastable Virus‣ike Particle with a Carbon Dot Core and Expanded Sequence Plasticity. Small, 2021, 17, 2101717.	5.2	2
374	Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Research, 2022, 15, 2545-2551.	5.8	26
375	Carbon Dot/Cellulose-Based Transparent Films for Efficient UV and High-Energy Blue Light Screening. ACS Sustainable Chemistry and Engineering, 2021, 9, 9879-9890.	3.2	28
376	Ratiometric dual-emission of Rhodamine-B grafted carbon dots for full-range solvent components detection. Analytica Chimica Acta, 2021, 1174, 338743.	2.6	18
377	Deciphering the Relaxation Mechanism of Red-Emitting Carbon Dots Using Ultrafast Spectroscopy and Global Target Analysis. Journal of Physical Chemistry Letters, 2021, 12, 8080-8087.	2.1	26
378	Chlorine Modulation Fluorescent Performance of Seaweed-Derived Graphene Quantum Dots for Long-Wavelength Excitation Cell-Imaging Application. Molecules, 2021, 26, 4994.	1.7	9
379	Antibacterial Activity and Synergetic Mechanism of Carbon Dots against Gram-Positive and -Negative Bacteria. ACS Applied Bio Materials, 2021, 4, 6937-6945.	2.3	51
380	Logic Gate Design Using Multicolor Fluorescent Carbon Nanodots for Smartphone-Based Information Extraction. ACS Applied Nano Materials, 2021, 4, 8184-8191.	2.4	11

#	Article	IF	CITATIONS
381	Carbon dots-based catalyst for various organic transformations. Journal of Materials Science, 2021, 56, 17369-17410.	1.7	18
382	Red dual-emissive carbon dots for ratiometric sensing of veterinary drugs. Journal of Luminescence, 2021, 236, 118092.	1.5	19
383	Solid-State Carbon Dots-Based White Light-Emitting Diodes With Ultrahigh Color Rendering Index and Good Thermal Stability. IEEE Transactions on Electron Devices, 2021, 68, 3901-3906.	1.6	4
384	Encapsulation of Carbon Dots in Silica Matrices Offers Narrow Emission in the Solid-State of Printed Fluorescent Inks. ACS Applied Nano Materials, 2021, 4, 9497-9507.	2.4	6
385	Modulating Triplet Excited-State Energy in Phosphorescent Carbon Dots for Information Encryption and Anti-Counterfeiting. ACS Applied Materials & amp; Interfaces, 2021, 13, 43241-43246.	4.0	33
386	Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging. ACS Omega, 2021, 6, 26499-26508.	1.6	26
387	Multi-color carbon dots from cis-butenedioic acid and urea and highly luminescent carbon dots@Ca(OH)2 hybrid phosphors with excellent thermal stability for white light-emitting diodes. Journal of Luminescence, 2021, 237, 118202.	1.5	7
388	One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Mikrochimica Acta, 2021, 188, 330.	2.5	15
389	Carbon Dot/Polymer Composites with Various Precursors and Their Sensing Applications: A Review. Coatings, 2021, 11, 1100.	1.2	22
390	Ultrahigh Efficient FRET Ratiometric Fluorescence Biosensor for Visual Detection of Alkaline Phosphatase Activity and Its Inhibitor. ACS Sustainable Chemistry and Engineering, 2021, 9, 12922-12929.	3.2	29
391	Sustainable Silkâ€Đerived Multimode Carbon Dots. Small, 2021, 17, e2103623.	5.2	21
392	Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: A review. FlatChem, 2021, 29, 100271.	2.8	24
393	Biocompatible sulfur nitrogen co-doped carbon quantum dots for highly sensitive and selective detection of dopamine. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111874.	2.5	39
394	Carbon Quantum Dot-Incorporated Chitosan Hydrogel for Selective Sensing of Hg ²⁺ Ions: Synthesis, Characterization, and Density Functional Theory Calculation. ACS Omega, 2021, 6, 23504-23514.	1.6	26
395	Atomically Dispersed Catalytic Sites: A New Frontier for Cocatalyst/Photocatalyst Composites toward Sustainable Fuel and Chemical Production. Catalysts, 2021, 11, 1168.	1.6	7
396	A label-free fluorescent sensor based on yellow-green emissive carbon quantum dots for ultrasensitive detection of congo red and cellular imaging. Microchemical Journal, 2021, 168, 106420.	2.3	12
397	A Hybrid Materials Approach for Fabricating Efficient WLEDs Based on Diâ€Ureasils Doped with Carbon Dots and a Europium Complex. Advanced Materials Technologies, 2022, 7, 2100727.	3.0	17
398	Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout. Nano-Micro Letters, 2021, 13, 198.	14.4	53

#	Article	IF	CITATIONS
399	Full color fluorescent carbon quantum dots synthesized from triammonium citrate for cell imaging and white LEDs. Dyes and Pigments, 2021, 193, 109478.	2.0	31
400	Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature. International Journal of Biological Macromolecules, 2021, 186, 314-327.	3.6	45
401	Multifunctional room-temperature phosphorescent carbon dots for relative humidity determination and information encryption. Talanta, 2021, 233, 122541.	2.9	21
402	Tribological properties of graphene-modified with ionic liquids and carbon quantum dots/ bismaleimide composites. Carbon, 2021, 183, 504-514.	5.4	23
403	Competition of the roles of π-conjugated domain between emission center and quenching origin in the photoluminescence of carbon dots depending on the interparticle separation. Carbon, 2021, 183, 560-570.	5.4	28
404	Iron doped carbon dots based nanohybrids as a tetramodal imaging agent for gene delivery promotion and photothermal-chemodynamic cancer synergistic theranostics. Materials and Design, 2021, 208, 109878.	3.3	34
405	A thin clothe coated architecture of ZnIn2S4/H2Ta2O6 for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 38701-38711.	3.8	14
406	Highly stable yellow-emitting fluorescent film based on graphene quantum dots for white laser-emitting devices. Journal of Luminescence, 2021, 238, 118275.	1.5	4
407	Achieving room temperature phosphorescence in aqueous phase through rigidifying the triplet state and information encryption. Applied Surface Science, 2021, 566, 150726.	3.1	18
408	Facile preparation of highly thermosensitive N-doped carbon dots and their detection of temperature and 6-mercaotopurine. Microchemical Journal, 2021, 171, 106835.	2.3	9
409	Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. Journal of Hazardous Materials, 2022, 422, 126881.	6.5	56
410	A confinement approach to fabricate hybrid PBAs-derived FeCo@NC yolk-shell nanoreactors for bisphenol A degradation. Chemical Engineering Journal, 2022, 428, 131080.	6.6	8
411	Temperature-dependence on the optical properties of chitosan carbon dots in the solid state. RSC Advances, 2021, 11, 2767-2773.	1.7	18
412	Concentration-Modulated Carbon Dots Photoluminescence and the Modulation Mechanism. Modern Physics, 2021, 11, 21-27.	0.1	0
413	Stimuli responsive multicolour fluorescence emission in carbon nanodots and application in metal free hydrogen evolution from water. Nanoscale Advances, 2021, 3, 611-617.	2.2	9
414	Ultralong-lived room temperature phosphorescence from N and P codoped self-protective carbonized polymer dots for confidential information encryption and decryption. Journal of Materials Chemistry C, 2021, 9, 4847-4853.	2.7	44
415	Hemicellulose-triggered high-yield synthesis of carbon dots from biomass. New Journal of Chemistry, 2021, 45, 5484-5490.	1.4	13
416	The influence of thermal treatment conditions (solvothermal <i>versus</i> microwave) and solvent polarity on the morphology and emission of phloroglucinol-based nitrogen-doped carbon dots. Nanoscale, 2021, 13, 3070-3078.	2.8	22

