An open, multi-vendor, multi-field-strength brain MR d available skull stripping methods agreement

Neurolmage 170, 482-494

DOI: 10.1016/j.neuroimage.2017.08.021

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Neuroimage special issue on brain segmentation and parcellation - Editorial. NeuroImage, 2018, 170, 1-4.	4.2	5
2	Multicenter Imaging Studies: Automated Approach to Evaluating Data Variability and the Role of Outliers. , 2018, , .		1
3	CompNet: Complementary Segmentation Network for Brain MRI Extraction. Lecture Notes in Computer Science, 2018, , 628-636.	1.3	22
4	Silver standard masks for data augmentation applied to deep-learning-based skull-stripping. , 2018, , .		11
5	An efficient and accurate method for robust interâ€dataset brain extraction and comparisons with 9 other methods. Human Brain Mapping, 2018, 39, 4241-4257.	3.6	4
6	Automated brain extraction of multisequence MRI using artificial neural networks. Human Brain Mapping, 2019, 40, 4952-4964.	3.6	284
7	Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks. Artificial Intelligence in Medicine, 2019, 98, 48-58.	6.5	33
8	Study of Tissue Variation and Analysis of MR Brain Images using Optimized Multilevel Threshold and Deep CNN Features in Neurodegenerative Disorders. , 2019, 2019, 2773-2776.		Ο
9	Investigation of Fully Connected Neural Networks for Reconstruction of MR Images. IFMBE Proceedings, 2019, , 293-298.	0.3	0
10	Extending Supervoxel-based Abnormal Brain Asymmetry Detection to the Native Image Space. , 2019, 2019, 450-453.		2
11	Brain Extraction Network Trained with "Silver Standard" Data and Fine-Tuned with Manual Annotation for Improved Segmentation. , 2019, , .		0
12	Restoration of Lossy JPEG-Compressed Brain MR Images Using Cross-Domain Neural Networks. IEEE Signal Processing Letters, 2020, 27, 141-145.	3.6	10
13	Dual-Encoder-Unet For Fast Mri Reconstruction. , 2020, , .		8
14	State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms. Journal of Digital Imaging, 2020, 33, 1443-1464.	2.9	31
15	Deep Generalization of Structured Low-Rank Algorithms (Deep-SLR). IEEE Transactions on Medical Imaging, 2020, 39, 4186-4197.	8.9	27
17	Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction. Magnetic Resonance Imaging, 2020, 71, 140-153.	1.8	28
18	Conventional and Deep Learning Methods for Skull Stripping in Brain MRI. Applied Sciences (Switzerland), 2020, 10, 1773.	2.5	30
19	Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. NeuroImage, 2020, 220, 117081.	4.2	35

#	Article	IF	CITATIONS
20	Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods. Scientific Data, 2020, 7, 127.	5.3	33
21	Enhanced Deep-Learning-Based Magnetic Resonance Image Reconstruction by Leveraging Prior Subject-Specific Brain Imaging: Proof-of-Concept Using a Cohort of Presumed Normal Subjects. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1126-1136.	10.8	12
22	Triple-D network for efficient undersampled magnetic resonance images reconstruction. Magnetic Resonance Imaging, 2021, 77, 44-56.	1.8	3
24	A Modified Generative Adversarial Network Using Spatial and Channel-Wise Attention for CS-MRI Reconstruction. IEEE Access, 2021, 9, 83185-83198.	4.2	14
25	Anatomy of Domain Shift Impact on U-Net Layers in MRI Segmentation. Lecture Notes in Computer Science, 2021, , 211-220.	1.3	12
26	Improving Across Dataset Brain Age Predictions Using Transfer Learning. Lecture Notes in Computer Science, 2021, , 243-254.	1.3	1
27	An edge guided cascaded Uâ€net approach for accelerated magnetic resonance imaging reconstruction. International Journal of Imaging Systems and Technology, 2021, 31, 2014-2022.	4.1	4
28	Machine learning in Magnetic Resonance Imaging: Image reconstruction. Physica Medica, 2021, 83, 79-87.	0.7	29
29	Current applications of deep-learning in neuro-oncological MRI. Physica Medica, 2021, 83, 161-173.	0.7	22
30	Reconstruction and Segmentation of Parallel MR Data Using Image Domain Deep-SLR. , 2021, 2021, .		1
32	SR-Net: A sequence offset fusion net and refine net for undersampled multislice MR image reconstruction. Computer Methods and Programs in Biomedicine, 2021, 202, 105997.	4.7	8
33	Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics, 2022, 20, 109-137.	2.8	20
34	Assessing the Accuracy and Reproducibility of <scp>PARIETAL</scp> : A Deep Learning Brain Extraction Algorithm. Journal of Magnetic Resonance Imaging, 2021, , .	3.4	7
35	A deep cascade of ensemble of dual domain networks with gradient-based T1 assistance and perceptual refinement for fast MRI reconstruction. Computerized Medical Imaging and Graphics, 2021, 91, 101942.	5.8	6
36	A multispeaker dataset of raw and reconstructed speech production real-time MRI video and 3D volumetric images. Scientific Data, 2021, 8, 187.	5.3	16
38	Exploratory Radiomic Analysis of Conventional vs. Quantitative Brain MRI: Toward Automatic Diagnosis of Early Multiple Sclerosis. Frontiers in Neuroscience, 2021, 15, 679941.	2.8	7
39	Multiscale U-net-based accelerated magnetic resonance imaging reconstruction. Signal, Image and Video Processing, 2022, 16, 881-888.	2.7	4
40	A comparative study between stateâ€ofâ€theâ€art <scp>MRI</scp> deidentification and <scp>AnonyMI</scp> , a new method combining reâ€identification risk reduction and geometrical preservation. Human Brain Mapping, 2021, 42, 5523-5534.	3.6	8

