An ethane-trapping MOF PCN-250 for highly selective a

Chemical Engineering Science 175, 110-117

DOI: 10.1016/j.ces.2017.09.032

Citation Report

#	Article	IF	CITATIONS
7	Ethaneâ€selective carbon composites CPDA@Aâ€ACs with high uptake and its enhanced ethane/ethylene adsorption selectivity. AICHE Journal, 2018, 64, 3390-3399.	3.6	41
8	Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8366-8373.	8.0	112
9	A Zwitterionic Ligandâ€Based Cationic Metalâ€Organic Framework for Rapidly Selective Dye Capture and Highly Efficient Cr _{2⟨sub>O_{7⟨ sub>^{2â°°⟨ sup> Removal. Chemistry - A European Journal, 2018, 24, 2718-2724.}}}	3.3	69
10	Highly Adsorptive Separation of Ethane/Ethylene by An Ethane-Selective MOF MIL-142A. Industrial & Engineering Chemistry Research, 2018, 57, 4063-4069.	3.7	88
11	Methodologies for screening and selection of crystalline microporous materials in mixture separations. Separation and Purification Technology, 2018, 194, 281-300.	7.9	91
12	Tuning Binding Tendencies of Small Molecules in Metal–Organic Frameworks with Open Metal Sites by Metal Substitution and Linker Functionalization. Journal of Physical Chemistry C, 2018, 122, 27486-27494.	3.1	34
13	Adsorption of Ethane and Ethylene over 3D-Printed Ethane-Selective Monoliths. ACS Sustainable Chemistry and Engineering, 2018, 6, 15228-15237.	6.7	35
14	Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362, 443-446.	12.6	763
15	Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 12940-12946.	13.7	309
16	A novel fructose-based adsorbent with high capacity and its ethane-selective adsorption property. Journal of Solid State Chemistry, 2018, 268, 190-197.	2.9	12
17	Present and future of MOF research in the field of adsorption and molecular separation. Current Opinion in Chemical Engineering, 2018, 20, 132-142.	7.8	152
18	Continuous Separation of Light Olefin/Paraffin Mixtures on ZIF-4 by Pressure Swing Adsorption and Membrane Permeation. Molecules, 2018, 23, 889.	3.8	21
19	A pillar-layer metal-organic framework for efficient adsorption separation of propylene over propane. Separation and Purification Technology, 2018, 204, 75-80.	7.9	38
20	Molecular simulation for separation of ethylene and ethane by functionalised graphene membrane. Molecular Simulation, 2019, 45, 1322-1331.	2.0	7
21	Enhancement of Ethane Selectivity in Ethane–Ethylene Mixtures by Perfluoro Groups in Zr-Based Metal-Organic Frameworks. ACS Applied Materials & Enp.; Interfaces, 2019, 11, 27410-27421.	8.0	69
22	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	19.1	434
23	Highly Selective Separations of C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₆ in Metal–Organic Frameworks via Pore Environment Design. Industrial & Engineering Chemistry Research, 2019, 58, 19946-19957.	3.7	22
24	Ethane-Selective Behavior Achieved on a Nickel-Based Metal–Organic Framework: Impact of Pore Effect and Hydrogen Bonds. Industrial & Engineering Chemistry Research, 2019, 58, 10516-10523.	3.7	15