#	Article	IF	CITATIONS
417	Red and green-emitting biocompatible carbon quantum dots for efficient tandem luminescent solar concentrators. Journal of Materials Chemistry C, 2021, 9, 12255-12262.	2.7	27
418	Aggregation-induced room temperature phosphorescent carbonized polymer dots with wide-range tunable lifetimes for optical multiplexing. Journal of Materials Chemistry C, 2021, 9, 6781-6788.	2.7	27
419	Facile synthesis of carbon dots using tender coconut water for the fluorescence detection of heavy metal ions. Materials Today: Proceedings, 2021, 43, 3821-3825.	0.9	14
420	Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic Fluorescence for Wide-Color-Gamut Displays. ACS Omega, 2021, 6, 1741-1750.	1.6	23
421	Excitation dependence and independence of photoluminescence in carbon dots and graphene quantum dots: insights into the mechanism of emission. Nanoscale, 2021, 13, 16662-16671.	2.8	36
422	Stimuliâ€Responsive Naphthalene Diimide as Invisible Ink: A Rewritable Fluorescent Platform for Antiâ€Counterfeiting. Chemistry - an Asian Journal, 2020, 15, 1074-1080.	1.7	20
423	Surface state-regulated redox carbon nanodots for plasmonic morphology-dependent ratiometric sensing. Applied Surface Science, 2020, 526, 146715.	3.1	7
424	Great enhancement of red emitting carbon dots with B/Al/Ga doping for dual mode anti-counterfeiting. Chemical Engineering Journal, 2020, 397, 125487.	6.6	41
425	Homogeneous fluorescent immunoassay for the simultaneous detection of chloramphenicol and amantadine via the duplex FRET between carbon dots and WS2 nanosheets. Food Chemistry, 2020, 327, 127107.	4.2	37
426	Efficient catalytic removal of COS and H2S over graphitized 2D micro-meso-macroporous carbons endowed with ample nitrogen sites synthesized via mechanochemical carbonization. Green Energy and Environment, 2022, 7, 983-995.	4.7	25
427	Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano, 2020, 14, 6470-6497.	7.3	186
428	Morphology Control of Luminescent Carbon Nanomaterials: From Dots to Rolls and Belts. ACS Nano, 2021, 15, 1579-1586.	7.3	35
429	A facile microwave-assisted synthesis of highly crystalline red carbon dots by adjusting the reaction solvent for white light-emitting diodes. Nanotechnology, 2020, 31, 215704.	1.3	17
430	Solution plasma: new synthesis method of N-doped carbon dots as ultra-sensitive fluorescence detector for 2,4,6-trinitrophenol. Nano Express, 2020, 1, 020043.	1.2	24
431	Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure Relationship. Journal of Carbon Research, 2021, 7, 2.	1.4	38
432	The analytical and biomedical applications of carbon dots and their future theranostic potential: A review. Journal of Food and Drug Analysis, 2020, 28, 678-696.	0.9	25
433	Synthesis, Properties and Applications of Luminescent Carbon Dots. Indian Institute of Metals Series, 2021, , 421-460.	0.2	2
434	Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Advances in Colloid and Interface Science, 2021, 298, 102548.	7.0	11

#	Article	IF	CITATIONS
435	Construction of Carbon Dots with Colorâ€Tunable Aggregationâ€Induced Emission by Nitrogenâ€Induced Intramolecular Charge Transfer. Advanced Materials, 2021, 33, e2104872.	11.1	112
436	Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Research, 2022, 15, 3548-3555.	5.8	68
437	Arrested Coalescence of Ionic Liquid Droplets: A Facile Strategy for Spatially Organized Multicompartment Assemblies. Small, 2021, 17, e2104385.	5.2	5
438	Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution. ACS Nano, 2021, 15, 16242-16254.	7.3	94
439	Quantum dots for electrochemiluminescence bioanalysis - A review. Analytica Chimica Acta, 2022, 1209, 339140.	2.6	37
440	Dendritic Silica Nanospheres Loaded with Redâ€Emissive Enhanced Carbon Dots for Zika Virus Immunoassay. ChemistrySelect, 2021, 6, 9787-9793.	0.7	4
441	Green synthesis of Spirulina-based carbon dots for stimulating agricultural plant growth. Sustainable Materials and Technologies, 2021, 30, e00347.	1.7	19
442	Red emission carbon dots for microLED application. , 2019, , .		Ο
443	Light-emitting properties of BN synthesized by different techniques. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2020, 23, 193-200.	0.3	1
444	Generating longâ€wavelength absorption bands with enhanced deep red fluorescence and photothermal performance in fused carbon dots aggregates. Aggregate, 2021, 2, e139.	5.2	28
445	Effectively enhanced photoluminescence of CePO4:Tb3+ nanorods combined with carbon dots. Journal of Rare Earths, 2022, 40, 1007-1013.	2.5	10
446	Preparation of ethanediamine-doped carbon quantum dots and their applications in white LEDs and fluorescent TLC plate. Carbon Letters, 2022, 32, 581-589.	3.3	19
447	Integration of Nitrogen-Doped Graphene Oxide Dots with Au Nanoparticles for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 11513-11525.	2.4	10
448	Aptamer Probes Labeled with Lanthanideâ€Đoped Carbon Nanodots Permit Dualâ€Modal Fluorescence and Mass Cytometric Imaging. Advanced Science, 2021, 8, e2102812.	5.6	15
449	Carbon dot with aggregation induced emission and pH triggered disintegration. Colloids and Interface Science Communications, 2021, 45, 100537.	2.0	14
450	Carbon Dots as a Sustainable New Platform for Organic Light Emitting Diode. Coatings, 2021, 11, 5.	1.2	6
451	Synthesis optimization of rich-urea carbon-dots and application in the determination of H ₂ S in rich- and barren-liquids of desulphurizing solutions. Analyst, The, 2021, 146, 7635-7644.	1.7	6
452	The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon, 2022, 186, 91-127.	5.4	163

