Comparing traits of native and alien plants: Can we do b

Functional Ecology 32, 117-125 DOI: 10.1111/1365-2435.12982

Citation Report

#	Article	IF	CITATIONS
1	Evaluating differences in the shape of native and alien plant trait distributions will bring new insights into invasions of plant communities. Journal of Vegetation Science, 2018, 29, 348-355.	1.1	17
2	Strong fitness differences impede coexistence between an alien water fern (Azolla pinnata R. Br.) and its native congener (Azolla rubra R. Br.) in New Zealand. Biological Invasions, 2018, 20, 2889-2897.	1.2	11
3	Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. Journal of Ecology, 2018, 106, 2230-2241.	1.9	65
4	Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature Communications, 2018, 9, 4631.	5.8	139
5	What Is Invasion Biology?. Ecological Economics, 2018, 154, 22-30.	2.9	10
6	Species pools and differential performance generate variation in leaf nutrients between native and exotic species in succession. Journal of Ecology, 2019, 107, 595-605.	1.9	32
7	Alien plants alter the growth form ratio and structure of Australian grasslands. Applied Vegetation Science, 2019, 22, 582-592.	0.9	15
8	<i>Erigeron canadensis</i> affects the taxonomic and functional diversity of plant communities in two climate zones in the North of China. Ecological Research, 2019, 34, 535-547.	0.7	40
9	Environmental gradients influence differences in leaf functional traits between native and non-native plants. Oecologia, 2019, 191, 397-409.	0.9	19
10	Environmental filtering of native and non-native stream macrophyte assemblages by habitat disturbances in an agricultural landscape. Science of the Total Environment, 2019, 659, 1370-1381.	3.9	16
11	Invasive species differ in key functional traits from native and nonâ€invasive alien plant species. Journal of Vegetation Science, 2019, 30, 994-1006.	1.1	64
12	Alien plant species invade by occupying similar functional spaces to native species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 257, 151419.	0.6	28
13	Similarities between invaders and native species: Moving past Darwin's naturalization conundrum. Journal of Vegetation Science, 2019, 30, 1027-1034.	1.1	13
14	A four component classification of uncertainties in biological invasions: implications for management. Ecosphere, 2019, 10, e02669.	1.0	50
15	Being popular or freak: how alien plants integrate into native plant-frugivore networks. Biological Invasions, 2019, 21, 2589-2598.	1.2	7
16	Functional and phylogenetic consequences of plant invasion for coastal native communities. Journal of Vegetation Science, 2019, 30, 510-520.	1.1	25
17	Resolving the invasion paradox: pervasive scale and study dependence in the nativeâ€alien species richness relationship. Ecology Letters, 2019, 22, 1038-1046.	3.0	35
18	How to Invade an Ecological Network. Trends in Ecology and Evolution, 2019, 34, 121-131.	4.2	63

TION RE

#	Article	IF	CITATIONS
19	Photosynthesis in co-occurring invasive <i>Acacia</i> spp. and native Bornean heath forest trees at the post-establishment invasion stage. Journal of Sustainable Forestry, 2019, 38, 230-243.	0.6	11
20	Analysis of an invasion in the community context: a case study about differences and similarities between native and non-native shrubs. Plant Ecology, 2020, 221, 83-89.	0.7	4
21	Distribution patterns of ruderal plant diversity in Greece. Biodiversity and Conservation, 2020, 29, 869-891.	1.2	14
22	Growing Non-native Trees in European Forests Brings Benefits and Opportunities but Also Has Its Risks and Limits. Current Forestry Reports, 2020, 6, 339-353.	3.4	55
23	Remotely sensed plant traits can provide insights into ecosystem impacts of plant invasions: a case study covering two functionally different invaders. Biological Invasions, 2020, 22, 3533-3550.	1.2	7
24	A multidimensional framework for measuring biotic novelty: How novel is a community?. Global Change Biology, 2020, 26, 4401-4417.	4.2	20
25	Optical traits perform equally well as directlyâ€neasured functional traits in explaining the impact of an invasive plant on litter decomposition. Journal of Ecology, 2020, 108, 2000-2011.	1.9	8
26	Introduced non-native mangroves express better growth performance than co-occurring native mangroves. Scientific Reports, 2020, 10, 3854.	1.6	9
27	Erigeron annuus (L.) Pers. and Solidago canadensis L. antagonistically affect community stability and community invasibility under the co-invasion condition. Science of the Total Environment, 2020, 716, 137128.	3.9	42
28	Inter―and intraspecific trait variation shape multidimensional trait overlap between two plant invaders and the invaded communities. Oikos, 2020, 129, 677-688.	1.2	17
29	Towards a framework for understanding the context dependence of impacts of nonâ€native tree species. Functional Ecology, 2020, 34, 944-955.	1.7	54
30	Effect of Invasive Alien Species on the Co-Occurrence Patterns of Bryophytes and Vascular Plant Species—The Case of a Mediterranean Disturbed Sandy Coast. Diversity, 2020, 12, 160.	0.7	6
31	Intraspecific trait variation and reversals of trait strategies across key climate gradients in native Hawaiian plants and non-native invaders. Annals of Botany, 2021, 127, 553-564.	1.4	20
32	Naturalised plants transform the composition and function of the New Zealand flora. Biological Invasions, 2021, 23, 351-366.	1.2	16
33	Functional segregation of resource-use strategies of native and invasive plants across Mediterranean biome communities. Biological Invasions, 2021, 23, 253-266.	1.2	10
34	The functional diversity of native ecosystems increases during the major invasion by the invasive alien species, Conyza canadensis. Ecological Engineering, 2021, 159, 106093.	1.6	25
35	Residence time determines invasiveness and performance of garlic mustard (<i>Alliaria petiolata</i>) in North America. Ecology Letters, 2021, 24, 327-336.	3.0	17
36	Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalava. India. Plant Ecology, 2021, 222, 723-735	0.7	21

