Burn injury: Challenges and advances in burn wound he

Advanced Drug Delivery Reviews 123, 3-17 DOI: 10.1016/j.addr.2017.09.018

Citation Report

#	Article	IF	CITATIONS
1	Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Materials Science and Engineering C, 2018, 89, 213-222.	3.8	96
2	Stem cells derived from burned skin - The future of burn care. EBioMedicine, 2018, 37, 509-520.	2.7	43
3	Biomimetic Elastomeric Polypeptide-Based Nanofibrous Matrix for Overcoming Multidrug-Resistant Bacteria and Enhancing Full-Thickness Wound Healing/Skin Regeneration. ACS Nano, 2018, 12, 10772-10784.	7.3	197
4	In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds. Advanced Healthcare Materials, 2018, 7, e1801092.	3.9	156
5	Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates. Frontiers in Microbiology, 2018, 9, 2329.	1.5	66
6	Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Biomaterials Science, 2018, 6, 2859-2870.	2.6	85
7	Case report of Wolfe grafting for the management of bilateral cicatricial eyelid ectropion following severe burn injuries. Annals of Medicine and Surgery, 2018, 34, 58-61.	0.5	4
8	Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model. Burns, 2018, 44, 1531-1542.	1.1	21
9	Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells and Development, 2018, 27, 1385-1405.	1.1	13
10	Thermal, chemical, biological and mechanical properties of chitosan films with powder of eggshell membrane for biomedical applications. Journal of Thermal Analysis and Calorimetry, 2019, 136, 725-735.	2.0	20
11	Ethnophytotherapy Practices for Wound Healing among Populations of District Haripur, KPK, Pakistan. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	0.5	8
12	Silkworm Silk Scaffolds Functionalized with Recombinant Spider Silk Containing a Fibronectin Motif Promotes Healing of Full-Thickness Burn Wounds. ACS Biomaterials Science and Engineering, 2019, 5, 4634-4645.	2.6	17
13	A Meta-Analysis of the Prevalence of Class 1 Integron and Correlation with Antibiotic Resistance in Pseudomonas aeruginosa Recovered from Iranian Burn Patients. Journal of Burn Care and Research, 2019, 40, 972-978.	0.2	10
14	Study of virulence genes and related with biofilm formation in Pseudomonas aeruginosa isolated from clinical samples of Iranian patients; A systematic review. Gene Reports, 2019, 17, 100471.	0.4	4
15	Multiple Injections of Autologous Adipose-Derived Stem Cells Accelerate the Burn Wound Healing Process and Promote Blood Vessel Regeneration in a Rat Model. Stem Cells and Development, 2019, 28, 1463-1472.	1.1	44
16	The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model. International Journal of Molecular Sciences, 2019, 20, 538.	1.8	56
17	Biotechnological Applications of Polyhydroxyalkanoates. , 2019, , .		24
10	Nanofibers from Polyhydroxyalbanoates and Their Applications in Tissue Engineering 2019 409-420		9

ъ

#	Article	IF	CITATIONS
19	Evaluation of Platensimycin and Platensimycin-Inspired Thioether Analogues against Methicillin-Resistant <i>Staphylococcus aureus</i> in Topical and Systemic Infection Mouse Models. Molecular Pharmaceutics, 2019, 16, 3065-3071.	2.3	20
20	The facile fabrication of wound compatible anti-microbial nanoparticles encapsulated Collagenous Chitosan matrices for effective inhibition of poly-microbial infections and wound repairing in burn injury care: Exhaustive in vivo evaluations. Journal of Photochemistry and Photobiology B: Biology, 2019. 197. 111539.	1.7	37
21	How the service delivery works in the Iranian specialised burns hospitals? A qualitative approach. PLoS ONE, 2019, 14, e0216489.	1.1	4
22	Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen–elastin–PCL scaffolds as dermal substitutes Burns, 2019, 45, 1639-1648.	1.1	53
23	Effects of depression on healing and inflammatory responses of acute wounds in rats. Wound Repair and Regeneration, 2019, 27, 462-469.	1.5	4
24	Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for burn wound treatment. Journal of Drug Delivery Science and Technology, 2019, 52, 110-121.	1.4	29
25	Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies. Military Medical Research, 2019, 6, 11.	1.9	29
26	Identification of Merkel cells associated with neurons in engineered skin substitutes after grafting to full thickness wounds. PLoS ONE, 2019, 14, e0213325.	1.1	13
27	Phytochemical screening and wound healing activity of Telephium imperati (L.) in rats. South African Journal of Botany, 2019, 123, 147-151.	1.2	12
28	Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds. Molecular Pharmaceutics, 2019, 16, 2011-2020.	2.3	42
29	Using Bioactive Glasses in the Management of Burns. Frontiers in Bioengineering and Biotechnology, 2019, 7, 62.	2.0	47
30	Wound healing and fibrosis: current stem cell therapies. Transfusion, 2019, 59, 884-892.	0.8	24
31	Skin bioprinting: the future of burn wound reconstruction?. Burns and Trauma, 2019, 7, 4.	2.3	84
32	Ozone Sterilization: Renewal Option in Medical Care in the Fight against Bacteria. American Journal of Therapeutics, 2021, 28, e807-e808.	0.5	3
33	In Vitro and in Vivo Studies of pH-Sensitive GHK-Cu-Incorporated Polyaspartic and Polyacrylic Acid Superabsorbent Polymer. ACS Omega, 2019, 4, 20118-20128.	1.6	8
34	Burn wound and therapeutic challenge. Journal of the Chinese Medical Association, 2019, 82, 748-749.	0.6	14
35	Effects and parameters of the photobiomodulation in experimental models of third-degree burn: systematic review. Lasers in Medical Science, 2019, 34, 637-648.	1.0	11
36	In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. International Journal of Pharmaceutics, 2019, 557, 199-207.	2.6	68