#	Article	IF	CITATIONS
453	Photosynthetic-bacteria-derived red emissive carbon dots with low toxicity for lysosomal imaging. Materials Letters, 2022, 307, 131093.	1.3	8
454	Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control, 2022, 133, 108591.	2.8	40
455	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
456	Zeolites with quantum dots as functional materials: current trends and perspectives for optical devices. , 2021, , .		1
457	Multilayer for antireflection coating applications using metal nanoparticles to provide ultraviolet blocking. Journal of Nanophotonics, 2020, 14, .	0.4	0
458	Noble metal enhanced photocatalytic activity of heterostructured TiO ₂ spheres with tunable interiors and shells. Functional Materials Letters, 2020, 13, 2050039.	0.7	2
459	On-off Fluorescent Switching of Excitation-independent Near-ultraviolet Emission Carbon Nanobelts for Ultrasensitive Detection Nimesulide in Pharmaceutical Tablet. Analytical Sciences, 2020, 36, 1379-1383.	0.8	2
460	Recent progress in the development of carbon quantum dots for cell imaging. Oxford Open Materials Science, 2020, 1, .	0.5	1
461	In Situ Femtosecond-Laser-Induced Fluorophores on Surface of Polyvinyl Alcohol for H2O/Co2+ Sensing and Data Security. Sensors, 2021, 21, 7755.	2.1	0
462	Highly Enhanced Enzymatic Activity of Mn-Induced Carbon Dots and Their Application as Colorimetric Sensor Probes. Nanomaterials, 2021, 11, 3046.	1.9	9
463	A confined carbon dot-based self-calibrated fluorescence probe for visible and highly sensitive moisture readouts. Journal Physics D: Applied Physics, 2022, 55, 154001.	1.3	2
464	Preparation and Fluorescent Wavelength Control of Multi-Color Nitrogen-Doped Carbon Nano-Dots. Nanomaterials, 2021, 11, 3190.	1.9	3
465	Tailored Fabrication of Carbon Dot Composites with Fullâ€Color Ultralong Roomâ€Temperature Phosphorescence for Multidimensional Encryption. Advanced Science, 2022, 9, e2103833.	5.6	100
466	Scalable production, cell toxicity assessment, and plant growth promotion activities of carbon quantum dots derived from low-quality coal feedstock. Chemical Engineering Journal, 2022, 433, 133633.	6.6	23
467	Dual modulation steering electron reducibility and transfer of bismuth molybdate nanoparticle to boost carbon dioxide photoreduction to carbon monoxide. Journal of Colloid and Interface Science, 2022, 610, 518-526.	5.0	5
468	Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. ACS Applied Materials & Interfaces, 2021, 13, 54677-54689.	4.0	19
469	One-pot hydrothermal synthesis of carbon dots-immobilized hydrozincite for ZnO-based nanocomposite lighting applications. Journal of Asian Ceramic Societies, 2021, 9, 1473-1480.	1.0	6
470	Synthesis and Luminescent Properties of Carbon Nanodots Dispersed in Nanostructured Silicas. Nanomaterials, 2021, 11, 3267.	1.9	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
471	Carbon dots prepared from citric acid and urea by microwave-assisted irradiation as a t fluorescent probe for allantoin determination. New Journal of Chemistry, 2021, 45, 22		1.4	8
472	Rapid Synthesis of Rare-Earth-Element-Free Yellow-Emissive Carbon Quantum Ring-Bas Large Scale for White Light-Emitting Diodes. ACS Sustainable Chemistry and Engineeri 1195-1204.		3.2	8
473	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon sustainable future. Materials Advances, 2022, 3, 1359-1400.	dioxide for a	2.6	17
474	Carbon dots: a novel platform for biomedical applications. Nanoscale Advances, 2022,	4, 353-376.	2.2	46
475	Highly efficient tandem luminescent solar concentrators based on eco-friendly copper hybrid nanoparticles and carbon dots. Energy and Environmental Science, 2022, 15, 79		15.6	68
476	Harnessing versatile dynamic carbon precursors for multi-color emissive carbon dots. J Materials Chemistry C, 2022, 10, 1932-1967.	burnal of	2.7	21
477	Study on construction of red carbon nanodots from O-phenylenediamine. Materials Le 131397.	tters, 2022, 309,	1.3	4
478	A pH-controlled synthetic route to violet, green, and orange fluorescent carbon dots fo light-emitting diodes. Chemical Engineering Journal, 2022, 431, 134172.	or multicolor	6.6	77
479	Synthesis of carbon dots with strong luminescence in both dispersed and aggregated tailoring sulfur doping. Journal of Colloid and Interface Science, 2022, 609, 54-64.	states by	5.0	24
480	pH-induced highly sensitive fluorescence detection of urea and urease based on carbon nanohybrids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 120705.		2.0	1
481	Sulfuric-acid-mediated synthesis strategy for multi-colour aggregation-induced emissic carbon dots: Application in anti-counterfeiting, information encryption, and rapid cyto imaging. Journal of Colloid and Interface Science, 2022, 612, 650-663.	n fluorescent plasmic	5.0	31
482	Matrix-free nitrogen-doped carbon dots with room temperature phosphorescence for i encryption and temperature detection. Microchemical Journal, 2022, 175, 107126.	nformation	2.3	14
483	Aggregation and luminescence in carbonized polymer dots. Aggregate, 2022, 3, e169.		5.2	77
484	Anhydride-Terminated Solid-State Carbon Dots with Bright Orange Emission Induced b Excitonic Electronic Coupling. ACS Applied Materials & amp; Interfaces, 2022, 14, 5762	y Weak 2–5774.	4.0	17
485	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.		5.0	374
486	Crystalline-Induced Luminescence of Carbon Dots for the WLED and Fingerprint Recog 2022, 17, .	nition. Nano,	0.5	2
487	Dispersion-assisted tunable fluorescence from carbon dots. Nanotechnology, 2022, 33	s, 175705.	1.3	5
488	Orange emissive N-doped carbon dots and their application in detection of water in or and the polyurethane composites. Optical Materials, 2022, 123, 111927.	ganic solvents	1.7	2

