Mechanistic Basis of Cocrystal Dissolution Advantage

Journal of Pharmaceutical Sciences 107, 380-389 DOI: 10.1016/j.xphs.2017.09.014

Citation Report

#	Article	IF	CITATIONS
1	Cocrystal Solubility Product Prediction Using an in combo Model and Simulations to Improve Design of Experiments. Pharmaceutical Research, 2018, 35, 40.	1.7	16
2	Cocrystal Solubility Advantage Diagrams as a Means to Control Dissolution, Supersaturation, and Precipitation. Molecular Pharmaceutics, 2019, 16, 3887-3895.	2.3	35
3	Posaconazole Cocrystal with Superior Solubility and Dissolution Behavior. Crystal Growth and Design, 2019, 19, 6592-6602.	1.4	47
4	Mechanistic Analysis of Cocrystal Dissolution, Surface pH, and Dissolution Advantage as a Guide for Rational Selection. Journal of Pharmaceutical Sciences, 2019, 108, 243-251.	1.6	12
5	Reliability of the Hansen solubility parameters as co-crystal formation prediction tool. International Journal of Pharmaceutics, 2019, 558, 319-327.	2.6	55
6	Gabapentin–saccharin co-crystals with enhanced physicochemical properties and <i>inÂvivo</i> absorption formulated as oro-dispersible tablets. Pharmaceutical Development and Technology, 2020, 25, 227-236.	1.1	18
7	Fabrication of Carbamazepine Cocrystals: Characterization, In Vitro and Comparative In Vivo Evaluation. BioMed Research International, 2021, 2021, 1-9.	0.9	4
8	Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications. Pharmaceutics, 2021, 13, 898.	2.0	12
9	Formation of Hydrochlorothiazide – Para-aminobenzoic Acid Cocrystals by Solvent Evaporation Method. Ad-Dawaa' Journal of Pharmaceutical Sciences, 2021, 4, .	0.1	1
10	Polymeric precipitation inhibitor differently affects cocrystal surface and bulk solution phase transformations. Journal of Drug Delivery Science and Technology, 2022, 67, 103029.	1.4	6
11	Cocrystals of tuberculosis antibiotics: Challenges and missed opportunities. International Journal of Pharmaceutics, 2022, 623, 121924.	2.6	11
12	Structural, Physicochemical, and Biopharmaceutical Properties of Cocrystals with <i>RS</i> - and <i>R</i> -Praziquantel─Generation and Prolongation of the Supersaturation State in the Presence of Cellulosic Polymers. Crystal Growth and Design, 2022, 22, 6023-6038.	1.4	7
13	Solution Stability of Pharmaceutical Cocrystals. Crystal Growth and Design, 2022, 22, 6323-6337.	1.4	14