#	Article	IF	CITATIONS
37	Recent advances in nanoengineering cellulose for cargo delivery. Journal of Controlled Release, 2019, 294, 53-76.	4.8	87
38	Effectiveness of a hydrogel dressing as an analgesic adjunct to first aid for the treatment of acute paediatric thermal burn injuries: study protocol for a randomised controlled trial. Trials, 2019, 20, 13.	0.7	11
39	Novel pharmacotherapy for burn wounds: what are the advancements. Expert Opinion on Pharmacotherapy, 2019, 20, 305-321.	0.9	26
40	Temperature-controlled electrospinning of EVOH nanofibre mats encapsulated with Ag, CuO, and ZnO particles for skin wound dressing. Materials Research Express, 2019, 6, 015007.	0.8	5
41	Silicone elastomer gel impregnated with 20(S)-protopanaxadiol-loaded nanostructured lipid carriers for ordered diabetic ulcer recovery. Acta Pharmacologica Sinica, 2020, 41, 119-128.	2.8	17
42	Silk fibroin for skin injury repair: Where do things stand?. Advanced Drug Delivery Reviews, 2020, 153, 28-53.	6.6	139
43	The effect of a hydrolyzed collagen-based supplement on wound healing in patients with burn: A randomized double-blind pilot clinical trial. Burns, 2020, 46, 156-163.	1.1	24
44	Non-adherence with compression garment wear in adult burns patients: A systematic review and meta-ethnography. Burns, 2020, 46, 472-482.	1.1	15
45	Electrospun Polyurethane–Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds. ACS Biomaterials Science and Engineering, 2020, 6, 505-516.	2.6	47
46	Green preparation of anti-inflammation an injectable 3D porous hydrogel for speeding up deep second-degree scald wound healing. RSC Advances, 2020, 10, 36101-36110.	1.7	6
47	The effects of crossâ€linking a collagenâ€elastin dermal template on scaffold bioâ€stability and degradation. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1189-1200.	1.3	6
48	Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules, 2020, 164, 4613-4627.	3.6	92
49	Modulated mesenchymal stromal cells improve skin wound healing. Biologicals, 2020, 67, 1-8.	0.5	6
50	Unnatural Aminoâ€Acidâ€Based Starâ€Shaped Poly(<scp>l</scp> â€Ornithine)s as Emerging Longâ€Term and Biofilmâ€Disrupting Antimicrobial Peptides to Treat <i>Pseudomonas aeruginosa</i> à€Infected Burn Wounds. Advanced Healthcare Materials, 2020, 9, e2000647.	3.9	41
51	Co-Axial Fibers with Janus-Structured Sheaths by Electrospinning Release Corn Peptides for Wound Healing. ACS Applied Bio Materials, 2020, 3, 6430-6438.	2.3	25
52	The effectiveness and safety of beta antagonist in burned patients: A systematic review and metaâ€analysis. International Wound Journal, 2020, 17, 1881-1892.	1.3	7
53	Scar-Free Healing: Current Concepts and Future Perspectives. Nanomaterials, 2020, 10, 2179.	1.9	24
54	Wound healing of laser injured skin with glycerol monooleicate cubic liquid crystal. Burns, 2020, 46, 1381-1388.	1.1	5

#	Article	IF	CITATIONS
55	A modified scar model with controlled tension on secondary wound healing in mice. Burns and Trauma, 2020, 8, tkaa013.	2.3	4
56	Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydrate Polymers, 2020, 244, 116479.	5.1	53
57	Progenitor Biological Bandages: An Authentic Swiss Tool for Safe Therapeutic Management of Burns, Ulcers, and Donor Site Grafts. Methods in Molecular Biology, 2020, 2286, 49-65.	0.4	5
58	Elastinâ€Like Recombinamers: Deconstructing and Recapitulating the Functionality of Extracellular Matrix Proteins Using Recombinant Protein Polymers. Advanced Functional Materials, 2020, 30, 1909050.	7.8	29
59	Bone Marrow-Derived Mesenchymal Stem Cells Combined With Simvastatin Accelerates Burn Wound Healing by Activation of the Akt/mTOR Pathway. Journal of Burn Care and Research, 2020, 41, 1069-1078.	0.2	16
60	Comparison of botulinum toxin type A and aprotinin monotherapy with combination therapy in healing of burn wounds in an animal model. Molecular Biology Reports, 2020, 47, 2693-2702.	1.0	5
61	2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1626.	3.3	145
62	Calcium Alginate Polysaccharide Dressing as an Accelerated Treatment for Burn Wound Healing. , 0, , .		3
63	Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview. Materials, 2020, 13, 2853.	1.3	90
64	Design of a Multifunctional Biomaterial Inspired by Ancient Chinese Medicine for Hair Regeneration in Burned Skin. ACS Applied Materials & Interfaces, 2020, 12, 12489-12499.	4.0	48
65	New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. International Journal of Molecular Sciences, 2020, 21, 393.	1.8	80
66	Nanomaterials for Angiogenesis in Skin Tissue Engineering. Tissue Engineering - Part B: Reviews, 2020, 26, 203-216.	2.5	53
67	Down-regulation of long non-coding RNA HOTAIR promotes angiogenesis via regulating miR-126/SCEL pathways in burn wound healing. Cell Death and Disease, 2020, 11, 61.	2.7	32
68	Tripleâ€Helix‧tabilizing Effects in Collagen Model Peptides Containing PPIIâ€Helixâ€Preorganized Diproline Modules. Angewandte Chemie - International Edition, 2020, 59, 5747-5755.	7.2	18
69	Tripleâ€Helixâ€Stabilizing Effects in Collagen Model Peptides Containing PPIIâ€Helixâ€Preorganized Diproline Modules. Angewandte Chemie, 2020, 132, 5796-5804.	1.6	2
70	Topical transient receptor potential ankyrin 1 antagonist treatment attenuates nociception and inflammation in an ultraviolet B radiation-induced burn model in mice. Journal of Dermatological Science, 2020, 97, 135-142.	1.0	9
71	Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats. Saudi Pharmaceutical Journal, 2020, 28, 338-348.	1.2	33
72	Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomaterialia, 2020, 108, 56-66.	4.1	95