#	Article	IF	CITATIONS
489	Ionic Liquidâ€Assisted Fast Synthesis of Carbon Dots with Strong Fluorescence and Their Tunable Multicolor Emission. Small, 2022, 18, e2106683.	5.2	60
490	"Light on―fluorescence carbon dots with intramolecular hydrogen bond-regulated co-planarization for cell imaging and temperature sensing. Journal of Materials Chemistry A, 2022, 10, 2085-2095.	5.2	28
491	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114.		49
492	Mandelic Acid Appended Chiral Gels as Efficient Templates for Multicolour Circularly Polarized Luminescence. Nanoscale, 2022, , .	2.8	10
493	Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO2. Molecules, 2022, 27, 1081.	1.7	23
494	Yellowâ€Emissive Carbon Dots with High Solidâ€State Photoluminescence. Advanced Functional Materials, 2022, 32, .	7.8	84
495	Carbon dots promote the carrier recombination in Poly (9-vinyl carbazole) to enhance its electroluminescence. Applied Surface Science, 2022, 585, 152649.	3.1	5
496	New prospects on solvothermal carbonisation assisted by organic solvents, ionic liquids and eutectic mixtures – A critical review. Progress in Materials Science, 2022, 126, 100932.	16.0	18
497	Structural Engineering toward High Monochromaticity of Carbon Dots-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 12107-12113.	2.1	8
498	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
499	Zn-assisted modification of the chemical structure of N-doped carbon dots and their enhanced quantum yield and photostability. Nanoscale Advances, 2022, 4, 2029-2035.	2.2	12
500	A gel fluorescence sensor based on CDs@SiO ₂ /FeS ₂ @MIPs for the visual detection of <i>p</i> -chlorophenol. Analytical Methods, 2022, 14, 1721-1729.	1.3	5
501	Small variations in reaction conditions tune carbon dot fluorescence. Nanoscale, 2022, 14, 6930-6940.	2.8	14
502	Enhanced Fluorescence and Environmental Stability of Red-Emissive Carbon Dots via Chemical Bonding with Cellulose Films. ACS Omega, 2022, 7, 6834-6842.	1.6	14
503	Chitosan-Derived Carbon Dots with Room-Temperature Phosphorescence and Energy Storage Enhancement Properties. ACS Sustainable Chemistry and Engineering, 2022, 10, 3027-3036.	3.2	45
504	A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022, 17, 112-130.	15.6	370
505	Mesoporous Core–Shell Pd@Pt Nanospheres as Oxidase Mimics with Superhigh Catalytic Efficiency at Room Temperature. Journal of Physical Chemistry Letters, 2022, 13, 2137-2143.	2.1	9
506	Dual Role of MoS ₂ Quantum Dots in a Cross-Dehydrogenative Coupling Reaction. ACS Organic & Inorganic Au, 2022, 2, 205-213.	1.9	21

#	Article	IF	CITATIONS
507	Morphological Control: Properties and Applications of Metal Nanostructures. Advances in Materials Science and Engineering, 2022, 2022, 1-15.	1.0	24
508	Hydrophobic Graphene Quantum Dots for Defect Passivation and Enhanced Moisture Stability of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	11
509	Soft–Hard Segment Combined Carbonized Polymer Dots for Flexible Optical Film with Superhigh Surface Hardness. ACS Applied Materials & Interfaces, 2022, 14, 14504-14512.	4.0	9
510	Fluorescent Detection of Organophosphorus Pesticides Using Carbon Dots Derived from Broccoli. Arabian Journal for Science and Engineering, 2023, 48, 8315-8324.	1.7	5
511	A Facile Preparation of Multicolor Carbon Dots. Nanoscale Research Letters, 2022, 17, 32.	3.1	24
512	Development of nitrogen-decorated carbon dots (NCDs) thermally conductive film for windows application. Carbon Letters, 2022, 32, 1065-1072.	3.3	18
513	Electrically Switchable Anisometric Carbon Quantum Dots Exhibiting Linearly Polarized Photoluminescence: Syntheses, Anisotropic Properties, and Facile Control of Uniaxial Orientation. ACS Nano, 2022, 16, 6480-6492.	7.3	14
514	One-step Synthesis of Biomass-Based Carbon Dots for Detection of Metal Ions and Cell Imaging. Frontiers in Energy Research, 2022, 10, .	1.2	3
515	Hydrothermal Synthesis of High‥ield Red Fluorescent Carbon Dots with Ultraâ€Narrow Emission by Controlled O/N Elements. Advanced Materials, 2022, 34, e2201031.	11.1	46
516	Tuning the photoluminescence by engineering surface states/size of S, N co-doped carbon dots for cellular imaging applications. Nanotechnology, 2022, 33, 235708.	1.3	10
517	Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Science and Applications, 2022, 11, 56.	7.7	60
518	Carbon nanodots: A metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells. Nano Research, 2022, 15, 5610-5618.	5.8	14
519	Twins of Minimalistic Carbon Dots: Uniform Emittingâ€Units and Molecular Level Repeatable Photoluminescence. Advanced Optical Materials, 2022, 10, .	3.6	4
520	A Yellow Fluorescence Probe for the Detection of Oxidized Glutathione and Biological Imaging. ACS Applied Materials & Interfaces, 2022, 14, 17119-17127.	4.0	23
521	Highly luminescent pH-responsive carbon quantum dots for cell imaging. Nanotechnology, 2022, 33, 265002.	1.3	6
522	A novel chiral fluorescence probe based on carbon dots-copper(II) system for ratio fluorescence detection of gatifloxacin. Sensors and Actuators B: Chemical, 2022, 359, 131602.	4.0	19
523	Deep blue photoluminescence and optical gain from sodium-doped carbon dots. Journal of Luminescence, 2022, 246, 118856.	1.5	6
524	A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+. Science of the Total Environment, 2022, 825, 153913.	3.9	27