#	Article	IF	CITATIONS
25	Moisture stability of ethaneâ€selective Ni(II), Fe(III), Zr(IV)â€based metal–organic frameworks. AICHE Journal, 2019, 65, e16616.	3.6	28
26	Pore environment engineering in metal–organic frameworks for efficient ethane/ethylene separation. Journal of Materials Chemistry A, 2019, 7, 13585-13590.	10.3	91
27	Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations. Small, 2019, 15, e1900058.	10.0	187
28	Selectively Trapping Ethane from Ethylene on Metal–Organic Framework MIL-53(Al)-FA. Industrial & Engineering Chemistry Research, 2019, 58, 8290-8295.	3.7	39
29	Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions. Journal of Membrane Science, 2019, 581, 93-104.	8.2	49
30	A Robust Ethane-Trapping Metal–Organic Framework with a High Capacity for Ethylene Purification. Journal of the American Chemical Society, 2019, 141, 5014-5020.	13.7	272
31	Recent Progress Towards Light Hydrocarbon Separations Using Metal–Organic Frameworks. Trends in Chemistry, 2019, 1, 159-171.	8.5	141
32	Pore Size Reduction in Zirconium Metal–Organic Frameworks for Ethylene/Ethane Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7118-7126.	6.7	39
33	Cage-Interconnected Metal–Organic Framework with Tailored Apertures for Efficient C ₂ H ₄ Separation under Humid Conditions. Journal of the American Chemical Society, 2019, 141, 20390-20396.	13.7	212
34	An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture. Separation and Purification Technology, 2019, 212, 51-56.	7.9	49
35	Biased adsorption of ethane over ethylene on low-cost hyper-crosslinked polymers. Journal of Solid State Chemistry, 2019, 271, 199-205.	2.9	15
36	Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4. Chemical Engineering Journal, 2019, 358, 1114-1125.	12.7	48
37	Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials, 2020, 32, e1806445.	21.0	408
38	Synthesis and modification of moisture-stable coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation. Microporous and Mesoporous Materials, 2020, 293, 109784.	4.4	30
39	Reversed ethane/ethylene adsorption in a metal–organic framework via introduction of oxygen. Chinese Journal of Chemical Engineering, 2020, 28, 593-597.	3.5	19
40	Selective adsorption of ethane over ethylene on M(bdc)(ted)0.5 (M = Co, Cu, Ni, Zn) metal-organic frameworks (MOFs). Microporous and Mesoporous Materials, 2020, 292, 109724.	4.4	48
41	Algae-derived N-doped porous carbons with ultrahigh specific surface area for highly selective separation of light hydrocarbons. Chemical Engineering Journal, 2020, 381, 122731.	12.7	49
42	Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation. Journal of Materials Chemistry A, 2020, 8, 3613-3620.	10.3	120

#	ARTICLE	IF	Citations
43	Microporous Metal–Organic Framework with a Completely Reversed Adsorption Relationship for C ₂ Hydrocarbons at Room Temperature. ACS Applied Materials & Diterfaces, 2020, 12, 6105-6111.	8.0	63
44	Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386, 123945.	12.7	39
45	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 2020, 142, 633-640.	13.7	183
46	Room temperature synthesis of Cu(Qc)2 and its application for ethane capture from light hydrocarbons. Chemical Engineering Science, 2020, 213, 115355.	3.8	25
47	Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation. Chemical Engineering Journal, 2020, 385, 123836.	12.7	49
48	Enhancing the separation efficiency of a C ₂ H ₂ /C ₂ H ₄ mixture by a chromium metal–organic framework fabricated <i>via</i> post-synthetic metalation. Journal of Materials Chemistry A, 2020, 8, 2083-2089.	10.3	45
49	Optimizing supramolecular interactions in metal–organic frameworks for C ₂ separation. Dalton Transactions, 2020, 49, 15548-15559.	3.3	14
50	A zwitterionic ligand-based water-stable metal–organic framework showing photochromic and Cr(<scp>vi</scp>) removal properties. Dalton Transactions, 2020, 49, 10613-10620.	3.3	16
51	Metrics for Evaluation and Screening of Metal–Organic Frameworks for Applications in Mixture Separations. ACS Omega, 2020, 5, 16987-17004.	3. 5	56
52	Microregulation of Pore Channels in Covalent-Organic Frameworks Used for the Selective and Efficient Separation of Ethane. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52819-52825.	8.0	35
53	7-Connected Fe ^{III} ₃ -Based Bio-MOF: Pore Space Partition and Gas Separations. Inorganic Chemistry, 2020, 59, 16829-16832.	4.0	7
54	Effect of framework rigidity in metal-organic frameworks for adsorptive separation of ethane/ethylene. Microporous and Mesoporous Materials, 2020, 307, 110473.	4.4	20
55	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie - International Edition, 2020, 59, 20561-20567.	13.8	90
56	Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. Chemical Communications, 2020, 56, 10419-10441.	4.1	123
57	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie, 2020, 132, 20742-20748.	2.0	21
58	Water-Based Synthesis of a Stable Iron-Based Metal–Organic Framework for Capturing Toxic Gases. , 2020, 2, 1129-1134.		33
59	Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423, 213485.	18.8	127
60	Effect of Pore Size on the Separation of Ethylene from Ethane in Three Isostructural Metal Azolate Frameworks. Inorganic Chemistry, 2020, 59, 13019-13023.	4.0	6