#	Article	IF	CITATIONS
73	Human-Derived Scaffold Components and Stem Cells Creating Immunocompatible Dermal Tissue Ensuing Regulated Nonfibrotic Cellular Phenotypes. ACS Biomaterials Science and Engineering, 2020, 6, 2740-2756.	2.6	18
74	Animal Models of Burn Wound Management. , 2020, , .		6
75	The long noncoding RNA PDK1â€AS/miRâ€125bâ€5p/VEGFA axis modulates human dermal microvascular endothelial cell and human umbilical vein endothelial cell angiogenesis after thermal injury. Journal of Cellular Physiology, 2021, 236, 3129-3142.	2.0	9
76	Design of a biofluid-absorbing bioactive sandwich-structured Zn–Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. Bioactive Materials, 2021, 6, 1910-1920.	8.6	78
77	Effectiveness and safety of ablative fractional CO2 laser for the treatment of burn scars: A case-control study. Burns, 2021, 47, 785-795.	1.1	5
78	Comparison Among Bone Marrow and Wheat Flour's Mixture and Standard Treatment on Healing Second-Degree Burn Wound in Rats. Journal of Burn Care and Research, 2021, 42, 288-293.	0.2	2
79	Neutrophil-derived heparin binding protein triggers vascular leakage and synergizes with myeloperoxidase at the early stage of severe burns (With video). Burns and Trauma, 2021, 9, tkab030.	2.3	6
80	Physical and Chemical Modification of Chitin/Chitosan for Functional Wound Dressings. Advances in Polymer Science, 2021, , 257-299.	0.4	2
81	Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules, 2021, 26, 619.	1.7	48
82	Facile fabrication of soy protein isolate-functionalized nanofibers with enhanced biocompatibility and hemostatic effect on full-thickness skin injury. Nanoscale, 2021, 13, 15743-15754.	2.8	17
83	Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. International Journal of Molecular Sciences, 2021, 22, 1408.	1.8	35
84	Nurses' perceptions on pain behaviours among burn patients: A qualitative inquiry in a Ghanaian tertiary hospital. International Journal of Africa Nursing Sciences, 2021, 15, 100323.	0.2	0
85	Nanostructured Cellulose–Gellan–Xyloglucan–Lysozyme Dressing Seeded with Mesenchymal Stem Cells for Deep Second-Degree Burn Treatment. International Journal of Nanomedicine, 2021, Volume 16, 833-850.	3.3	10
86	Development of next-generation antimicrobial hydrogel dressing to combat burn wound infection. Bioscience Reports, 2021, 41, .	1.1	22
87	Clinical Performance of Hydrogel-based Dressing in Facial Burn Wounds. Annals of Plastic Surgery, 2021, 86, S18-S22.	0.5	3
88	Bupivacaineâ€eluting soy protein structures for controlled release and localized pain relief: An in vitro and in vivo study. Journal of Biomedical Materials Research - Part A, 2021, 109, 1681-1692.	2.1	1
89	Burn Ointment Promotes Cutaneous Wound Healing by Modulating the PI3K/AKT/mTOR Signaling Pathway. Frontiers in Pharmacology, 2021, 12, 631102.	1.6	5
90	Burn Survivors' Experiences of the Ongoing Challenges after Discharge in South Korea: A Qualitative Study. Advances in Skin and Wound Care, 2021, 34, 1-6.	0.5	7

#	Article	IF	CITATIONS
91	Diverse Treatments for Deep Burn Wounds: A Case Report. Advances in Skin and Wound Care, 2021, 34, 1-6.	0.5	2
92	Engineering a novel antibacterial agent with multifunction: Protocatechuic acid-grafted-quaternized chitosan. Carbohydrate Polymers, 2021, 258, 117683.	5.1	32
93	The relationship between psychosocial distress and oral health status in patients with facial burns and mediation by oral health behaviour. BMC Oral Health, 2021, 21, 172.	0.8	12
94	3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing. International Journal of Energy Production and Management, 2021, 8, rbab014.	1.9	25
95	New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and In Vitro Biological Evaluation. Polymers, 2021, 13, 1291.	2.0	8
96	3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals, 2021, 14, 362.	1.7	32
97	Combination of metronidazole and pearl powders for the treatment of stage 2 pressure injury wounds: Case report and literature review. Complementary Therapies in Clinical Practice, 2021, 43, 101323.	0.7	1
98	Serum-derived exosomes accelerate scald wound healing in mice by optimizing cellular functions and promoting Akt phosphorylation. Biotechnology Letters, 2021, 43, 1675-1684.	1.1	5
99	Skin substitutes with noncultured autologous skin cell suspension heal porcine fullâ€ŧhickness wounds in a oneâ€stage procedure. International Wound Journal, 2022, 19, 188-201.	1.3	4
100	A clinical comparison of pure knitted silk and a complex synthetic skin substitute for the treatment of partial thickness burns. International Wound Journal, 2022, 19, 178-187.	1.3	5
101	Autologous Platelet-Rich Plasma Repairs Burn Wound and Reduces Burn Pain in Rats. Journal of Burn Care and Research, 2022, 43, 263-268.	0.2	5
102	Curcumin/Fe-SiO2 nano composites with multi-synergistic effects for scar inhibition and hair follicle regeneration during burn wound healing. Applied Materials Today, 2021, 23, 101065.	2.3	17
103	Cutting into wound repair. FEBS Journal, 2022, 289, 5034-5048.	2.2	13
104	A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydrate Polymers, 2021, 261, 117870.	5.1	115
105	3D Printing: Advancement in Biogenerative Engineering to Combat Shortage of Organs and Bioapplicable Materials. Regenerative Engineering and Translational Medicine, 2022, 8, 173-199.	1.6	25
106	3D Bioprinted Skin Substitutes for Accelerated Wound Healing and Reduced Scar. Journal of Bionic Engineering, 2021, 18, 900-914.	2.7	11
107	Delivery of Bioactive Compounds to Improve Skin Cell Responses on Microfabricated Electrospun Microenvironments. Bioengineering, 2021, 8, 105.	1.6	10
108	Novel pneumatically assisted atomization device for living cell delivery: application of sprayed mesenchymal stem cells for skin regeneration. Bio-Design and Manufacturing, 2022, 5, 220-232.	3.9	9