#	Article	IF	CITATIONS
525	A novel fluorescent sensor based on a magnetic covalent organic framework-supported, carbon dot-embedded molecularly imprinted composite for the specific optosensing of bisphenol A in foods. Sensors and Actuators B: Chemical, 2022, 361, 131729.	4.0	20
526	Fluorescence Sensing Performance of Carbon Dots of Functionalization toward Sunset Yellow. Particle and Particle Systems Characterization, 2022, 39, .	1.2	4
527	Rational Design of Surface-State Controlled Multicolor Cross-Linked Carbon Dots with Distinct Photoluminescence and Cellular Uptake Properties. ACS Applied Materials & Interfaces, 2021, 13, 59747-59760.	4.0	13
528	Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 803138.	2.0	10
529	Carbon-Based Quantum Dots for Photovoltaic Devices: A Review. ACS Applied Electronic Materials, 2022, 4, 27-58.	2.0	27
530	Simple Strategy for Scalable Preparation Carbon Dots: RTP, Timeâ€Dependent Fluorescence, and NIR Behaviors. Advanced Science, 2022, 9, e2104278.	5.6	31
532	Preparation of multicolor-emissive carbon dots with high quantum yields and their epoxy composites for fluorescence anti-counterfeiting and light-emitting devices. Journal of Materials Chemistry C, 2022, 10, 8441-8458.	2.7	17
533	A rapid construction strategy of NaYF ₄ :Yb,Er@CDs nanocomposites for dual-mode anti-counterfeiting. Materials Advances, 2022, 3, 4542-4547.	2.6	6
534	Solvent-free synthesis of nitrogen doped carbon dots with dual emission and their biological and sensing applications. Materials Today Nano, 2022, 18, 100205.	2.3	9
535	Evaluation of chemotherapeutic response in living cells using subcellular Organelle‒Selective amphipathic carbon dots. Biosensors and Bioelectronics, 2022, 211, 114362.	5.3	10
536	A bifunctional catalyst based on a carbon quantum dots/mesoporous SrTiO ₃ heterostructure for cascade photoelectrochemical nitrogen reduction. Journal of Materials Chemistry A, 2022, 10, 12713-12721.	5.2	8
537	Analysis of Mn2+ and Zn2+ Ions in Macroalgae with Heteroelement-Doped Carbon-Based Fluorescent Probe. Biosensors, 2022, 12, 359.	2.3	2
538	Ultraviolet phosphorescent carbon nanodots. Light: Science and Applications, 2022, 11, .	7.7	33
539	Wet chemistry-based processing of tunable polychromatic carbon quantum dots for multicolor bioimaging and enhanced NIR-triggered photothermal bactericidal efficacy. Applied Surface Science, 2022, 597, 153630.	3.1	14
540	Synthesis of multicolor luminescent adjustable carbon dots and their application in anti-counterfeiting. Materials Today Chemistry, 2022, 25, 100972.	1.7	13
541	One-step green synthesis of oil-dispersible carbonized polymer dots as eco-friendly lubricant additives with superior dispersibility, lubricity, and durability. Journal of Colloid and Interface Science, 2022, 623, 762-774.	5.0	24
542	Pressure-Induced Bifurcation in the Photoluminescence of Red Carbon Quantum Dots: Coexistence of Emissions from Surface Groups and Nitrogen-Doped Cores. Journal of Physical Chemistry Letters, 2022, 13, 4768-4777.	2.1	7
543	Controlled Emission of Carbon Quantum Dots Derived from Waste Silk Sericin. Particle and Particle Systems Characterization, 2022, 39, .	1.2	4

#	Article	IF	CITATIONS
544	C-scheme electron transfer mechanism: An efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact. Journal of Colloid and Interface Science, 2022, 624, 168-180.	5.0	26
545	Orange-emissive carbon quantum dots for ligand-directed Golgi apparatus-targeting and <i>in vivo</i> imaging. Biomaterials Science, 2022, 10, 4345-4355.	2.6	14
546	Resistance to aggregation-caused quenching: chitosan-based solid carbon dots for white light-emitting diode and 3D printing. Advanced Composites and Hybrid Materials, 2022, 5, 1865-1875.	9.9	45
547	Recent advances of carbon dots as new antimicrobial agents. SmartMat, 2022, 3, 226-248.	6.4	56
548	Recent progress on performances and mechanisms of carbon dots for gas sensing. Luminescence, 2023, 38, 896-908.	1.5	3
549	Enhancing the physicochemical properties and functional performance of starch-based films using inorganic carbon materials: A review. Carbohydrate Polymers, 2022, 295, 119743.	5.1	23
550	Highly bright carbon quantum dots for flexible anti-counterfeiting. Journal of Materials Chemistry C, 2022, 10, 11338-11346.	2.7	23
551	Optical properties of carbon dots and their applications. , 2022, , 135-153.		2
552	Facile Conjugatedâ€Polymerâ€Based Flexible Lighting Fabrication and Microdeformation Monitoring. Advanced Photonics Research, 0, , 2200030.	1.7	0
553	Recent Advances on Synthesis and Potential Applications of Carbon Quantum Dots. Frontiers in Materials, 0, 9, .	1.2	37
554	Green synthesis of fluorescent carbon dots from Annona Reticulata leaves as a sensor for Chromium (III) ions. Materials Today: Proceedings, 2023, 72, 169-174.	0.9	0
555	Carbon nanodot-based humidity sensor for self-powered respiratory monitoring. Nano Energy, 2022, 101, 107549.	8.2	44
556	Facile off-on fluorescence biosensing of human papillomavirus using DNA probe coupled with sunflower seed shells carbon dots. Microchemical Journal, 2022, 181, 107742.	2.3	7
557	Fluorescent-tagged water with carbon dots derived from phenylenediamine as an equipment-free nanotracer for enhanced oil recovery. Journal of Colloid and Interface Science, 2022, 628, 43-53.	5.0	6
558	The Transformation of 0-D Carbon Dots into 1-, 2- and 3-D Carbon Allotropes: A Minireview. Nanomaterials, 2022, 12, 2515.	1.9	7
559	Photobleaching and Recovery Kinetics of a Palette of Carbon Nanodots Probed by In Situ Optical Spectroscopy. ACS Applied Materials & Interfaces, 2022, 14, 36038-36051.	4.0	3
560	Calcination-controlled fabrication of carbon dots@zeolite composites with multicolor fluorescence and phosphorescence. Nano Research, 2022, 15, 9454-9460.	5.8	14
561	Polymer-Induced Emission-Active Fluorine-Embedded Carbon Dots for the Preparation of Warm WLEDs with a High Color Rendering Index. Langmuir, 2022, 38, 9389-9399.	1.6	14