#	Article	IF	Citations
41	Skull-Stripping of Glioblastoma MRI Scans Using 3D Deep Learning. Lecture Notes in Computer Science, 2020, 11992, 57-68.	1.3	11
42	First U-Net Layers Contain More Domain Specific Information Than the Last Ones. Lecture Notes in Computer Science, 2020, , 117-126.	1.3	15
43	Static MRI Reconstruction Based on K-space and Image-domain Information. , 2021, , .		0
44	Partial Fourier reconstruction of complex MR images using complexâ€valued convolutional neural neural networks. Magnetic Resonance in Medicine, 2022, 87, 999-1014.	3.0	9
45	Enhanced MRI Reconstruction Network Using Neural Architecture Search. Lecture Notes in Computer Science, 2020, , 634-643.	1.3	5
46	Deep Cascade Wavelet Network for Compressed Sensing-MRI. Lecture Notes in Computer Science, 2020, , 218-228.	1.3	0
48	Advanced Cascaded Anisotropic Convolutional Neural Network Architecture Based Optimized Feature Selection Brain Tumour Segmentation and Classification. , 2020, , .		1
49	Iterative self-consistent parallel magnetic resonance imaging reconstruction based on nonlocal low-rank regularization. Magnetic Resonance Imaging, 2022, 88, 62-75.	1.8	2
50	Object recognition datasets and challenges: A review. Neurocomputing, 2022, 495, 129-152.	5.9	18
51	Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets. Frontiers in Neuroinformatics, 2021, 15, 805669.	2.5	19
52	Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information. Applied Intelligence, 2022, 52, 14693-14710.	5.3	6
53	Approximating 1-Wasserstein Distance between Persistence Diagrams by Graph Sparsification. , 2022, , 169-183.		Ο
54	Automated 2D Slice-Based Skull Stripping Multi-View Ensemble Model on NFBS and IBSR Datasets. Journal of Digital Imaging, 2022, 35, 374-384.	2.9	5
55	Al-Based Reconstruction for Fast MRI—A Systematic Review and Meta-Analysis. Proceedings of the IEEE, 2022, 110, 224-245.	21.3	57
56	Implicit data crimes: Machine learning bias arising from misuse of public data. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117203119.	7.1	37
57	Asymmetric decoder design for efficient convolutional encoder-decoder architectures in medical image reconstruction. , 2022, , .		1
58	fastMRI+, Clinical pathology annotations for knee and brain fully sampled magnetic resonance imaging data. Scientific Data, 2022, 9, 152.	5.3	14
59	Deep MRI reconstruction with radial subsampling. , 2022, , .		2