#	Article	IF	CITATIONS
109	In vivo study of the efficacy of bupivacaine-eluting novel soy protein wound dressings in a rat burn model. Burns, 2021, , .	1.1	2
110	Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1910-1925.	1.9	27
111	Resveratrol promotes skin wound healing by regulating the miR-212/CASP8 axis. Laboratory Investigation, 2021, 101, 1363-1370.	1.7	10
112	Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. International Journal of Biological Macromolecules, 2021, 183, 1145-1154.	3.6	84
113	Current knowledge of immunomodulation strategies for chronic skin wound repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 265-288.	1.6	15
114	Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Molecular Biotechnology, 2021, 63, 1103-1124.	1.3	22
115	Concomitant Pediatric Burns and Craniomaxillofacial Trauma. Journal of Craniofacial Surgery, 2021, 32, 2097-2100.	0.3	1
116	Stability of a one-dimensional morphoelastic model for post-burn contraction. Journal of Mathematical Biology, 2021, 83, 24.	0.8	8
117	The current and advanced therapeutic modalities for wound healing management. Journal of Diabetes and Metabolic Disorders, 2021, 20, 1883-1899.	0.8	9
118	3D Printing Personalized, Photocrosslinkable Hydrogel Wound Dressings for the Treatment of Thermal Burns. Advanced Functional Materials, 2021, 31, 2105932.	7.8	60
119	Analysis of the predictors of hypertrophic scarring pain and neuropathic pain after burn. Burns, 2022, 48, 1425-1434.	1.1	9
120	A sandwich structure composite wound dressing with firmly anchored silver nanoparticles for severe burn wound healing in a porcine model. International Journal of Energy Production and Management, 2021, 8, rbab037.	1.9	14
121	Role of mast cells in skin regeneration after thermal burn treated with melatonin-enriched dermal film. Bulletin of Russian State Medical University, 2021, , .	0.3	0
122	Risk factors of persistent insomnia among survivors of traumatic injury: a retrospective cohort study. Journal of Clinical Sleep Medicine, 2021, 17, 1831-1840.	1.4	10
123	Preclinical efficacy study of a porous biopolymeric scaffold based on gelatin-hyaluronic acid-chondroitin sulfate in a porcine burn injury model: role of critical molecular markers (VEGFA,) Tj ETQq0 0 0 rj	gBŢ <u></u> Overl	ock 10 Tf 50
124	Biomedical Materials (Bristol), 2021, 16, 055020. Severe burns: A prospect for infection management with ozone nanobubble saline. Burns, 2021, 47, 1457-1458.	1.1	1
125	Burns and biofilms: priority pathogens and in vivo models. Npj Biofilms and Microbiomes, 2021, 7, 73.	2.9	44
126	An in vitro study into the antimicrobial and cytotoxic effect of Acticoatâ,,¢ dressings supplemented with chlorhexidine. Burns, 2022, 48, 941-951.	1.1	3

		15	0
#	ARTICLE	IF	CITATIONS
127	Effects of nanoparticle-mediated Co-delivery of bFGF and VEGFA genes to deep burn wounds: An in vivo study. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112135.	2.5	8
128	The Efficacy of Silver-Based Electrospun Antimicrobial Dressing in Accelerating the Regeneration of Partial Thickness Burn Wounds Using a Porcine Model. Polymers, 2021, 13, 3116.	2.0	2
129	Preparation and properties of antibacterial PVDF composite thin films. European Polymer Journal, 2021, 160, 110803.	2.6	17
130	Polyphenol and Cu2+ surface-modified chitin sponge synergizes with antibacterial, antioxidant and pro-vascularization activities for effective scarless regeneration of burned skin. Chemical Engineering Journal, 2021, 419, 129488.	6.6	35
131	Elektrik yaralanması ve kardiyak komplikasyonların sıklığı. Turkish Journal of Clinics and Laboratory, 0,	'0.2	0
132	Multifunctional Nanofibrous Dressing with Antimicrobial and Anti-Inflammatory Properties Prepared by Needle-Free Electrospinning. Pharmaceutics, 2021, 13, 1527.	2.0	11
133	Incorporating redox-sensitive nanogels into bioabsorbable nanofibrous membrane to acquire ROS-balance capacity for skin regeneration. Bioactive Materials, 2021, 6, 3461-3472.	8.6	30
134	Potential wound dressings from electrospun medicated poly(butylene-adipate-co-terephthalate)/poly-(ε-caprolactone) microfibers. Journal of Molecular Liquids, 2021, 339, 116694.	2.3	10
135	3D bioprinting for fabricating artificial skin tissue. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112041.	2.5	39
136	Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles. Burns and Trauma, 2021, 9, tkab013.	2.3	34
137	Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity. RSC Advances, 2021, 11, 29029-29041.	1.7	25
138	Recent advances in nanotherapeutics for the treatment of burn wounds. Burns and Trauma, 2021, 9, tkab026.	2.3	24
139	Pathogenesis and Drug Resistance of Pseudomonas aeruginosa. , 2020, , 227-256.		1
140	Combination of platelet-rich plasma and stromal vascular fraction on the level of transforming growth factor-β in rat subjects experiencing deep dermal burn injury. Annals of Medicine and Surgery, 2020, 60, 737-742.	0.5	13
141	Environment adaptive hydrogels for extreme conditions: a review. Biosurface and Biotribology, 2019, 5, 104-109.	0.6	6
142	The role of Iranian medicinal plants in experimental surgical skin wound healing: An integrative review. Iranian Journal of Basic Medical Sciences, 2019, 22, 590-600.	1.0	9
143	A bilayered skin substitute developed using an eggshell membrane crosslinked gelatin–chitosan cryogel. Biomaterials Science, 2021, 9, 7921-7933.	2.6	10
144	Application of mNGS to describe the clinical and microbial characteristics of severe burn a tanker explosion at a tertiary medical center: a retrospective study patients following. BMC Infectious Diseases, 2021, 21, 1086.	1.3	3