#	Article	IF	CITATIONS
562	Physical Mechanism of Fluorescence and Chirality of Functionalized Graphene Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 12845-12859.	1.5	18
563	Selfâ€Standing Membrane of Heteroâ€Assembled Nanosheets with Drastically Enhanced Emission and Tunable Color. Advanced Optical Materials, 2022, 10, .	3.6	3
564	Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons. Advanced Science, 2022, 9, .	5.6	27
565	Facile in-situ fabrication of ZnO2/CQD composites with promoted visible-light photocatalytic activities for organic degradation and bacterial inactivation. Applied Surface Science, 2022, 604, 154629.	3.1	11
566	Preparation of Polyvinyl Imine Modified Carbon Quantum Dots and Their Application in Methotrexate Detection. Molecules, 2022, 27, 5254.	1.7	0
567	Multicolor Nitrogen-Doped Carbon Quantum Dots for Environment-Dependent Emission Tuning. ACS Omega, 2022, 7, 27742-27754.	1.6	12
568	A step-by-step design for dual channel metal-free photocatalysts towards high yield H2O2 photo-production from air and water. Chemical Engineering Journal, 2023, 451, 138551.	6.6	12
569	Cation–΀ aggregation-induced white emission of moisture-resistant carbon quantum dots: a comprehensive spectroscopic study. Physical Chemistry Chemical Physics, 2022, 24, 23802-23816.	1.3	3
570	An intelligent cooling material modified with carbon dots for evaporative cooling and UV absorption. Nanoscale Advances, 2022, 4, 4169-4174.	2.2	4
571	One-step microwave synthesis of red-emissive carbon dots for cell imaging in extreme acidity and light emitting diodes. RSC Advances, 2022, 12, 28021-28033.	1.7	3
572	Ultrasensitive and selective fluorescence recognition of selenite by <i>o</i> -phenylenediamine functionalized carbon quantum dots. New Journal of Chemistry, 2022, 46, 19712-19721.	1.4	2
573	Ultrahigh anisotropic carrier mobility in ZnSb monolayers functionalized with halogen atoms. RSC Advances, 2022, 12, 26994-27001.	1.7	2
574	Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity. Journal of Materials Chemistry A, 2022, 10, 18333-18342.	5.2	24
575	Ultrafast insights into full-colour light-emitting C-Dots. Nanoscale, 2022, 14, 15812-15820.	2.8	5
576	Carbon dots in food analysis. , 2023, , 293-303.		0
577	Co, N co-doped porous carbon-based nanozyme as an oxidase mimic for fluorescence and colorimetric biosensing of butyrylcholinesterase activity. Mikrochimica Acta, 2022, 189, .	2.5	8
578	Enhanced Aggregation-Induced Phosphorescence of Carbon Dots for Information Encryption Applications. ACS Applied Nano Materials, 2022, 5, 15720-15727.	2.4	6
579	Green Synthesis of Carbon Dots and Their Integration into Nylon-11 Nanofibers for Enhanced Mechanical Strength and Biocompatibility. Nanomaterials, 2022, 12, 3347.	1.9	5

ARTICLE IF CITATIONS # Influence of Nitrogen-Doped Carbon Quantum Dots on the Electrocatalytic Performance of the CoP 580 11 1.6 Nanoflower Catalyst for OER. Langmuir, 2022, 38, 11210-11218. Citric Acid-Based Carbon Dots and Their Application in Energy Conversion. ACS Applied Electronic Materials, 2022, 4, 4231-4257. Multicolor Luminescent Carbon Dots: Tunable Photoluminescence, Excellent Stability, and Their 582 1.9 5 Application in Light-Emitting Diodes. Nanomaterials, 2022, 12, 3132. Machine learning-driven advanced development of carbon-based luminescent nanomaterials. Journal of Materials Chemistry C, 2022, 10, 1743 1-17450. Synthesis of P-/N-Containing Bamboo-Activated Carbon toward Enhanced Thermal Stability and Flame 584 1.3 4 Retardancy of Polylactic Acid. Materials, 2022, 15, 6802. Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system. Light: Science and Applications, 2022, 11, . Eco-Friendly Sustainable Synthesis of Graphene Quantum Dots from Biowaste as a Highly Selective 586 1.9 8 Sensor. Nanomaterials, 2022, 12, 3696. Switchable Circularly Polarized Signals with High Asymmetric Factor Triggered by Dual Photonic 587 5.2 Bandgap Structure. Small, 2022, 18, . Controlled Synthesis of Multicolor Carbon Dots Assisted by Machine Learning. Advanced Functional 588 7.8 16 Materials, 2023, 33, . Box–Behnken Design Optimizing Sugarcane Bagasse-Based Nitrogen-Doped Carbon Quantum Dots 589 1.8 Preparation and Application in Ferric Ion Detection. Chemosensors, 2022, 10, 453. The Emerging Development of Multicolor Carbon Dots. Small, 2022, 18, . 590 5.2 82 Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An 1.6 Up-to-Date Appraisal. ACS Omega, 2022, 7, 42681-42699. Construction of Carbon Dots with Wavelength-Tunable Electrochemiluminescence and Enhanced 592 3.2 10 Efficiency. Analytical Chemistry, 2022, 94, 16510-16518. Exceeding 67.35% Efficient and Color Temperature Tunable White Light from Carbon Dots with Quadruple-Channel Fluorescence–Phosphorescence Emission. ACS Sustainable Chemistry and 3.2 Engineering, 2022, 10, 15599-15607. Doped Carbon Dots as Promising Fluorescent Nanosensors: Synthesis, Characterization, and Recent 594 0.9 19 Applications. Current Pharmaceutical Design, 2023, 29, 415-444. Regulating photochemical properties of carbon dots for theranostic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, . Structure–Property–Activity Relationships in Carbon Dots. Journal of Physical Chemistry B, 2022, 126, 597 1.2 8 10777-10796. Preparation of transition metal ions (Fe2+, Co2+ and Ni2+) doped carbon nanoparticles from biowaste 598 for cystine and Cr(VI) detection and fluorescence ink. Inorganic Chemistry Communication, 2023, 147, 1.8 110220.