CITATION REPORT

ARTICLE IF CITATIONS Supervised domain adaptation approach on heterogenous, multi-center MR imaging datasets., 2021,,. 0 60 Swin transformer for fast MRI. Neurocomputing, 2022, 493, 281-304. Harmonisation of scanner-dependent contrast variations in magnetic resonance imaging for radiation 62 2.9 4 oncology, using style-blind auto-encoders. Physics and Imaging in Radiation Oncology, 2022, 22, 115-122. A dual-interpolator method for improving parallel MRI reconstruction. Magnetic Resonance Imaging, 64 1.8 2022, 92, 108-119. Multi-Coil MRI Reconstruction Challengeâ€"Assessing Brain MRI Reconstruction Models and Their 65 2.8 10 Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 0, 16, . ERNet., 2022,,. Multi-slice compressed sensing MRI reconstruction based on deep fusion connection network. 67 1.8 4 Magnetic Resonance Imaging, 2022, 93, 115-127. Swin Deformable Attention U-Net Transformer (SDAUT) forÂExplainable Fast MRI. Lecture Notes in 1.3 Computer Science, 2022, , 538-548. Adaptive Optimization withÂFewer Epochs Improves Across-Scanner Generalization ofÂU-Net Based 69 1.3 0 Medical Image Segmentation. Lecture Notes in Computer Science, 2022, , 119-128. Feather-Light Fourier Domain Adaptation inÂMagnetic Resonance Imaging. Lecture Notes in Computer 1.3 Science, 2022, , 88-97. Unsupervised Site Adaptation byÂlntra-site Variability Alignment. Lecture Notes in Computer Science, 71 3 1.3 2022, 56-65. Supervised Domain Adaptation Using Gradients Transfer forÂlmproved Medical Image Analysis. Lecture 1.3 Notes in Computer Science, 2022, , 23-32. Fast MRI Reconstruction: How Powerful Transformers Are?., 2022,,. 73 12 Virtual Conjugate Coil for Improving KerNL Reconstruction., 2022, , . 74 Improving Fast MRI Reconstructions with Pretext Learning in Low-Data Regime., 2022, , . 75 0 HIWDNet: A hybrid image-wavelet domain network for fast magnetic resonance image reconstruction. Computers in Biology and Medicine, 2022, 151, 105947. A domain adaptation benchmark for T1-weighted brain magnetic resonance image segmentation. 2.5 77 2 Frontiers in Neuroinformatics, 0, 16, . PET image enhancement using artificial intelligence for better characterization of epilepsy lesions. Frontiers in Medicine, 0, 9, .

CITATION REPORT

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
79	A benchmark for hypothalamus segmentation on T1-weighted MR images. NeuroImage, 2022, 264, 119741.	4.2	3
80	Minimizing the effect of white matter lesions on deep learning based tissue segmentation for brain volumetry. Computerized Medical Imaging and Graphics, 2023, 103, 102157.	5.8	2
81	Nonâ€local lowâ€rank constraintâ€based selfâ€consistent PMRI reconstruction using eigenvector maps. IET Signal Processing, 0, , .	1.5	0
83	Study of onset in brain dementia using hierarchical wolf colony optimization and dual deep learning technique. Imaging Science Journal, 2022, 70, 155-167.	0.5	0
84	FFVN: An explicit feature fusion-based variational network for accelerated multi-coil MRI reconstruction. Magnetic Resonance Imaging, 2023, 97, 31-45.	1.8	3
85	Fast Sparse Magnetic Resonance Image Reconstruction. , 2022, , .		0
86	Jointly Learning Non-Cartesian k-Space Trajectories and Reconstruction Networks for 2D and 3D MR Imaging through Projection. Bioengineering, 2023, 10, 158.	3.5	6
87	Memory-Efficient Model-Based Deep Learning With Convergence and Robustness Guarantees. IEEE Transactions on Computational Imaging, 2023, 9, 260-275.	4.4	2
88	Predicting future multiple sclerosis disease progression from MR scans. , 2023, , .		0
89	Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives. Medical Image Analysis, 2023, 85, 102762.	11.6	53
90	Joint Calibrationless Reconstruction andÂSegmentation ofÂParallel MRI. Lecture Notes in Computer Science, 2023, , 437-453.	1.3	1
91	Calibrationless reconstruction of <scp>uniformlyâ€undersampled multiâ€channel MR</scp> data with deep learning estimated <scp>ESPIRiT</scp> maps. Magnetic Resonance in Medicine, 0, , .	3.0	0
92	Accelerated SPIRiT Parallel MR Image Reconstruction Based on Joint Sparsity and Sparsifying Transform Learning. IEEE Transactions on Computational Imaging, 2023, 9, 276-288.	4.4	2
93	A Hybrid Residual Attention Convolutional Neural Network for Compressed Sensing Magnetic Resonance Image Reconstruction. Diagnostics, 2023, 13, 1306.	2.6	1
94	Parallel imaging reconstruction using spatial nulling maps. Magnetic Resonance in Medicine, 0, , .	3.0	0
95	Stochastic optimization of threeâ€dimensional nonâ€Cartesian sampling trajectory. Magnetic Resonance in Medicine, 2023, 90, 417-431.	3.0	4
96	M4Raw: A multi-contrast, multi-repetition, multi-channel MRI k-space dataset for low-field MRI research. Scientific Data, 2023, 10, .	5.3	3
97	Novel Complex AUTOMAP for Accelerated MRI. , 2022, , .		0