#	Article	IF	CITATIONS
145	Patient Safety Culture in Burn Care Units from the Perspectives of Healthcare Providers: A Cross-sectional Study. Journal of Burn Care and Research, 2022, 43, 841-845.	0.2	1
146	Alu repetitive sequence CpG methylation changes in burn scars. Burns, 2022, 48, 1417-1424.	1.1	3
147	Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 show potential for skin wound therapy. Journal of Nanobiotechnology, 2021, 19, 309.	4.2	26
148	Development and Characterization of Ulvan Polysaccharides-Based Hydrogel Films for Potential Wound Dressing Applications. Drug Design, Development and Therapy, 2021, Volume 15, 4213-4226.	2.0	24
149	BLOOD CYTOKINE PROFILE AND LESION SITE REPAIR IN DYNAMICS OF EXPERIMENTAL THERMAL TRAUMA AFTER LOCAL AND SYSTEMIC MELATONIN ADMINISTRATION. Medical Immunology (Russia), 2021, 23, 705-710.	0.1	1
151	Ceftolozane/tazobactam in treating multifocal infection caused by a multiresistant Pseudomonas aeruginosa strain in a severely burned patient. Klinicka Farmakologie A Farmacie, 2019, 33, 41-45.	0.1	1
152	Adnexal Burns. , 2021, , 1223-1230.		0
153	Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. International Journal of Biological Macromolecules, 2021, 193, 996-1008.	3.6	24
154	Considerations for Pain Management in the Burn-Injured Patient. , 2021, , 97-108.		0
155	Negative pressure wound therapy promotes wound healing by suppressing macrophage inflammation in diabetic ulcers. Regenerative Medicine, 2020, 15, 2341-2349.	0.8	13
156	Sirt1 Suppresses Burn Injury-Induced Inflammatory Response through Activating Autophagy in Raw264.7 Macrophages. Journal of Investigative Medicine, 2021, 69, 761-767.	0.7	4
157	Murine Model of Thermal Burn Injury for Evaluating Protein Therapeutics Derived from Viruses. Methods in Molecular Biology, 2021, 2225, 93-105.	0.4	0
158	Evaluation of in vivo wound healing activity of Moroccan Citrus reticulata peel extract. Clinical Phytoscience, 2020, 6, .	0.8	8
160	Predictors of generic and burn-specific quality of life among adult burn patients admitted to a Lebanese burn care center: a cross-sectional single-center study. International Journal of Burns and Trauma, 2020, 10, 81-89.	0.2	1
161	Multi-Specialty Care for Second-Degree Pressure Cooker Explosion Burn Injuries. Spartan Medical Research Journal, 2020, 5, 17738.	0.3	0
162	Bacterial Skin Infections. , 2021, , .		0
163	Protective effect of Isoliquiritigenin on skin ischemia-reperfusion injury in rats. Israel Journal of Plant Sciences, 2021, 68, 90-98.	0.3	1
164	Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps. Micromachines, 2021, 12, 1459.	1.4	8

#	Article	IF	CITATIONS
165	Effectiveness of green tea cream in comparison with silver sulfadiazine cream in the treatment of second degree burn in human subjects. Journal of Herbal Medicine, 2022, 32, 100533.	1.0	1
166	Multi-Specialty Care for Second-Degree Pressure Cooker Explosion Burn Injuries. Spartan Medical Research Journal, 0, , .	0.3	1
167	Single-Cell Transcriptome Profiling Reveals Neutrophil Heterogeneity and Functional Multiplicity in the Early Stage of Severe Burn Patients. Frontiers in Immunology, 2021, 12, 792122.	2.2	10
168	The Impact of Initial Surgical Management on Outcome in Patients With Severe Burns: A 9-Year Retrospective Analysis. Journal of Burn Care and Research, 2022, , .	0.2	0
169	Improving Water-Absorption and Mechanical Strength: Lyotropic Liquid Crystalline–Based Spray Dressings as a Candidate Wound Management System. AAPS PharmSciTech, 2022, 23, 68.	1.5	5
170	Selfâ€Assembling Peptideâ€Based Hydrogels for Wound Tissue Repair. Advanced Science, 2022, 9, e2104165.	5.6	99
171	Stem Cell-Based Tissue Engineering for the Treatment of Burn Wounds: A Systematic Review of Preclinical Studies. Stem Cell Reviews and Reports, 2022, 18, 1926-1955.	1.7	9
172	Scar formation from the perspective of complexity science: a new look at the biological system as a whole. Journal of Wound Care, 2022, 31, 178-184.	0.5	4
173	Protective Effect of Casticin on Experimental Skin Wound Healing of Rats. Journal of Surgical Research, 2022, 274, 145-152.	0.8	2
174	A hydrogen-bonded antibacterial curdlan-tannic acid hydrogel with an antioxidant and hemostatic function for wound healing. Carbohydrate Polymers, 2022, 285, 119235.	5.1	82
175	Skin-like wound dressings with on-demand administration based on <i>in situ</i> peptide self-assembly for skin regeneration. Journal of Materials Chemistry B, 2022, 10, 3624-3636.	2.9	11
176	Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice. Burns and Trauma, 2022, 10, .	2.3	33
177	Relations among Stigma, Quality of Life, Resilience, and Life Satisfaction in Individuals with Burn Injuries. European Journal of Burn Care, 2022, 3, 145-155.	0.4	4
178	Experiences, Difficulties, and Coping Methods of Burn Nurses: An Exploratory-Descriptive Qualitative Study. Journal of Burn Care and Research, 2022, 43, 1277-1285.	0.2	2
179	Multifunctional fibrous wound dressings for refractory wound healing. Journal of Polymer Science, 2022, 60, 2191-2212.	2.0	12
180	Medicinal Herbs from Phyto-informatics: An aid for Skin Burn Management. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	0
181	Bioactive inorganic particlesâ€based biomaterials for skin tissue engineering. Exploration, 2022, 2, .	5.4	41
182	Review of History of Basic Principles of Burn Wound Management. Medicina (Lithuania), 2022, 58, 400.	0.8	1