#	Article	IF	CITATIONS
61	High-Throughput Screening of Metal–Organic Frameworks for Ethane–Ethylene Separation Using the Machine Learning Technique. Energy & Samp; Fuels, 2020, 34, 14591-14597.	5.1	26
62	Opportunities and critical factors of porous metal–organic frameworks for industrial light olefins separation. Materials Chemistry Frontiers, 2020, 4, 1954-1984.	5.9	48
63	Microporous 3D Graphene-like Zeolite-Templated Carbons for Preferential Adsorption of Ethane. ACS Applied Materials & District Sciences, 2020, 12, 28484-28495.	8.0	25
64	Copper and nickel doped MIL-101: Highly efficient adsorbents for separation of ethylene-ethane mixture. Chemical Engineering Research and Design, 2020, 159, 315-327.	5.6	7
65	Engineering the pore environment of metal–organic framework membranes <i>via</i> modification of the secondary building unit for improved gas separation. Journal of Materials Chemistry A, 2020, 8, 13132-13141.	10.3	32
66	A robust Th-azole framework for highly efficient purification of C2H4 from a C2H4/C2H2/C2H6 mixture. Nature Communications, 2020, 11, 3163.	12.8	192
67	Adsorptive separation of C2H6/C2H4 on metal-organic frameworks (MOFs) with pillared-layer structures. Separation and Purification Technology, 2020, 242, 116819.	7.9	40
68	Direct Functionalization of the Open Metal Sites in Rare Earth-Based Metal–Organic Frameworks Used for the Efficient Separation of Ethylene. Industrial & Engineering Chemistry Research, 2020, 59, 6123-6129.	3.7	17
69	Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation. Chemical Society Reviews, 2020, 49, 5359-5406.	38.1	370
70	Designer Metal–Organic Frameworks for Sizeâ€Exclusionâ€Based Hydrocarbon Separations: Progress and Challenges. Advanced Materials, 2020, 32, e2002603.	21.0	182
71	Understanding ethane/ethylene adsorption selectivity in ethane-selective microporous materials. Separation and Purification Technology, 2020, 241, 116635.	7.9	16
72	Microporous metal-organic framework with specific functional sites for efficient removal of ethane from ethane/ethylene mixtures. Chemical Engineering Journal, 2020, 387, 124137.	12.7	36
73	Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane–Ethylene Separation. Journal of the American Chemical Society, 2020, 142, 2222-2227.	13.7	199
74	Neutron diffraction structural study of CO ₂ binding in mixed-metal CPM-200 metal–organic frameworks. Chemical Communications, 2020, 56, 2574-2577.	4.1	5
75	Effect of Isomorphic Metal Substitution on the Fenton and Photo-Fenton Degradation of Methylene Blue Using Fe-Based Metal–Organic Frameworks. ACS Applied Materials & Diterfaces, 2020, 12, 9292-9299.	8.0	113
76	Modification of the pore environment in UiO-type metal-organic framework toward boosting the separation of propane/propylene. Chemical Engineering Journal, 2021, 403, 126428.	12.7	31
77	Tunable Metal–Organic Frameworks Based on 8â€Connected Metal Trimers for High Ethane Uptake. Small, 2021, 17, e2003167.	10.0	19
78	Pore control of Al-based MIL-53 isomorphs for the preferential capture of ethane in an ethane/ethylene mixture. Journal of Materials Chemistry A, 2021, 9, 14593-14600.	10.3	29

