Forecasting wheat and barley crop production in arid ar remotely sensed primary productivity and crop phenol

Science of the Total Environment 613-614, 250-262

DOI: 10.1016/j.scitotenv.2017.09.057

Citation Report

#	Article	IF	CITATIONS
1	Detecting Changes of Wheat Vegetative Growth and Their Response to Climate Change Over the North China Plain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4630-4636.	4.9	11
2	A simple and parsimonious generalised additive model for predicting wheat yield in a decision support tool. Agricultural Systems, 2019, 173, 140-150.	6.1	28

3 Sentinel-2 vegetation indices and apparent electrical conductivity to predict barley (Hordeum vulgare) Tj ETQq0 0 0 rgBT /Overlock 10 T

4	Text Mining in Remotely Sensed Phenology Studies: A Review on Research Development, Main Topics, and Emerging Issues. Remote Sensing, 2019, 11, 2751.	4.0	14
5	Seasonal crop yield forecast: Methods, applications, and accuracies. Advances in Agronomy, 2019, , 201-255.	5.2	122
6	Experimental equations of seawater salinity and desalination capacity to assess seawater irrigation. Science of the Total Environment, 2019, 651, 807-812.	8.0	9
7	Combining Optical, Fluorescence, Thermal Satellite, and Environmental Data to Predict County-Level Maize Yield in China Using Machine Learning Approaches. Remote Sensing, 2020, 12, 21.	4.0	74
8	Estimating winter wheat yield based on a light use efficiency model and wheat variety data. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160, 18-32.	11.1	32
9	The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environmental Research Letters, 2020, 15, 084037.	5.2	62
10	Spatialization of Actual Grain Crop Yield Coupled with Cultivation Systems and Multiple Factors: From Survey Data to Grid. Agronomy, 2020, 10, 675.	3.0	5
11	Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015. Sustainability, 2020, 12, 5436.	3.2	4
12	Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Agronomy, 2020, 10, 573.	3.0	96
13	Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery. Computers and Electronics in Agriculture, 2021, 180, 105880.	7.7	22
14	UAV Hyperspectral Remote Sensing Estimation of Soybean Yield Based on Physiological and Ecological Parameter and Meteorological Factor in China. Journal of the Indian Society of Remote Sensing, 2021, 49, 873-886.	2.4	4
15	Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches. Agricultural and Forest Meteorology, 2021, 297, 108275.	4.8	124
16	Integration of Crop Growth Model and Random Forest for Winter Wheat Yield Estimation From UAV Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6253-6269.	4.9	40
17	Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Sensors, 2021, 21, 1406.	3.8	50
18	Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy, 2021, 11, 340.	3.0	16