#	Article	IF	CITATIONS
183	Optimizing the chitosan-PCL based membranes with random/aligned fiber structure for controlled ciprofloxacin delivery and wound healing. International Journal of Biological Macromolecules, 2022, 205, 500-510.	3.6	35
184	Use of sensory modulation approaches to improve compression garment adherence in adults after burn: An e-Delphi study. Burns, 2023, 49, 353-364.	1.1	2
185	A multifunctional mussel-inspired hydrogel with antioxidant, electrical conductivity and photothermal activity loaded with mupirocin for burn healing. Materials and Design, 2022, 217, 110598.	3.3	28
186	N-carboxymethyl chitosan/sodium alginate composite hydrogel loading plasmid DNA as a promising gene activated matrix for in-situ burn wound treatment. Bioactive Materials, 2022, 15, 330-342.	8.6	18
187	A Comparative Study of the Impacts of Aloe vera Gel and Silver sulfadiazine Cream 1% on Healing, Itching and Pain of Burn Wounds: A Randomized Clinical Trial. Journal of Caring Sciences, 2021, , .	0.5	1
188	Nanosilver Dressing in Treating Deep II Degree Burn Wound Infection in Patients with Clinical Studies. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-7.	0.7	4
189	Catalytic antimicrobial therapy using nanozymes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1769.	3.3	23
190	Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS Applied Bio Materials, 2022, 5, 2069-2106.	2.3	46
191	Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomaterials Science, 2022, 10, 3393-3409.	2.6	58
192	Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin removal to treat infected burn wounds. Journal of Materials Chemistry B, 2022, 10, 4189-4202.	2.9	23
193	Characterization and in vitro analysis of a poly(ε-caprolactone)–gelatin matrix produced by rotary jet spinning and applied as a skin dressing. Polymer Bulletin, 0, , .	1.7	1
194	A prospective comparative study on the effectiveness of two different non-adherent polyurethane dressings on split-thickness skin graft donor sites. Journal of Tissue Viability, 2022, 31, 531-536.	0.9	1
195	Toluidine blue O-induced photoinactivation inhibit the biofilm formation of methicillin-resistant Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102902.	1.3	5
196	Effect of Manual Acupuncture and Laser Acupuncture on Wound Closure in Rat with Deep Partial Thickness Burn Injury. Medical Acupuncture, 2022, 34, 240-250.	0.3	4
197	Is Post-Burn Scarring a Research Priority?. European Journal of Burn Care, 2022, 3, 355-361.	0.4	0
198	Effect of melatonin include into original dermal film upon adaptive immunity in experimental thermal trauma. Russian Journal of Immunology: RJI: Official Journal of Russian Society of Immunology, 2021, 24, 181-188.	0.2	0
200	A review of current advancements for wound healing: Biomaterial applications and medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2542-2573.	1.6	52
201	Efficacy of Silk Sericin and <i>Jasminum grandiflorum</i> L. Leaf Extract on Skin Injuries Induced by Burn in Mice. Journal of Burn Care and Research, 2023, 44, 58-64.	0.2	2

#	Article	IF	CITATIONS
203	Burn Wounds: Proliferating Site for Biofilm Infection. Applied Biochemistry and Biotechnology, 0, , .	1.4	0
204	Therapeutic Effect of Autologous Activated Platelet-rich Plasma Therapy on Mid-dermal to Full-thickness Burns: A Case Series. Archives of Plastic Surgery, 2022, 49, 405-412.	0.4	1
205	3D Living Dressing Improves Healing and Modulates Immune Response in a Thermal Injury Model. Tissue Engineering - Part C: Methods, 2022, 28, 431-439.	1.1	7
206	Protective Effects of Engineered Lactobacillus crispatus on Intrauterine Adhesions in Mice via Delivering CXCL12. Frontiers in Immunology, 0, 13, .	2.2	3
207	Research Progress on the Effect of Collagen-Related Materials on Burn Wound. Advances in Clinical Medicine, 2022, 12, 4649-4654.	0.0	0
208	Wound Healing Activity of Nanoemulgel Containing Artocarpus lakoocha Roxb. Extract on Burns Model in Rat. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 725-733.	0.1	1
209	A review on properties and antibacterial applications of polymer-functionalized carbon dots. Journal of Materials Science, 2022, 57, 12752-12781.	1.7	6
210	One-Pot Preparation of Collagen Tubes Using Diffusing Gelation. ACS Omega, 2022, 7, 22872-22878.	1.6	5
211	Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. Journal of Functional Biomaterials, 2022, 13, 86.	1.8	13
212	An active ingredient isolated from Ganoderma lucidum promotes burn wound healing via TRPV1/SMAD signaling. Aging, 2022, 14, 5376-5389.	1.4	3
213	A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomaterials Science, 2022, 10, 5054-5080.	2.6	20
214	A report of a non-healing burn wound managed through Ayurveda. Journal of Ayurveda Case Reports, 2022, 5, 84.	0.0	0
215	Multifactorial pathways in burn injury-induced chronic pain: novel targets and their pharmacological modulation. Molecular Biology Reports, 2022, 49, 12121-12132.	1.0	2
216	In vitro evaluation of a synthetic (Biobrane®) and a biopolymer (Epicite) wound dressing with primary human junvenile and adult fibroblasts after different colonization strategies. Annals of Anatomy, 2022, , 151981.	1.0	1
217	Role of animal models in biomedical research: a review. Laboratory Animal Research, 2022, 38, .	1.1	65
218	Biomimetic Asymmetric Composite Dressing by Electrospinning with Aligned Nanofibrous and Micropatterned Structures for Severe Burn Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 32799-32812.	4.0	38
219	Polysaccharide-based bioactive adsorbents for blood-contacting implant devices. Brazilian Journal of Chemical Engineering, 2022, 39, 1033-1046.	0.7	2
220	Epidemiology of burn injury and the ideal dressing in global burn care – Regional differences explored. Burns, 2023, 49, 1-14.	1.1	17