#	Article	IF	CITATIONS
79	Separation of alkane and alkene mixtures by metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 20874-20896.	10.3	54
80	Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal–organic frameworks containing open metal sites. Materials Advances, 2021, 2, 5487-5493.	5.4	14
81	Preferential adsorption of ethane over ethylene on a Zr-based metal–organic framework: impacts of C–Hâ√N hydrogen bonding. New Journal of Chemistry, 2021, 45, 8045-8053.	2.8	16
82	Alkyl decorated metal–organic frameworks for selective trapping of ethane from ethylene above ambient pressures. Dalton Transactions, 2021, 50, 10423-10435.	3.3	15
83	A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes, 2021, 11, 139.	3.0	89
84	A robust ethane-trapping metal-organic framework for efficient purification of ethylene. Science China Chemistry, 2021, 64, 666-672.	8.2	16
85	Computational study on the effect of steric hindrance in functionalised Zr-based metal-organic frameworks on hydrocarbon storage and separation. Molecular Simulation, 2021, 47, 565-574.	2.0	5
86	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie, 2021, 133, 9766-9771.	2.0	9
87	Nanospace Engineering of Metal–Organic Frameworks through Dynamic Spacer Installation of Multifunctionalities for Efficient Separation of Ethane from Ethane/Ethylene Mixtures. Angewandte Chemie - International Edition, 2021, 60, 9680-9685.	13.8	89
88	Exploring periodic mesoporous organosilicas for ethane–ethylene adsorption–separation. Microporous and Mesoporous Materials, 2021, 317, 110975.	4.4	5
89	Synthesis and Applications of Stable Iron-Based Metal–Organic Framework Materials. Crystal Growth and Design, 2021, 21, 3100-3122.	3.0	34
90	Kerogen Swelling in Light Hydrocarbon Gases and Liquids and Validity of Schroeder's Paradox. Journal of Physical Chemistry C, 2021, 125, 8137-8147.	3.1	15
91	Chemically Stable Hafnium-Based Metal–Organic Framework for Highly Efficient C ₂ H ₄ Separation under Humid Conditions. ACS Applied Materials & Description (1879).	8.0	34
92	Highâ€Throughput Discovery of Ni(IN) ₂ for Ethane/Ethylene Separation. Advanced Science, 2021, 8, e2004940.	11.2	50
93	Ultrahighâ€Uptake Capacityâ€Enabled Gas Separation and Fruit Preservation by a New Singleâ€Walled Nickel–Organic Framework. Advanced Science, 2021, 8, 2003141.	11.2	38
94	Separation and Purification of Hydrocarbons with Porous Materials. Angewandte Chemie - International Edition, 2021, 60, 18930-18949.	13.8	118
95	Separation and Purification of Hydrocarbons with Porous Materials. Angewandte Chemie, 2021, 133, 19078-19097.	2.0	2
96	An ethane-favored metal-organic framework with tailored pore environment used for efficient ethylene separation. Microporous and Mesoporous Materials, 2021, 320, 111096.	4.4	16

#	ARTICLE	IF	CITATIONS
97	Scalable Room-Temperature Synthesis of Highly Robust Ethane-Selective Metal–Organic Frameworks for Efficient Ethylene Purification. Journal of the American Chemical Society, 2021, 143, 8654-8660.	13.7	124
98	Octanuclear Cobalt(II) Cluster-Based Metal–Organic Framework with Caged Structure Exhibiting the Selective Adsorption of Ethane over Ethylene. Inorganic Chemistry, 2021, 60, 10596-10602.	4.0	11
99	Boosting molecular recognition of acetylene in UiO-66 framework through pore environment functionalization. Chemical Engineering Science, 2021, 237, 116572.	3.8	14
100	Metal-organic frameworks for C6–C8 hydrocarbon separations. EnergyChem, 2021, 3, 100057.	19.1	58
101	Identical Composition and Distinct Performance: How ZIF-8 Polymorphs' Structures Affect the Adsorption/Separation of Ethane and Ethene. Journal of Chemical & Engineering Data, 2021, 66, 3483-3492.	1.9	10
102	The modulation of <scp>ethaneâ€selective</scp> adsorption performance in series of bimetal <scp>PCN</scp> â€250 metal–organic frameworks: Impact of metal composition. AICHE Journal, 2022, 68, e17385.	3.6	11
103	Stable titanium metal-organic framework with strong binding affinity for ethane removal. Chinese Journal of Chemical Engineering, 2022, 42, 35-41.	3.5	3
104	Highly Microporous Activated Carbons with Industrial Potential for Selective Adsorption of Ethane over Ethylene. Industrial & Engineering Chemistry Research, 2021, 60, 13301-13308.	3.7	6
105	High-Throughput Screening of Anion-Pillared Metal–Organic Frameworks for the Separation of Light Hydrocarbons. Journal of Physical Chemistry C, 2021, 125, 20076-20086.	3.1	17
106	Predicting adsorption and separation performance indicators of Xe/Kr in metal-organic frameworks via a precursor-based neural network model. Chemical Engineering Science, 2021, 243, 116772.	3.8	6
107	Construction of saturated coordination titanium-based metal–organic framework for one-step C2H2/C2H6/C2H4 separation. Separation and Purification Technology, 2021, 276, 119284.	7.9	28
108	A microporous metal–organic framework with triangular channels for C2H6/C2H4 adsorption separation. Separation and Purification Technology, 2021, 276, 119424.	7.9	13
109	Micro- and mesoporous metal-organic frameworks for hydrocarbon separation. Russian Chemical Reviews, 2022, 91, RCR5026.	6.5	39
110	Efficient Purification of Ethylene from C ₂ Hydrocarbons with an C ₂ H ₆ /C _{/C_{H_{>6}-Selective Metal–Organic Framework. ACS Applied Materials & Ditempted Materials & Ditemp}}	8.0	69
111	Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chemical Engineering Journal, 2022, 431, 133208.	12.7	58
112	Lanthanide–Organic Frameworks Featuring Three-Dimensional Inorganic Connectivity for Multipurpose Hydrocarbon Separation. Inorganic Chemistry, 2021, 60, 17249-17257.	4.0	17
113	A highly stable MOF with F and N accessible sites for efficient capture and separation of acetylene from ternary mixtures. Journal of Materials Chemistry A, 2021, 9, 24495-24502.	10.3	40
114	Improving Ethane/Ethylene Separation Performance of Isoreticular Metal–Organic Frameworks <i>via</i> Substituent Engineering. ACS Applied Materials & Interfaces, 2021, 13, 54059-54068.	8.0	24