CITATION REPORT

#	Article	IF	CITATIONS
37	Plant height and leaf size: Which one is more important in affecting the successful invasion of Solidago canadensis and Conyza canadensis in urban ecosystems?. Urban Forestry and Urban Greening, 2021, 59, 127033.	2.3	13
38	A traitâ€based approach across the native and invaded range to understand plant invasiveness and community impact. Oikos, 2021, 130, 1001-1013.	1.2	9
39	Contrasting alien effects on native diversity along biotic and abiotic gradients in an arid protected area. Scientific Reports, 2021, 11, 13557.	1.6	2
40	Functional differentiation of invasive and native plants along a leaf efficiency/safety trade-off. Environmental and Experimental Botany, 2021, 188, 104518.	2.0	14
41	Impact of Oreochromis niloticus (Linnaeus, 1758) (Pisces: Cichlidae) invasion on taxonomic and functional diversity of native fish species in the upper Kabompo River, northwest of Zambia. Ecology and Evolution, 2021, 11, 12845-12857.	0.8	2
42	Different factors influence naturalization and invasion processes – A case study of Indian alien flora provides management insights. Journal of Environmental Management, 2021, 294, 113054.	3.8	10
43	Native biodiversity collapse in the eastern Mediterranean. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202469.	1.2	68
44	Functional traits indicate faster resource acquisition for alien herbs than native shrubs in an urban Mediterranean shrubland. Biological Invasions, 2020, 22, 2699-2712.	1.2	9
46	Functional traits of acquisitive invasive woody species differ from conservative invasive and native species. NeoBiota, 0, 41, 91-113.	1.0	27
47	Early warning systems in biosecurity; translating risk into action in predictive systems for invasive alien species. Emerging Topics in Life Sciences, 2020, 4, 453-462.	1.1	6
48	Invasion of alien slugs in disturbed habitats: role of behavioural phenotype, plasticity and interspecific competition. Animal Behaviour, 2022, 183, 29-40.	0.8	2
49	Leaf trait differences between 97 pairs of invasive and native plants across China: effects of identities of both the invasive and native species. NeoBiota, 0, 71, 1-22.	1.0	9
50	Functional traits explain non-native plant species richness and occupancy on northern New Zealand islands. Biological Invasions, 0, , 1.	1.2	1
51	Advancing biological invasion hypothesis testing using functional diversity indices. Science of the Total Environment, 2022, 834, 155102.	3.9	29
52	Determinants of invasion by single versus multiple plant species in temperate lowland forests. Biological Invasions, 2022, 24, 2513-2528.	1.2	7
53	Plant functional traits best explain invasive species' performance within a dynamic ecosystem - A review. Trees, Forests and People, 2022, 8, 100260.	0.8	17
55	Postâ€introduction evolution of a rapid lifeâ€history strategy in a newly invasive plant. Ecology, 2022, 103, .	1.5	5
56	Trait variability in co-occurring invasive and native plant species in road side population of Kumaun Himalaya. Revista Brasileira De Botanica, 2022, 45, 1099-1110.	0.5	6

CITATION REPORT

#	Article	IF	CITATIONS
57	Do non-native and dominant native species carry a similar risk of invasiveness? A case study for plants in Turkey. NeoBiota, 0, 76, 53-72.	1.0	6
58	Variation in plant traits and phylogenetic structure associated with native and nonnative species in an industrialized flora. NeoBiota, 0, 77, 101-123.	1.0	0
59	The Importance of Very-High-Resolution Imagery to Map Invasive Plant Species: Evidence from Galapagos. Land, 2022, 11, 2026.	1.2	2
60	Indigenous and introduced Collembola differ in desiccation resistance but not its plasticity in response to temperature. Current Research in Insect Science, 2023, 3, 100051.	0.8	2
61	Alien species affect the abundance and richness of native species in tropical forests: The role of adaptive strategies. Ecosphere, 2022, 13, .	1.0	6
62	Why Are Invasive Plants Successful?. Annual Review of Plant Biology, 2023, 74, 635-670.	8.6	19
63	Small but Mighty: The Round Goby (Neogobius melanostomus) as a Model Species of Biological Invasions. Diversity, 2023, 15, 528.	0.7	3