#	Article	IF	CITATIONS
221	A poloxamer/hyaluronic acid/chitosan-based thermosensitive hydrogel that releases dihydromyricetin to promote wound healing. International Journal of Biological Macromolecules, 2022, 216, 475-486.	3.6	22
222	A deep convolutional neural network-based approach for detecting burn severity from skin burn images. Machine Learning With Applications, 2022, 9, 100371.	3.0	8
223	Musselâ€inspired biomaterials: From chemistry to clinic. Bioengineering and Translational Medicine, 2022, 7, .	3.9	26
224	Risk factors for nosocomial infections and/or sepsis in adult burns patients: An integrative review. Intensive and Critical Care Nursing, 2022, , 103292.	1.4	3
225	Effects of photobiomodulation on re-epithelialization of burn wound: protocol for a randomized controlled trial. Trials, 2022, 23, .	0.7	3
226	<i>In vivo</i> therapeutic evaluation of a cellulose acetate hydrogel cross linked with ethylenediaminetetraacetic-dianhydride containing propolis ethanolic-extract for treating burns. Journal of Bioactive and Compatible Polymers, 2022, 37, 343-355.	0.8	3
227	Deciphering the therapeutic mechanism of topical WS2 nanosheets for the effective therapy of burn injuries. Applied Materials Today, 2022, 29, 101591.	2.3	2
228	Evaluation of Bromelain-Based Enzymatic Debridement Combined with Laser Doppler Imaging and Healing of Burn Wounds. Medical Science Monitor, 0, 28, .	0.5	2
229	5-Aminolevulinic Acid-Hyaluronic Acid Complexes Enhance Skin Retention of 5-Aminolevulinic Acid and Therapeutic Efficacy in the Treatment of Hypertrophic Scar. AAPS PharmSciTech, 2022, 23, .	1.5	2
230	Kiwi extract-incorporated poly(É›-caprolactone)/cellulose acetate blend nanofibers for healing acceleration of burn wounds. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 72-88.	1.9	8
231	Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomaterials Science and Engineering, 2022, 8, 3856-3870.	2.6	10
232	Recent Advances in Nano-Formulations for Skin Wound Repair Applications. Drug Design, Development and Therapy, 0, Volume 16, 2707-2728.	2.0	9
233	Bioprinting: from Technique to Application in Tissue Engineering and Regenerative Medicine. Current Molecular Medicine, 2022, 23, .	0.6	2
234	Rational Design of Intelligent and Multifunctional Dressing to Promote Acute/Chronic Wound Healing. ACS Applied Bio Materials, 2022, 5, 4055-4085.	2.3	40
235	Cell free DNA as a biomarker in medicolegal assessment in burn patients. International Journal of Health Sciences, 0, , 566-575.	0.0	0
236	Antibacterial and antifungal activities in vitro of a novel silver(I) complex with sulfadoxine-salicylaldehyde Schiff base. Polyhedron, 2022, 225, 116073.	1.0	8
237	Arbutin Inhibited Heat Stress-Induced Apoptosis and Promoted Proliferation and Migration of Heat-Injured Dermal Fibroblasts and Keratinocytes by Activating PI3K/AKT Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	0.5	2
238	Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Materials Advances, 2022, 3, 6707-6727.	2.6	10

#	Article	IF	CITATIONS
239	The importance of biomechanics and the kinetic chains of human movement in the development and treatment of burn scars $\hat{a} \in A$ narrative review with illustrative cases. Burns, 2022, , .	1.1	0
240	Ablative fractional carbon dioxide laser improves quality of life in patients with extensive burn scars: A nested case–control study. Lasers in Surgery and Medicine, 0, , .	1.1	4
241	Tackling Large Area Burn with Combinational Tissue Grafting. Journal of Investigative Surgery, 2022, 35, 1789-1789.	0.6	0
242	Multifunctional DNA Hydrogel Enhances Stemness of Adiposeâ€Derived Stem Cells to Activate Immune Pathways for Guidance Burn Wound Regeneration. Advanced Functional Materials, 2022, 32, .	7.8	25
243	Ionic complexation improves wound healing in deep second-degree burns and reduces in-vitro ciprofloxacin cytotoxicity in fibroblasts. Scientific Reports, 2022, 12, .	1.6	2
244	Sterile thermoresponsive formulations for emergency management of burns. Materials Today: Proceedings, 2022, , .	0.9	0
245	Cross-linked lyotropic liquid crystal particles functionalized with antimicrobial peptides. International Journal of Pharmaceutics, 2022, 627, 122215.	2.6	4
246	Antimicrobial effect of <i>Brachystegia boehmii</i> extracts and their green synthesised silver zero-valent derivatives on burn wound infectious bacteria. International Journal of Transgender Health, 2022, 15, 1117-1125.	1.1	0
247	Engineered stem cell exosomes for oral and maxillofacial wound healing. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
248	Chitosan degradation products promote healing of burn wounds of rat skin. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
249	Research progress on risk factors of delirium in burn patients: A narrative review. Frontiers in Psychiatry, 0, 13, .	1.3	1
250	Mussel-inspired hydrogel with injectable self-healing and antibacterial properties promotes wound healing in burn wound infection. NPG Asia Materials, 2022, 14, .	3.8	13
251	Hyaluronic Acid-Modified ZIF-8 Nano-Vehicle for Self-Adaption Release of Curcumin for the Treatment of Burns. ACS Applied Nano Materials, 2022, 5, 16094-16107.	2.4	7
252	Rock Climbing-Inspired Electrohydrodynamic Cryoprinting of Micropatterned Porous Fiber Scaffolds with Improved MSC Therapy for Wound Healing. Advanced Fiber Materials, 2023, 5, 312-326.	7.9	8
253	Development of Radiosterilized Porcine Skin Electrosprayed with Silver Nanoparticles Prevents Infections in Deep Burns. International Journal of Molecular Sciences, 2022, 23, 13910.	1.8	1
254	A multifunctional black phosphorus-based adhesive patch intrinsically induces partial EMT for effective burn wound healing. Biomaterials Science, 2022, 11, 235-247.	2.6	6
255	Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing. International Journal of Biological Macromolecules, 2023, 225, 90-102.	3.6	5
256	Levofloxacin loaded clove oil nanoscale emulgel promotes wound healing in Pseudomonas aeruginosa biofilm infected burn wound in mice. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113113.	2.5	3