#	Article	IF	CITATIONS
115	Separation of ethane/ethylene gas mixture by ethane-selective CAU-3-NDCA adsorbent. Microporous and Mesoporous Materials, 2022, 330, 111572.	4.4	9
116	Adsorption and desorption mechanism of aromatic VOCs onto porous carbon adsorbents for emission control and resource recovery: recent progress and challenges. Environmental Science: Nano, 2022, 9, 81-104.	4.3	35
117	Energy efficient ethylene purification in a commercially viable ethane-selective MOF. Separation and Purification Technology, 2022, 282, 120126.	7.9	8
118	Metal–Organic Framework Separator as a Polyselenide Filter for High-Performance Lithium–Selenium Batteries. ACS Applied Energy Materials, 2021, 4, 13450-13460.	5.1	8
119	A Microporous Metalâ€Organic Framework with Channels Constructed from Nonpolar Aromatic Rings for the Selective Separation of Ethane/Ethylene Mixtures. ChemPlusChem, 2022, 87, e202100482.	2.8	1
120	Three novel MOFs constructed from 1,3,5-tris(1-imidazolyl)benzene and dicarboxylate ligands with selective adsorption for C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₄ . Dalton Transactions, 2022, 51, 4862-4868.	3.3	2
121	Preferential Adsorption Performance of Ethane in a Robust Nickel-Based Metal–Organic Framework for Separating Ethane from Ethylene. ACS Omega, 2022, 7, 7648-7654.	3 . 5	7
122	Computational Screening of Metal-Organic Frameworks for Ethylene Purification from Ethane/Ethylene/Acetylene Mixture. Nanomaterials, 2022, 12, 869.	4.1	3
123	Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. Journal of the American Chemical Society, 2022, 144, 5643-5652.	13.7	131
124	One-Step Ethylene Purification by an Ethane-Screening Metal–Organic Framework. ACS Applied Materials & Description (1988) amp; Interfaces, 2022, 14, 15195-15204.	8.0	15
125	Identification of optimal metal-organic frameworks by machine learning: Structure decomposition, feature integration, and predictive modeling. Computers and Chemical Engineering, 2022, 160, 107739.	3.8	13
126	3D network structural shape-stabilized composite PCMs for integrated enhancement of thermal conductivity and photothermal properties. Solar Energy Materials and Solar Cells, 2022, 240, 111645.	6.2	10
127	Control of pore environment in highly porous carbon materials for C2H6/C2H4 separation with exceptional ethane uptake. Materials Today Chemistry, 2022, 24, 100856.	3.5	2
128	Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation. Chemical Engineering Journal, 2022, 444, 136651.	12.7	27
129	Tailoring a robust Al-MOF for trapping C ₂ H ₆ and C ₂ H ₄ purification from quaternary mixtures. Chemical Science, 2022, 13, 7172-7180.	7.4	30
130	A Scandiumâ€based Microporous Metalâ€Organic Framework for Ethaneâ€Selective Separation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	1
131	Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coordination Chemistry Reviews, 2022, 468, 214628.	18.8	48
132	Evaluation of Iron-Based Metal–Organic Framework Activation Temperatures in Acetylene Adsorption. Inorganic Chemistry, 2022, 61, 9242-9250.	4.0	3