#	Article	IF	CITATIONS
19	Management of spot blotch of barley: an eco-friendly approach. Australasian Plant Pathology, 2021, 50, 389-401.	1.0	6
20	Satellite-based observations of the green depressing cropping system in a farming-pastoral ecotone of northern China. International Journal of Applied Earth Observation and Geoinformation, 2021, 98, 102312.	2.8	7
21	The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World. Remote Sensing, 2021, 13, 3382.	4.0	11
22	Quantitative assessment of the dynamics and attribution of arable land water scarcity for arid and semiarid areas based on water footprint framework: the Inner Mongolia case. Water Science and Technology: Water Supply, 2022, 22, 391-408.	2.1	1
23	Agricultural production system in arid and semi-arid regions. International Journal of Agricultural Science and Food Technology, 2021, , 234-244.	0.4	6
24	Exploring the relationship between key ecosystem services and socioecological drivers in alpine basins: A case of Issyk-Kul Basin in Central Asia. Global Ecology and Conservation, 2021, 29, e01729.	2.1	11
25	Monitoring of the Land Cover Changes in Iraq. Springer Water, 2020, , 181-203.	0.3	2
26	Assessing accuracy of barley yield forecasting with integration of climate variables and support vector regression. Annales Universitatis Mariae Curie-SkÅ,odowska, Sectio C, 2019, 73, 19.	0.2	3
27	Classification of forecasting methods in production engineering. Engineering Management in Production and Services, 2019, 11, 23-33.	0.9	9
28	Assessing the response of dryland barley yield to climate variability in semi-arid regions, Iran. Journal of Arid Land, 2021, 13, 905-917.	2.3	3
29	A Satellite-Based Method for National Winter Wheat Yield Estimating in China. Remote Sensing, 2021, 13, 4680.	4.0	13
30	Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM. Land Use Policy, 2022, 112, 105871.	5.6	7
31	Spatial–Temporal Changes and Driving Force Analysis of Ecosystems in the Loess Plateau Ecological Screen. Forests, 2022, 13, 54.	2.1	8
32	The Optimal Phenological Phase of Maize for Yield Prediction with High-Frequency UAV Remote Sensing, 2022, 14, 1559.	4.0	25
33	Climate Change Affects Crop Production Potential in Semi-Arid Regions: A Case Study in Dingxi, Northwest China, in Recent 30 Years. Sustainability, 2022, 14, 3578.	3.2	11
34	Using Machine Learning Models to Predict Hydroponically Grown Lettuce Yield. Frontiers in Plant Science, 2022, 13, 706042.	3.6	21
35	Forecasting the level of crop yields in the Kabardino-Balkarian Republic. Vestnik Voronežskogo Gosudarstvennogo Universiteta inženernyh Tehnologij, 2022, 84, 337-343.	0.3	0
36	Characterising the Land Surface Phenology of Middle Eastern Countries Using Moderate Resolution Landsat Data. Remote Sensing, 2022, 14, 2136.	4.0	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Prediction of winter wheat yield at county level in China using ensemble learning. Progress in Physical Geography, 2022, 46, 676-696.	3.2	5
38	Persistence versus dynamical seasonal forecasts of cereal crop yields. Scientific Reports, 2022, 12, 7422.	3.3	7
39	Maize Yield Estimation in Intercropped Smallholder Fields Using Satellite Data in Southern Malawi. Remote Sensing, 2022, 14, 2458.	4.0	8
40	Improving Generalisability and Transferability of Machine-Learning-Based Maize Yield Prediction Model Through Domain Adaptation. SSRN Electronic Journal, 0, , .	0.4	0
41	Forecasting of Cultivated Area in Egyptian Lands Using a Time Series Model for Sustainable Development. Open Journal of Applied Sciences, 2022, 12, 865-876.	0.4	2
42	A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning. Plants, 2022, 11, 1925.	3.5	26
43	UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture, 2023, 24, 187-212.	6.0	54
44	Biological-based and remote sensing techniques to link vegetative and reproductive development and assess pollen emission in Mediterranean grasses. Ecological Informatics, 2022, 72, 101898.	5.2	7
45	Effect of different surface irrigation systems and organic fertilization on water productivity of maize yield IOP Conference Series: Earth and Environmental Science, 2022, 1120, 012003.	0.3	0
46	Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems. Science of the Total Environment, 2023, 869, 161716.	8.0	3
47	The Role of Artificial Intelligence in Water Management in Agriculture for Climate Change Impacts. Studies in Big Data, 2023, , 221-238.	1.1	1
48	Integrating Remote Sensing Techniques and Meteorological Data to Assess the Ideal Irrigation System Performance Scenarios for Improving Crop Productivity. Water (Switzerland), 2023, 15, 1605.	2.7	1
49	Predicting Maize Theoretical Methane Yield in Combination with Ground and UAV Remote Data Using Machine Learning. Plants, 2023, 12, 1823.	3.5	1
50	Sentinelâ $\in 2$ accurately estimated wheat yield in a semi-arid region compared with Landsat 8. International Journal of Remote Sensing, 2023, 44, 4115-4136.	2.9	1
51	Improving generalisability and transferability of machine-learning-based maize yield prediction model through domain adaptation. Agricultural and Forest Meteorology, 2023, 341, 109652.	4.8	3
52	Estimating Maize Yield from 2001 to 2019 in the North China Plain Using a Satellite-Based Method. Remote Sensing, 2023, 15, 4216.	4.0	0
53	Earth Observation in the EMMENA Region: Scoping Review of Current Applications and Knowledge Gaps. Remote Sensing, 2023, 15, 4202.	4.0	0
54	Assessing the Performance of Satellite-Based Models for Crop Yield Estimation in the Canadian Prairies. Canadian Journal of Remote Sensing, 2023, 49, .	2.4	0

#	Article	IF	CITATIONS
55	Forecasting spring maize yield using vegetation indices and crop phenology metrics from <scp>UAV</scp> observations. Food and Energy Security, 2024, 13, .	4.3	0
56	Estimation of Winter Wheat Yield Using Multiple Temporal Vegetation Indices Derived from UAV-Based Multispectral and Hyperspectral Imagery. Remote Sensing, 2023, 15, 4800.	4.0	2
57	Spatio-temporal evolution of cropland ecosystem services value and its spatially varying dominate over the past two decades: A case study in Jiangxi Province in southern China. Journal of Cleaner Production, 2023, 427, 139228.	9.3	5
58	Improving Wheat Yield Estimating by Using Satellites Data and Machine Learning—Deep Learning Algorithm-In Morocco. Lecture Notes in Networks and Systems, 2023, , 262-276.	0.7	0
59	Research on the Inversion Model of Cultivated Land Quality Using High-Resolution Remote Sensing Data. Agronomy, 2023, 13, 2871.	3.0	0
60	Evaluating the potential of multi-temporal Sentinel-1 and Sentinel-2 data for regional mapping of olive trees. International Journal of Remote Sensing, 2023, 44, 7338-7364.	2.9	0
61	Integrating Climate Variable Data in Machine Learning Models for Predictive Analytics of Tomato Yields in California. , 2023, , .		0
62	Preharvest Durum Wheat Yield, Protein Content, and Protein Yield Estimation Using Unmanned Aerial Vehicle Imagery and Pléiades Satellite Data in Field Breeding Experiments. Remote Sensing, 2024, 16, 559.	4.0	0
63	Integrating Data Envelopment Analysis and Machine Learning Approaches for Energy Optimization, Decreased Carbon Footprints, and Wheat Yield Prediction Across North-Western India. Journal of Soil Science and Plant Nutrition, 2024, 24, 1424-1447.	3.4	1

CITATION REPORT