Current status and potential of bioenergy in the Russian

Renewable and Sustainable Energy Reviews 81, 625-634

DOI: 10.1016/j.rser.2017.08.045

Citation Report

#	ARTICLE	IF	CITATIONS
1	Analysis of the resource potential of biogas production in the Russian Federation. Journal of Physics: Conference Series, 2018, 1111, 012012.	0.4	3
2	A Review of Commercial Biogas Systems and Lessons for Africa. Energies, 2018, 11, 2984.	3.1	68
3	Sustainability Assessment of Bioenergy from a Global Perspective: A Review. Sustainability, 2018, 10, 2739.	3.2	21
4	Study of feasibility of local renewable resources for substitution of fossil fuels in the Far North of Russia. IOP Conference Series: Earth and Environmental Science, 2018, 177, 012022.	0.3	0
5	Pyrolysis of sewage sludge by solid heat carrier. Waste Management, 2019, 87, 218-227.	7.4	33
6	Innovative technology for dismantling the windings of electric motors using ultrasonic radiation. IOP Conference Series: Earth and Environmental Science, 2019, 337, 012071.	0.3	9
7	Modelling of the developed system for wood waste gasification. IOP Conference Series: Earth and Environmental Science, 2019, 337, 012050.	0.3	1
8	Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia. Energies, 2019, 12, 3948.	3.1	9
9	Evolution and perspectives of the bioenergy applications in Spain. Journal of Cleaner Production, 2019, 213, 553-568.	9.3	36
10	Biotechnology for thermal power plants. A review of recent and perspective technologies. Sustainable Energy Technologies and Assessments, 2019, 31, 132-141.	2.7	9
11	Big Data-driven World: Legislation Issues and Control Technologies. Studies in Systems, Decision and Control, 2019, , .	1.0	2
12	Renewable energy sources, power markets, and smart grids. , 2020, , 97-151.		8
13	Consumers, prosumers, and the smart grids. , 2020, , 191-238.		1
14	Establishing and comparing energy security trends in resource-rich exporting nations (Russia and the) Tj ETQq1 1	1 0,7,8431	4 rgBT /Overlo
15	Biogas Production in the Russian Federation: Current Status, Potential, and Barriers. Energies, 2020, 13, 3620.	3.1	11
16	Assessment of Indian bioenergy policy for sustainable environment and its impact for rural India: Strategic implementation and challenges. Environmental Technology and Innovation, 2020, 20, 101078.	6.1	48
17	Influence of Sodium Oxide on the Fusion of Solid Municipal Waste Ash. Russian Journal of Physical Chemistry B, 2020, 14, 647-653.	1.3	6
18	Bioenergy technologies and biomass potential vary in Northern European countries. Renewable and Sustainable Energy Reviews, 2020, 133, 110238.	16.4	44

#	Article	IF	CITATIONS
19	Spatial distribution of usable biomass feedstock and technical bioenergy potential in China. GCB Bioenergy, 2020, 12, 54-70.	5.6	27
20	Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland. Energies, 2020, 13, 1495.	3.1	16
21	Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renewable and Sustainable Energy Reviews, 2020, 127, 109842.	16.4	136
22	Fusibility of Agricultural Plant Waste Ash under the Conditions of High-Temperature Processing. Russian Journal of Applied Chemistry, 2021, 94, 354-361.	0.5	O
23	Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study. Engineering Science and Technology, an International Journal, 2022, 26, 100992.	3.2	10
24	Decarbonize Russia — A Best–Worst Method approach for assessing the renewable energy potentials, opportunities and challenges. Energy Reports, 2021, 7, 4498-4515.	5.1	37
25	Biomass integration for energy recovery and efficient use of resources: Tomsk Region. Energy, 2021, 235, 121378.	8.8	12
26	A fine-resolution estimation of the biomass resource potential across China from 2020 to 2100. Resources, Conservation and Recycling, 2022, 176, 105944.	10.8	19
27	Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode. Renewable Energy, 2022, 181, 966-977.	8.9	26
28	Anaerobic codigestion with fruit and vegetable wastes: An opportunity to enhance the sustainability and circular economy of the WWTP digesters., 2021,, 103-132.		2
29	Spatial assessment of the distribution and potential of bioenergy resources in Kazakhstan. Advances in Geosciences, 0, 45, 217-225.	12.0	18
30	The Role of Advocacy Coalitions in Shaping the Technological Innovation Systems: The Case of the Russian Renewable Energy Policy. Energies, 2021, 14, 6941.	3.1	5
31	The promotion of renewable energy technologies in the former Soviet bloc: Why, how, and with what prospects?. Energy Reports, 2021, 7, 6983-6994.	5.1	13
32	Development of Communication as a Tool for Ensuring National Security in Data-Driven World (Russian Far North Case-Study). Studies in Systems, Decision and Control, 2019, , 237-248.	1.0	4
33	Hayvansal Atık Kaynaklı Biyogaz Potansiyeli: Bitlis Örneği. Academic Platform Journal of Engineering and Science, 2019, 7, 1-1.	0.6	8
34	Reducing energy consumption of barkwood residue grinding on equipment with knife-based operational units. Journal of Applied Engineering Science, 2020, 18, 364-371.	0.9	0
35	Integrated conversion technologies for sustainable agri-food waste valorization: A critical review. Biomass and Bioenergy, 2022, 156, 106314.	5.7	20
36	Green energy development in an industrial region: A case-study of Sverdlovsk region. Energy Reports, 2021, 7, 137-148.	5.1	7

