ExSTA: External Standard Addition Method for Accurat Targeted Proteomics Experiments

Proteomics - Clinical Applications 12, 1600180

DOI: 10.1002/prca.201600180

Citation Report

#	Article	IF	CITATIONS
1	The Special Issue: Clinical Proteomics for Precision Medicine. Proteomics - Clinical Applications, 2018, 12, 1600144.	1.6	3
2	ExSTA: External Standard Addition Method for Accurate Highâ€Throughput Quantitation in Targeted Proteomics Experiments. Proteomics - Clinical Applications, 2018, 12, 1600180.	1.6	20
3	Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation. Molecular and Cellular Proteomics, 2020, 19, 540-553.	3.8	27
4	The intestinal microbiome potentially affects thrombin generation in human subjects. Journal of Thrombosis and Haemostasis, 2020, 18, 642-650.	3.8	22
5	Plasma Protein Signatures of a Murine Venous Thrombosis Model and Slc44a2 Knockout Mice Using Quantitative-Targeted Proteomics. Thrombosis and Haemostasis, 2020, 120, 423-436.	3.4	10
6	Affinity-Bead Assisted Mass Spectrometry (Affi-BAMS): A Multiplexed Microarray Platform for Targeted Proteomics. International Journal of Molecular Sciences, 2020, 21, 2016.	4.1	10
7	Detailed Method for Performing the ExSTA Approach in Quantitative Bottom-Up Plasma Proteomics. Methods in Molecular Biology, 2021, 2228, 353-384.	0.9	4
8	Mouse Quantitative Proteomics Knowledgebase: reference protein concentration ranges in 20 mouse tissues using 5000 quantitative proteomics assays. Bioinformatics, 2021, 37, 1900-1908.	4.1	6
9	A protein standard addition method for absolute quantification of cystatin C in human serum by LC-MS/MS. Clinical Chemistry and Laboratory Medicine, 2021, 59, e426-e427.	2.3	1
10	Proteotyping of knockout mouse strains reveals sex- and strain-specific signatures in blood plasma. Npj Systems Biology and Applications, 2021, 7, 25.	3.0	2
11	Combined Molecular and Elemental Mass Spectrometry Approaches for Absolute Quantification of Proteomes: Application to the Venomics Characterization of the Two Species of Desert Black Cobras, <i>Walterinnesia aegyptia</i> and <i>Walterinnesia morgani</i> Journal of Proteome Research, 2021, 20, 5064-5078.	3.7	10
12	Quantification by SRM-MS. , 2020, , 145-172.		O
13	Targeted proteomics for evaluating risk of venous thrombosis following traumatic lowerâ€leg injury or knee arthroscopy. Journal of Thrombosis and Haemostasis, 2022, 20, 684-699.	3.8	5
14	Longitudinal Plasma Proteomics Analysis Reveals Novel Candidate Biomarkers in Acute COVID-19. Journal of Proteome Research, 2022, 21, 975-992.	3.7	27
15	Prognosis of Alzheimer's Disease Using Quantitative Mass Spectrometry of Human Blood Plasma Proteins and Machine Learning. International Journal of Molecular Sciences, 2022, 23, 7907.	4.1	8
16	Absolute Quantitative Targeted Proteomics Assays for Plasma Proteins. Methods in Molecular Biology, 2023, , 439-473.	0.9	1
17	Targeted MRM Quantification of Urinary Proteins in Chronic Kidney Disease Caused by Glomerulopathies. Molecules, 2023, 28, 3323.	3.8	2
18	Efficient Electrochemical Detection of Homocysteine in Biological Samples Based on Au NPs Multi-Walled Carbon Nanotube Composites Journal of the Electrochemical Society, 0, , .	2.9	O

#	Article	IF	CITATIONS
19	Development and application of a multiple reaction monitoring method for the simultaneous quantification of sodium channels $Na < ub > v < ub > 1.1$, $Na < ub > v < ub > 1.2$, and $Na < ub > v < ub > 1.6$ in solubilized membrane proteins from stable HEK293 cell lines, rodents, and human brain tissues. Rapid Communications in Mass Spectrometry, 2024, 38, .	1.5	0
20	Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Communications Biology, 2024, 7, .	4.4	O