#	Article	IF	CITATIONS
133	Pore-Window Partitions in Metal–Organic Frameworks for Highly Efficient Reversed Ethylene/Ethane Separations. Inorganic Chemistry, 2022, 61, 10493-10501.	4.0	5
134	Synergistic binding sites in a hybrid ultramicroporous material for one-step ethylene purification from ternary C ₂ hydrocarbon mixtures. Science Advances, 2022, 8, .	10.3	53
135	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	19.1	35
136	Adsorption and diffusion of the H2/CO2/CO/MeOH/EtOH mixture into the ZIF-7 using molecular simulation. Journal of Molecular Graphics and Modelling, 2022, 116, 108275.	2.4	2
137	Preparation of metalâ€organic frameworks and their derivatives for supercapacitors. Biosurface and Biotribology, 2022, 8, 151-164.	1.5	2
138	Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification. Nature Communications, 2022, 13, .	12.8	37
139	An ethane-trapping Zn (II) cluster-based metal-organic framework with suitable pockets for efficient ethane/ethylene separation. Separation and Purification Technology, 2022, 301, 122011.	7.9	4
140	Screening Hoffman-type metal organic frameworks for efficient C2H2/CO2 separation. Chemical Engineering Journal, 2023, 452, 139296.	12.7	37
141	A New Machine Learning Framework for Efficient MOF Discovery: Application to Hydrogen Storage. Computer Aided Chemical Engineering, 2022, , 1807-1812.	0.5	0
142	Selectivity Tuning of Adsorbents for Ethane/Ethylene Separation: A Review. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 12269-12293.	3.7	17
143	High-Performance Adsorbent for Ethane/Ethylene Separation Selected through the Computational Screening of Aluminum-Based Metal–Organic Frameworks. ACS Applied Materials & Diterfaces, 2022, 14, 43637-43645.	8.0	5
144	Boosting Ethane/Ethylene Separation by MOFs through the Aminoâ€Functionalization of Pores. Angewandte Chemie - International Edition, 2022, 61, .	13.8	79
145	Boosting Ethane/Ethylene Separation by MOFs through the Aminoâ€Functionalization of Pores. Angewandte Chemie, 0, , .	2.0	5
146	Fine Tuning the Pore Surface in Zirconium Metal–Organic Frameworks for Selective Ethane/Ethylene Separation. , 2023, 1, 334-340.		0
147	Control of pore structure by the solvent effect for efficient ethane/ethylene separation. Separation and Purification Technology, 2023, 304, 122378.	7.9	5
148	Decontamination of neutral aqueous systems containing organophosphate esters by zirconium-based metal organic frameworks with or without amino groups. Journal of Environmental Chemical Engineering, 2022, 10, 108945.	6.7	0
149	Synthesis, characterization, and gas adsorption performance of an efficient hierarchical ZIF-11@ZIF-8 core–shell metal–organic framework (MOF). Separation and Purification Technology, 2023, 307, 122679.	7.9	17
150	Postsynthetic modification strategies to improve polycrystalline metal-organic framework membranes. Materials Today Sustainability, 2023, 21, 100296.	4.1	2