#	Article	IF	CITATIONS
599	The preparation of an FITC-carbon dot nanocomposite and using a C-18 reverse phase column to improve the Hg ²⁺ ion sensitivity of the FITC-carbon dot ratiometric fluorescent sensor. New Journal of Chemistry, 0, , .	1.4	0
600	Synthesis of fluorescent carbon nanoparticles by dispersion polymerization of acetylene. Nanoscale Advances, 2023, 5, 337-343.	2.2	3
601	Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. Journal of Colloid and Interface Science, 2023, 634, 221-230.	5.0	6
602	Multifunctional Carbon Dots-Based Fluorescence Detection for Sudan I, Sudan IV and Tetracycline Hydrochloride in Foods. Nanomaterials, 2022, 12, 4166.	1.9	8
603	Triply Hiding Optical Information via Excitationâ€Dependent Allochroic Photoluminescence Based on Cellulose Derivates. Small, 2023, 19, .	5.2	1
604	Chitosan-based carbon dots with multi-color-emissive tunable fluorescence and visible light catalytic enhancement properties. Nano Research, 2023, 16, 1835-1845.	5.8	5
605	Insight into the Modulation of Carbon-Dot Optical Sensing Attributes through a Reduction Pathway. ACS Omega, 2022, 7, 43759-43769.	1.6	3
606	A colorimetric and fluorometric dual-mode carbon dots probe derived from phenanthroline precursor for the selective detection of Fe2+ and Fe3+. Analytical Sciences, 0, , .	0.8	0
607	Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis. Biosensors, 2022, 12, 1158.	2.3	3
608	Liver Injury Traceability: Spatiotemporally Monitoring Oxidative Stress Processes by Unit-Emitting Carbon Dots. Analytical Chemistry, 2023, 95, 2765-2773.	3.2	8
609	Carbon quantum dots with pH-responsive orange-/red-light emission for fluorescence imaging of intracellular pH. Mikrochimica Acta, 2023, 190, .	2.5	7
610	Unraveling the Structure Transition and Peroxidase Mimic Activity of Copper Sites over Atomically Dispersed Copperâ€Doped Carbonized Polymer Dots. Angewandte Chemie, 2023, 135, .	1.6	3
611	A Molecular Engineering Strategy for Achieving Blue Phosphorescent Carbon Dots with Outstanding Efficiency above 50%. Advanced Materials, 2023, 35, .	11.1	54
612	Applications of Carbon Dots for the Treatment of Alzheimer's Disease. International Journal of Nanomedicine, 0, Volume 17, 6621-6638.	3.3	4
613	Solidâ€State Fluorescent Carbon Dots with Unprecedented Efficiency from Visible to Nearâ€Infrared Region. Advanced Science, 2023, 10, .	5.6	24
614	Developing Carbon Dots with Room-Temperature Phosphorescence for the Dual-Signal Detection of Metronidazole. Langmuir, 2022, 38, 15442-15450.	1.6	5
615	Unraveling the Structure Transition and Peroxidase Mimic Activity of Copper Sites over Atomically Dispersed Copperâ€Doped Carbonized Polymer Dots. Angewandte Chemie - International Edition, 2023, 62,	7.2	13
616	Cascaded Photon Confinementâ€Mediated Orthogonal RGBâ€5witchable NaErF ₄ ored Upconversion Nanoarchitectures for Logicalized Information Encryption and Multimodal Luminescent Antiâ€Counterfeiting. Laser and Photonics Reviews, 2023, 17, .	4.4	10

#	Article	IF	CITATIONS
617	Highâ€Efficiency Solidâ€State Luminescence from Hydrophilic Carbon Dots with Aggregationâ€Induced Emission Characteristics. Advanced Functional Materials, 2023, 33, .	7.8	30
618	Disulfide <scp>Crosslinkingâ€Induced</scp> Aggregation: Towards <scp>Solidâ€State</scp> Fluorescent Carbon Dots with Vastly Different Emission Colors ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1007-1014.	2.6	42
619	In Vivo and In Vitro Biodistribution of Inulin-Tethered Boron-Doped Amine-Functionalized Carbon Dots. ACS Biomaterials Science and Engineering, 2023, 9, 1002-1010.	2.6	2
620	One-Pot Synthesis of Dual Color-Emitting CDs: Numerical and Experimental Optimization towards White LEDs. Nanomaterials, 2023, 13, 374.	1.9	3
621	Effect of Hydrothermal Reaction Temperature on Fluorescent Properties of Carbon Quantum Dots Synthesized from Lemon Juice for Adsorption Applications. Journal of Nanomaterials, 2023, 2023, 1-10.	1.5	4
622	Feâ€Doped Carbon Dots as NIRâ€II Fluorescence Probe for In Vivo Gastric Imaging and pH Detection. Advanced Science, 2023, 10, .	5.6	26
623	Facile synthesis of graphene quantum dots with red emission and high quantum yield. New Journal of Chemistry, 2023, 47, 2221-2229.	1.4	2
624	The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small, 2023, 19, .	5.2	27
625	Bright red fluorescent amphiphilic carbon dots as dualphase and visual sensor for selective detection of As3+ in aqueous environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130882.	2.3	3
626	Photophysical properties of carbon quantum dots. , 2023, , 1-28.		1
627	Highly optically and thermally stable carbon dots enabled by thermal annealing for laser illumination. Journal of Materials Chemistry C, 2023, 11, 3562-3570.	2.7	4
628	Phosphoric acid densified red emissive carbon dots with a well-defined structure and narrow band fluorescence for intracellular reactive oxygen species detection and scavenging. Journal of Materials Chemistry C, 2023, 11, 2984-2994.	2.7	5
629	Singlet Oxygen Induced Siteâ€Specific Etching Boosts Nitrogen arbon Sites for Highâ€Efficiency Oxygen Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
630	Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multiâ€Confinement and Phosphorescence Assisted Energy Transfer. Advanced Materials, 2023, 35, .	11.1	41
631	Ratiometric fluorescence determination of carbon disulfide in water using surface functionalized carbon dots. Sensors and Actuators B: Chemical, 2023, 382, 133499.	4.0	14
632	Engineering particles for sensing applications via in-situ synthesizing carbon dots@SiO2 photonic crystals. Chemical Engineering Journal, 2023, 465, 142851.	6.6	5
633	Green and Low-temperature Synthesis of Carbon Dots for Simple Detection of Kaempferol. Journal of Fluorescence, 2023, 33, 1971-1979.	1.3	1
634	Synthesis of polyzwitterionic carbon dots with superior friction and fatigue control behaviors under water lubrication. Chemical Engineering Journal, 2023, 465, 142986.	6.6	14