	Сітатіо	CITATION REPORT		
#	Article	IF	CITATIONS	
99	An Improved Soft Subspace Clustering Algorithm Based on Particle Swarm Optimization for MR Image Segmentation. Interdisciplinary Sciences, Computational Life Sciences, 0, , .	3.6	0	
100	The Canadian Open Neuroscience Platform—An open science framework for the neuroscience community. PLoS Computational Biology, 2023, 19, e1011230.	3.2	8	
101	One-shot Joint Extraction, Registration and Segmentation of Neuroimaging Data. , 2023, , .		1	
102	Automated, fast, robust brain extraction on contrast-enhanced T1-weighted MRI in presence of brain tumors: an optimized model based on multi-center datasets. European Radiology, 2024, 34, 1190-1199.	4.5	0	
103	ViGU: Vision GNN U-Net for fast MRI. , 2023, , .		2	
104	Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation. Journal of Imaging, 2023, 9, 191.	3.0	2	
105	Dynamic Focus Mechanism-Based Dual-Domain Reconstruction Network for Accelerated MRI. , 2023, , .		0	
106	Accelerated Parallel MRI Using Memory Efficient and Robust Monotone Operator Learning (MOL). , 2023, , .		0	
107	PLPP: A Pseudo Labeling Post-Processing Strategy for Unsupervised Domain Adaptation. , 2023, , .		1	
108	Supervised Domain Adaptation by transferring both the parameter set and its gradient. Neurocomputing, 2023, 560, 126828.	5.9	0	
109	Brain Extraction from Magnetic Resonance Images Using UNet modified with Residual and Dense Layers. Türk Doğa Ve Fen Dergisi, 2023, 12, 144-151.	0.5	0	
110	Segmentation Distortion: Quantifying Segmentation Uncertainty Under Domain Shift viaÂtheÂEffects ofĂAnomalous Activations. Lecture Notes in Computer Science, 2023, , 316-325.	1.3	1	
111	Redesigning Out-of-Distribution Detection onÂ3D Medical Images. Lecture Notes in Computer Science, 2023, , 126-135.	1.3	1	
112	G-CNN: Adaptive Geometric Convolutional Neural Networks forÂMRI-Based Skull Stripping. Lecture Notes in Computer Science, 2023, , 21-30.	1.3	0	
113	Studying theÂEffects ofÂSex-Related Differences onÂBrain Age Prediction Using Brain MR Imaging. Lecture Notes in Computer Science, 2023, , 205-214.	1.3	0	
114	PLST: A Pseudo-labels withÂaÂSmooth Transition Strategy forÂMedical Site Adaptation. Lecture Notes in Computer Science, 2024, , 31-40.	1.3	0	
115	A Multitask Deep Learning Model forÂVoxel-Level Brain Age Estimation. Lecture Notes in Computer Science, 2024, , 283-292.	1.3	0	
116	AliasNet: Alias artefact suppression network for accelerated phase-encode MRI. Magnetic Resonance Imaging, 2023, , .	1.8	0	

CITATION REPORT

#	Article	IF	CITATIONS
117	PCSS: Skull Stripping With Posture Correction From 3D Brain MRI for Diverse Imaging Environment. IEEE Access, 2023, 11, 116903-116918.	4.2	2
118	BASE: Brain Age Standardized Evaluation. NeuroImage, 2024, 285, 120469.	4.2	Ο
119	Progressive Feature Reconstruction and Fusion to Accelerate MRI Imaging: Exploring Insights across Low, Mid, and High-Order Dimensions. Electronics (Switzerland), 2023, 12, 4742.	3.1	0
120	k-strip: A novel segmentation algorithm in k-space for the application of skull stripping. Computer Methods and Programs in Biomedicine, 2024, 243, 107912.	4.7	0
121	Improved Sensitivity Encoding Parallel Magnetic Resonance Imaging Reconstruction Algorithm Based on Efficient Sum of Outer Products Dictionary Learning. Journal of Shanghai Jiaotong University (Science), 0, , .	0.9	0
122	Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives. Computers in Biology and Medicine, 2024, 170, 107912.	7.0	0
123	DCT-net: Dual-domain cross-fusion transformer network for MRI reconstruction. Magnetic Resonance Imaging, 2024, 107, 69-79.	1.8	0
124	Pretrain Once and Finetune Many Times: How Pretraining Benefits Brain MRI Segmentation. , 2023, , .		0
126	Domain transformation learning for MR image reconstruction from dual domain input. Computers in Biology and Medicine, 2024, 170, 108098.	7.0	0
127	A cross-domain complex convolution neural network for undersampled magnetic resonance image reconstruction. Magnetic Resonance Imaging, 2024, 108, 86-97.	1.8	0
128	HARA-GAN: Hybrid Attention and Relative Average Discriminator Based Generative Adversarial Network for MR Image Reconstruction. IEEE Access, 2024, 12, 23240-23251.	4.2	0
129	Multi-scale V-net architecture with deep feature CRF layers for brain extraction. Communications Medicine, 2024, 4, .	4.2	0
131	Extensive T1-weighted MRI preprocessing improves generalizability of deep brain age prediction models. Computers in Biology and Medicine, 2024, 173, 108320.	7.0	0