#	Article	IF	Citations
257	A broad-spectrum antibacterial and tough hydrogel dressing accelerates healing of infected wound in vivo. , 2023, 145, 213244.		7
258	Satisfaction and Functional Outcome of Surgical Treatment in Patients with Brachial Plexus Injury: A Decade of Retrospective Comparative Study. World Journal of Plastic Surgery, 2022, 11, 28-37.	0.2	2
259	Topical Antimicrobial Agents for the Prevention of Burn-Wound Infection. What Do International Guidelines Recommend? A Systematic Review. World Journal of Plastic Surgery, 2022, 11, 3-12.	0.2	3
260	Modulation of Lymphangiogenesis in Incisional Murine Diabetic Wound Healing Using Negative Pressure Wound Therapy. Advances in Wound Care, 2023, 12, 483-497.	2.6	5
261	Advances of hydrogel combined with stem cells in promoting chronic wound healing. Frontiers in Chemistry, 0, 10, .	1.8	9
262	Spray nebulization enables polycaprolactone nanofiber production in a manner suitable for generation of scaffolds or direct deposition of nanofibers onto cells. Biofabrication, 0, , .	3.7	0
263	Development of a portable reflectance confocal microscope and its application in the noninvasive in vivo evaluation of mesenchymal stem cell-promoted cutaneous wound healing. Bio-Design and Manufacturing, 0, , .	3.9	0
264	Microbiota-Pain Association; Recent Discoveries and Research Progress. Current Microbiology, 2023, 80, .	1.0	5
265	Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Advanced Drug Delivery Reviews, 2023, 193, 114670.	6.6	29
266	Twoâ€Dimensional Mg ₂ Si Nanosheetâ€Enabled Sustained Hydrogen Generation for Improved Repair and Regeneration of Deeply Burned Skin. Advanced Healthcare Materials, 2023, 12, .	3.9	8
267	Abordaje clÃnico y quirúrgico de las quemaduras en atención primaria. , 0, 2, 157.		0
268	Curcumin Functionalized Electrospun Fibers with Efficient pH Real-Time Monitoring and Antibacterial and Anti-inflammatory Properties. ACS Biomaterials Science and Engineering, 2023, 9, 474-484.	2.6	9
269	Application of Comfort Therapy under eCASH Concept in Acute and Chronic Wound Treatment. Dermatology and Therapy, 0, , .	1.4	0
270	Effect of oral <i>Calendula officinalis</i> on second-degree burn wound healing. Scars, Burns & Healing, 2023, 9, 205951312211340.	0.6	2
271	Clarifying sleep characteristics and analyzing risk factors of sleep disorders to promote a predictive, preventive, and personalized medicine in patients with burn scars. EPMA Journal, 2023, 14, 131-142.	3.3	1
272	Novel Collagen-Polyphenols-Loaded Silica Composites for Topical Application. Pharmaceutics, 2023, 15, 312.	2.0	2
273	Severe Burn Injury Significantly Alters the Gene Expression and m6A Methylation Tagging of mRNAs and IncRNAs in Human Skin. Journal of Personalized Medicine, 2023, 13, 150.	1.1	1
274	Nano-Enabled Chronic Wound Healing Strategies: Burn and Diabetic Ulcer Wounds. Journal of Biomedical Nanotechnology, 2022, 18, 2081-2099.	0.5	1

#	Article	IF	Citations
275	Applications of biomaterials in wound healing management: from fundamental physiology to advanced technology. , 2023, , 349-369.		1
277	A therapeutic role of exosomal lncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization. Cytokine, 2023, 165, 156175.	1.4	4
278	Microfibers of fish waste-derived collagen and ion-doped bioactive glass in stimulating the healing sequences in full-thickness cutaneous burn injury. Journal of Drug Delivery Science and Technology, 2023, 83, 104429.	1.4	1
279	In-situ bioprinting of skin - A review. Bioprinting, 2023, 31, e00271.	2.9	4
280	Curcumin-stabilized silver nanoparticles encapsulated in biocompatible electrospun nanofibrous scaffold for sustained eradication of drug-resistant bacteria. Journal of Hazardous Materials, 2023, 452, 131290.	6.5	17
281	Functional carbohydrate-based hydrogels for diabetic wound therapy. Carbohydrate Polymers, 2023, 312, 120823.	5.1	10
282	Research Progress of Topical Recombinant Human Granulocyte Macrophage Colony-Stimulating Factor Combined with Nano-Silver Dressing in the Treatment of Burn Wounds. Advances in Clinical Medicine, 2022, 12, 12028-12032.	0.0	0
283	Advanced multilayer composite dressing with co-delivery of gelsevirine and silk fibroin for burn wound healing. Composites Part B: Engineering, 2023, 253, 110549.	5.9	15
284	Inflammatory response: The target for treating hyperpigmentation during the repair of a burn wound. Frontiers in Immunology, 0, 14, .	2.2	1
285	Antiâ€Dehydration and Rapid Triggerâ€Detachable Multifunctional Hydrogels Promote Scarless Therapeutics of Deep Burn. Advanced Functional Materials, 2023, 33, .	7.8	20
286	Photopolymerized silk fibroin gel for advanced burn wound care. International Journal of Biological Macromolecules, 2023, 233, 123569.	3.6	7
287	The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn—A Review. Pharmaceutics, 2023, 15, 633.	2.0	5
288	Janus amphiphilic nanofiber membranes synergistically drive antibacterial and anti-inflammatory strategies for skin wound healing. Materials and Design, 2023, 227, 111778.	3.3	10
289	<scp>3D</scp> printed wound constructs for skin tissue engineering: A systematic review in experimental animal models. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 1419-1433.	1.6	1
290	3D Printed Bioactive PLGA Dermal Scaffold for Burn Wound Treatment. ACS Materials Au, 2023, 3, 265-272.	2.6	1
291	The Burn Wound. Surgical Clinics of North America, 2023, , .	0.5	0
292	Stability of a two-dimensional biomorphoelastic model for post-burn contraction. Journal of Mathematical Biology, 2023, 86, .	0.8	0
293	Alternative Treatment of Bacterial Wound Infections. , 2022, 14, 61-69.		0

CITATI	 D	_
	REDC	NDT.
CITAT	NLFC	

#	Article	IF	CITATIONS
294	GL-FusionNet: Fusing global and local features to classify deep and superficial partial thickness burn. Mathematical Biosciences and Engineering, 2023, 20, 10153-10173.	1.0	1
295	Biosynthesis and characterization of silver nanoparticles by Aloe vera leaves extract and determination of its antibacterial activity. AIP Conference Proceedings, 2023, , .	0.3	1
296	Antibioticâ€Derived Carbonâ€Nanodotâ€Decorated Hydrogel for Reactive Oxygen Speciesâ€Enhanced Antiâ€Infection Through Biofilm Damage. Advanced Functional Materials, 2023, 33, .	7.8	12
297	ATP-induced hypothermia improves burn injury and relieves burn pain in mice. Journal of Thermal Biology, 2023, 114, 103563.	1.1	0
298	Multilayer electrospun nanofibrous membranes for drug - controlled release. Journal of the Textile Institute, 2024, 115, 208-217.	1.0	0
299	FTO overexpression expedites wound healing and alleviates depression in burn rats through facilitating keratinocyte migration and angiogenesis via mediating TFPI-2 demethylation. Molecular and Cellular Biochemistry, 2024, 479, 325-335.	1.4	5
324	3D Bioprinting of Skin Tissue Model. , 2023, , 83-104.		0
325	Mesenchymal stem cell-derived exosomes: versatile nanomaterials for skin wound treatment. Nano Research, 0, , .	5.8	1

Classification of Wound Infections. , 2023, , 369-383.