#	Article	IF	CITATIONS
635	Efficient color-tunable room temperature phosphorescence through confining carbon dots in ionic crystal. Journal of Alloys and Compounds, 2023, 948, 169674.	2.8	2
636	Fluorescence studies of double-emitting carbon dots and application in detection of H2O in ethanol and differentiation of cancer cell and normal cell. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114746.	2.0	0
637	Multiple-color room-temperature phosphorescence regulated by graphitization and carbonyls. Chemical Engineering Journal, 2023, 459, 141635.	6.6	2
638	Natural biomass-derived carbon dots as potent antimicrobial agents against multidrug-resistant bacteria and their biofilms. Sustainable Materials and Technologies, 2023, 36, e00584.	1.7	13
639	Preparation and performance study of dye-based carbon quantum dots. Inorganic Chemistry Communication, 2023, 150, 110541.	1.8	3
640	Photoâ€Responsive Bilayer Soft Actuators Synergic Fluorescence and Shape Change Towards Biomimetic Untethered Camouflage Robots. Advanced Optical Materials, 2023, 11, .	3.6	0
641	One-Step Solvothermal Synthesis of Red Chiral Carbon Dots for Multioptical Detection of Water in Organic Solvents. ACS Applied Nano Materials, 2023, 6, 3202-3210.	2.4	12
642	Antibacterial Carbon Dotsâ€Based Composites. Small, 2023, 19, .	5.2	20
643	Solid-State Luminescence in Self-Assembled Chlorosalicylaldehyde-Modified Carbon Dots. , 2023, 5, 846-853.		23
644	Aggregation-induced emission of matrix-free graphene quantum dots via selective edge functionalization of rotor molecules. Science Advances, 2023, 9, .	4.7	16
645	Room-temperature synthesized carbon quantum dots and potential applications to cell imaging. Digest Journal of Nanomaterials and Biostructures, 2023, 18, 195-202.	0.3	2
646	Oneâ€Step Synthesis of Whiteâ€Lightâ€Emitting Carbon Dots for White LEDs with a High Color Rendering Index of 97. Advanced Science, 2023, 10, .	5.6	39
647	Carbon dots based on targeting unit inheritance strategy for Golgi apparatus-targeting imaging. Frontiers of Materials Science, 2023, 17, .	1.1	2
648	Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species. Chemical Engineering Journal, 2023, 462, 142338.	6.6	20
649	Enhancing catalytic efficiency of carbon dots by modulating their Mn doping and chemical structure with metal salts. RSC Advances, 2023, 13, 8996-9002.	1.7	2
650	Singlet Oxygen Induced Siteâ€Specific Etching Boosts Nitrogenâ€Carbon Sites for Highâ€Efficiency Oxygen Reduction. Angewandte Chemie, 2023, 135, .	1.6	1
651	Fluorescent Silk Obtained by Feeding Silkworms with Fluorescent Materials ^{â€} . Chinese Journal of Chemistry, 2023, 41, 2035-2046.	2.6	1
652	Blue, Yellow, and Red Carbon Dots from Aromatic Precursors for Light-Emitting Diodes. Molecules, 2023, 28, 2957.	1.7	6

#	Article	IF	CITATIONS
653	Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. Journal of Nanoparticle Research, 2023, 25, .	0.8	10
654	Fluorescence Properties of EDTA Carbon-Dots and Its Application in Iron Ions Detection. Russian Journal of General Chemistry, 2023, 93, 403-408.	0.3	0
655	Triphenylamineâ€Derived Solidâ€State Emissive Carbon Dots for Multicolor Highâ€Efficiency Electroluminescent Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
656	Intense Circularly Polarized Fluorescence and Room-Temperature Phosphorescence in Carbon Dots/Chiral Helical Polymer Composite Films. ACS Nano, 2023, 17, 6912-6921.	7.3	17
657	Triphenylamineâ€Derived Solidâ€State Emissive Carbon Dots for Multicolor Highâ€Efficiency Electroluminescent Lightâ€Emitting Diodes. Angewandte Chemie, 2023, 135, .	1.6	3
658	Construction of carbon nitride-based heterojunction as photocatalyst for peroxymonosulfate activation: Important role of carbon dots in enhancing photocatalytic activity. Chemical Engineering Journal, 2023, 464, 142724.	6.6	8
659	Preparation of Ciprofloxacin-Based Carbon Dots with High Antibacterial Activity. International Journal of Molecular Sciences, 2023, 24, 6814.	1.8	9
661	Brain-targeted ginkgolide B-modified carbonized polymer dots for alleviating cerebral ischemia reperfusion injury. Biomaterials Science, 2023, 11, 3998-4008.	2.6	2
662	Biogenic Carbon Quantum Dots as a Neoteric Inducer in the Game of Directing Chondrogenesis. ACS Applied Materials & Interfaces, 2023, 15, 19997-20011.	4.0	5
663	Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chemical Engineering Journal, 2023, 465, 143010.	6.6	22
664	Low Cu(II) Concentration Detection Based on Fluorescent Detector Made from Citric Acid and Urea. Journal of Fluorescence, 0, , .	1.3	0
665	Formation and Band Gap Tuning Mechanism of Multicolor Emissive Carbon Dots from <i>m</i> â€Hydroxybenzaldehyde. Advanced Science, 2023, 10, .	5.6	12
666	Portable smartphone platform based on tunable chiral fluorescent carbon dots for visual detection of L-Asp and L-Lys. Chemical Engineering Journal, 2023, 466, 143103.	6.6	15
678	Quantitative and biosafe modification of bifunctional groups onto carbon dots by click chemistry. Journal of Materials Chemistry B, 2023, 11, 5094-5100.	2.9	4
696	The function-oriented precursor selection for the preparation of carbon dots. Nano Research, 2023, 16, 11221-11249.	5.8	5
700	Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Journal of Materials Chemistry B, 2023, 11, 8117-8135.	2.9	3
702	Quantum Dots and Nanoparticles in Light-Emitting Diodes and Displays Applications. Progress in Optical Science and Photonics, 2023, , 253-277.	0.3	0
721	Synthesis and applications of carbon quantum dots derived from biomass waste: a review. Environmental Chemistry Letters, 2023, 21, 3393-3424.	8.3	8

#	Article	IF	CITATIONS
728	Interfacing metal organic frameworks with polymers or carbon-based materials: from simple to hierarchical porous and nanostructured composites. Chemical Science, 2023, 14, 12898-12925.	3.7	1
743	Recent advances in red-emissive carbon dots and their biomedical applications. Materials Chemistry Frontiers, 2024, 8, 930-955.	3.2	Ο
744	Recent advances in metal-free electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 0, , .	5.2	0
758	One-pot synthesis of homogeneous carbon quantum dots/aluminum hydroxide composite and its application in Cu(II) detection. Carbon Letters, 2024, 34, 603-609.	3.3	Ο