#	Article	IF	CITATIONS
151	Strategies, Synthesis, and Applications of Metal-Organic Framework Materials., 2023, , 1-82.		0
152	Extraordinary Separation of Acetylene-Containing Mixtures in a Honeycomb Calcium-Based MOF with Multiple Active Sites. ACS Applied Materials & Samp; Interfaces, 2023, 15, 2971-2978.	8.0	12
153	Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coordination Chemistry Reviews, 2023, 484, 215111.	18.8	20
154	Efficient CO ₂ Capture under Humid Conditions on a Novel Amide-Functionalized Fe- soc Metal–Organic Framework. ACS Applied Materials & Interfaces, 2023, 15, 12240-12247.	8.0	5
155	An ultramicroporous pillar-layer metal-organic framework for high sieving separation of ethylene from ethane. Microporous and Mesoporous Materials, 2023, 354, 112532.	4.4	2
156	Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. Separations, 2023, 10, 196.	2.4	4
157	A Microporous Metalâ€Organic Framework with Unique Aromatic Pore Surfaces for High Performance C ₂ H ₆ /C ₂ H ₄ Separation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	31
158	A Microporous Metalâ€Organic Framework with Unique Aromatic Pore Surfaces for High Performance C ₂ H ₆ /C ₂ +d Separation. Angewandte Chemie, 2023, 135, .	2.0	0
159	Design of Pore Properties of an Al-Based Metal–Organic Framework for the Separation of an Ethane/Ethylene Gas Mixture via Ethane-Selective Adsorption. ACS Applied Materials & Samp; Interfaces, 2023, 15, 30975-30984.	8.0	2
160	Synthesis, characterization, and selective gas adsorption performance of hybrid NH2-MIL-101(Fe)/ZIF-8 metal organic framework (MOF). Fuel, 2023, 351, 128991.	6.4	7
161	Efficient Xe/Kr separation in fluorinated pillar-caged metal-organic frameworks. Microporous and Mesoporous Materials, 2023, 357, 112631.	4.4	5
162	A robust perylene diimide-based zirconium metal–organic framework for preferential adsorption of ethane over ethylene. Separation and Purification Technology, 2023, 320, 124109.	7.9	6
163	Multiâ€Modular Design of Stable Poreâ€Spaceâ€Partitioned Metal–Organic Frameworks for Gas Separation Applications. Small, 2023, 19, .	10.0	0
164	Enhanced ethane/ethylene separation based on metal regulation in zeolitic imidazolate frameworks. , 2023, 42, 100147.		1
165	Thiazole functionalized covalent triazine frameworks for C ₂ H ₆ /C ₂ separation with remarkable ethane uptake. Chemical Communications, 2023, 59, 11240-11243.	4.1	2
166	A highly connected metal–organic framework with a specific nonpolar nanotrap for inverse ethane/ethylene separation. Inorganic Chemistry Frontiers, 2023, 10, 6407-6413.	6.0	2
167	Simultaneous removal of C ₂ H ₂ and C ₂ H ₆ for C ₂ H ₄ purification by robust MOFs featuring a high density of heteroatoms. Journal of Materials Chemistry A, 2023, 11, 21401-21410.	10.3	0
168	Separation of Propylene and Propane Using Metal–Organic Frameworks. Comments on Inorganic Chemistry, 0, , 1-31.	5.2	0

#	Article	IF	CITATIONS
169	Process modeling and optimization of vacuum pressure swing adsorption for ethane and ethylene separation using Cu(Qc)2 MOF. Separation and Purification Technology, 2023, 326, 124711.	7.9	O
170	Efficient C2H6/C2H4 adsorption separation by a microporous heterometal-organic framework. Journal of Colloid and Interface Science, 2023, 652, 1093-1098.	9.4	2
171	Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production. ACS Applied Materials & Samp; Interfaces, 2023, 15, 47294-47306.	8.0	0
172	A highly stable yttrium-based metal-organic framework with two-fold interpenetrated and cage-like pore structure for one-step purification of ethylene from ethylene/ethane mixture. Separation and Purification Technology, 2024, 330, 125256.	7.9	1
173	Flexible-robust interlayer space in a 2D metal–organic framework for light hydrocarbons separation. Separation and Purification Technology, 2024, 333, 125791.	7.9	1
174	Rapid Scaleâ€up Roomâ€ŧemperature Synthesis of Cuâ€BTC and Its Adsorption Properties for Light Hydrocarbons. ChemistrySelect, 2023, 8, .	1.5	0
175	A quad-core Zn (II) cluster-based microporous metal-organic framework with nonpolar cages for efficient removal of ethane from ethane/ethylene mixtures. Separation and Purification Technology, 2024, 334, 125972.	7.9	1
176	Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2024, , 109729.	9.0	0
177	Insights into nanocomposite materials for gas sorption applications. Nano Structures Nano Objects, 2024, 38, 101127.	3.5	0