3

#	Article	IF	Citations
37	A review on global perspectives of sustainable development in bioenergy generation. Bioresource Technology, 2022, 348, 126791.	9.6	91
38	Functional analysis of technological innovation system with inclusion of sectoral and spatial perspectives: The case of the biogas industry in Russia. Environmental Innovation and Societal Transitions, 2022, 42, 232-250.	5.5	8
39	Biogas Potential of Agriculture. Bioenergy Research, 2022, 15, 2132-2144.	3.9	3
40	Feasibility Study of Anaerobic Codigestion of Municipal Organic Waste in Moderately Pressurized Digesters: A Case for the Russian Federation. Applied Sciences (Switzerland), 2022, 12, 2933.	2.5	4
41	Greenhouse gas mitigation potential of replacing diesel fuel with wood-based bioenergy in an arctic Indigenous community: A pilot study in Fort McPherson, Canada. Biomass and Bioenergy, 2022, 159, 106367.	5.7	9
42	Heat Recovery of Low-Grade Energy Sources in the System of Preparation of Biogas Plant Substrates. International Journal of Energy Optimization and Engineering, 2022, 11, 1-17.	0.6	0
43	Application of some ways to intensify the process of anaerobic bioconversion of organic matter. , 2022, , $1\text{-}33$.		1
44	Simulation Model for Biogas Project Efficiency Maximization. Bioenergy Research, 2023, 16, 1084-1098.	3.9	3
45	Approbation of an innovative method of pretreatment of dark fermentation feedstocks. International Journal of Hydrogen Energy, 2022, 47, 33272-33281.	7.1	7
46	Comparative analysis of bioenergy potential and suitability modeling in the USA and Turkey. Sustainable Energy Technologies and Assessments, 2022, 53, 102626.	2.7	4
47	Biomass Utilization for Biodiesel Production: A Sustainable Technique to Meet Global Fuel Demands and Future Scope. Microorganisms for Sustainability, 2022, , 25-39.	0.7	0
48	Production of Biohydrogen from Organ-Containing Waste for Use in Fuel Cells. Energies, 2022, 15, 8019.	3.1	3
49	Exploring the Pivotal Significance of Microalgae-Derived Sustainable Lipid Production: A Critical Review of Green Bioenergy Development. Energies, 2023, 16, 531.	3.1	1
50	Study of a Two-Stage Pyrolytic Conversion of Dried Sewage Sludge into Synthesis Gas. Russian Journal of Physical Chemistry B, 2022, 16, 1067-1074.	1.3	2
51	Migration Activity of Heavy Metals During Pyrolysis of Dried Sewage Sludge in a Fixed-Bed Reactor. Journal of Engineering Physics and Thermophysics, 0, , .	0.6	0
52	Renewable Energy Potential and CO2 Performance of Main Biomasses Used in Brazil. Energies, 2023, 16, 3959.	3.1	1
53	Aqueous-Phase Hydrogenation of Furfural in the Presence of Supported Metal Catalysts of Different Types. A Review. Doklady Physical Chemistry, 2023, 509, 33-50.	0.9	1
54	Perspective of renewable energy in the BRICS country. E-Prime, 2023, 5, 100250.	2.0	0

#	Article	IF	CITATIONS
55	Assessment of biomass-based green hydrogen production potential in Kazakhstan. International Journal of Hydrogen Energy, 2024, 49, 349-355.	7.1	4
56	Electroresponsive Materials for Soft Robotics. Nanobiotechnology Reports, 2023, 18, 189-206.	0.6	0
57	Russian Market of Enzyme Preparations and Microorganisms for the Food Industry. Nanobiotechnology Reports, 2023, 18, 475-479.	0.6	0
58	Gasification of Coal and Biomass Mixtures. Solid Fuel Chemistry, 2023, 57, 373-380.	0.7	0
59	Assessment of Bioenergy Potential from Biomass Waste to Improve Access to Clean Energy for Cooking in Mali. Sustainability, 2024, 16, 455.	3.2	0
60	Innovations in textile wastewater management: a review of zero liquid discharge technology. Environmental Science and Pollution Research, 2024, 31, 12597-12616.	5. 3	0
61	Costs of Coal Abatement for Residential Heating to Reduce Urban Air Pollution in Asian Russia: Evidence from Krasnoyarsk. Energies, 2024, 17, 640.	3.1	0
62	Mass balance of palm waste energy potential in palm oil processing in South West Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science, 2024, 1297, 012076.	0.3	0