Forecasting of photovoltaic power generation and mode

Renewable and Sustainable Energy Reviews 81, 912-928

DOI: 10.1016/j.rser.2017.08.017

Citation Report

#	Article	IF	CITATIONS
1	Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN. International Journal of Electrical Power and Energy Systems, 2018, 99, 261-272.	3.3	40
2	Photovoltaics literature survey (No. 140). Progress in Photovoltaics: Research and Applications, 2018, 26, 151-156.	4.4	1
3	Maximum Power Point Tracking of PhotoVoltaic Power System with Adaptive Fuzzy Terminal Sliding Mode Controller. , 2018, , .		3
4	Very Short-Term Photovoltaic Power Generation Forecasting with Convolutional Neural Networks. , 2018, , .		4
5	Study on Short-Term Predictions about Photovoltaic Output Power from Plants Lacking in Solar Radiation Data. , 2018, , .		1
6	Forecasting Solar Power Using Long-Short Term Memory and Convolutional Neural Networks. IEEE Access, 2018, 6, 73068-73080.	2.6	121
7	A Variable Step Size P&O MPPT Algorithm for Three-Phase Grid-Connected PV Systems. , 2018, , .		13
8	Long-term Forecasting of Intermittent Wind and Photovoltaic Resources by using Adaptive Neuro Fuzzy Inference System (ANFIS). , 2018, , .		5
9	Solar Generation Forecasting by Recurrent Neural Networks Optimized by Levenberg-Marquardt Algorithm. , 2018, , .		11
10	SAGA-FCM-LSSVM model-based short-term power forecasting of photovoltaic power plants. IOP Conference Series: Earth and Environmental Science, 0, 188, 012079.	0.2	2
11	Forecasting Self-Consumption Solar Power Capacity of Industry and Business Sector in Thailand: a System Dynamic Model. , 2018, , .		0
12	Extreme Learning Machines for Solar Photovoltaic Power Predictions. Energies, 2018, 11, 2725.	1.6	63
13	Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets. Energy Conversion and Management, 2018, 177, 704-717.	4.4	106
14	An Improved Interval Fuzzy Modeling Method: Applications to the Estimation of Photovoltaic/Wind/Battery Power in Renewable Energy Systems. Energies, 2018, 11, 482.	1.6	8
15	Performance Analysis of Multi-Photovoltaic (PV)-Grid Tied Plant in Malaysia. IOP Conference Series: Earth and Environmental Science, 2018, 164, 012013.	0.2	2
16	Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Applied Energy, 2018, 226, 408-422.	5.1	271
17	Predicting day-ahead solar irradiance through gated recurrent unit using weather forecasting data. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	36
18	A comparative time series analysis and modeling of aerosols in the contiguous United States and China. Science of the Total Environment, 2019, 690, 799-811.	3.9	32

#	Article	IF	CITATIONS
19	A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 2019, 198, 111799.	4.4	617
20	Three-stage scheduling scheme for hybrid energy storage systems to track scheduled feed-in PV power. Solar Energy, 2019, 188, 1054-1067.	2.9	3
21	Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions. Energy, 2019, 185, 176-189.	4.5	37
22	Evaluation of Different PV Power Forecasting Systems on Grid-Connected PV Plants in the Mediterranean Area. , 2019, , .		0
23	Fuzzy Predictor With Additive Learning for Very Short-Term PV Power Generation. IEEE Access, 2019, 7, 91183-91192.	2.6	21
24	Ensemble Approach of Optimized Artificial Neural Networks for Solar Photovoltaic Power Prediction. IEEE Access, 2019, 7, 81741-81758.	2.6	90
25	Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications. Energies, 2019, 12, 3935.	1.6	20
26	Assessment of Artificial Neural Networks Learning Algorithms and Training Datasets for Solar Photovoltaic Power Production Prediction. Frontiers in Energy Research, 2019, 7, .	1.2	48
27	A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Applied Energy, 2019, 237, 241-257.	5.1	312
28	Advanced energy management system based on PV and load forecasting for load smoothing and optimized peak shaving of islanded power systems. E3S Web of Conferences, 2019, 113, 03001.	0.2	4
29	Scenarios-based energy dispatching of PVG/Battery/Grid-connected installation. , 2019, , .		0
30	2-D Convolutional Deep Neural Network for Multivariate Energy Time Series Prediction. , 2019, , .		4
31	Optimum operation planning for a PVG/Battery standalone installation. , 2019, , .		0
32	Predictive Analysis of Photovoltaic Power Generation Using Deep Learning. , 2019, , .		1
33	Application of similarity analysis in PV sources generation forecasting for energy clusters. E3S Web of Conferences, 2019, 84, 01009.	0.2	2
34	Image phase shift invariance based multi-transform-fusion method for cloud motion displacement calculation using sky images. Energy Conversion and Management, 2019, 197, 111853.	4.4	40
35	Enhanced state estimation and bad data identification in active power distribution networks using photovoltaic power forecasting. Electric Power Systems Research, 2019, 177, 105974.	2.1	25
36	Smart energy management algorithm for load smoothing and peak shaving based on load forecasting of an island's power system. Applied Energy, 2019, 238, 627-642.	5.1	104

#	Article	IF	CITATIONS
37	Multiple-Input Deep Convolutional Neural Network Model for Short-Term Photovoltaic Power Forecasting. IEEE Access, 2019, 7, 74822-74834.	2.6	171
38	Sustainable and cost-efficient energy supply and utilisation through innovative concepts and technologies at regional, urban and single-user scales. Energy, 2019, 182, 254-268.	4.5	40
39	An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Conversion and Management, 2019, 195, 927-942.	4.4	226
40	A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach. Energies, 2019, 12, 1298.	1.6	32
41	A review on floating photovoltaic (FPV) power generation units. Renewable and Sustainable Energy Reviews, 2019, 110, 332-347.	8.2	115
42	Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renewable Power Generation, 2019, 13, 1009-1023.	1.7	263
43	Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control. Energy, 2019, 179, 1302-1319.	4.5	26
44	Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques. Energies, 2019, 12, 1621.	1.6	131
45	Accurate modeling of photovoltaic modules using a 1-D deep residual network based on I-V characteristics. Energy Conversion and Management, 2019, 186, 168-187.	4.4	43
46	Renewable generation forecast studies – Review and good practice guidance. Renewable and Sustainable Energy Reviews, 2019, 108, 312-322.	8.2	42
47	Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities. Journal of Cleaner Production, 2019, 227, 589-612.	4.6	144
49	A New Method for Generating Short-Term Power Forecasting Based on Artificial Neural Networks and Optimization Methods for Solar Photovoltaic Power Plants. Power Systems, 2019, , 165-189.	0.3	17
50	Evolution of microgrids with converter-interfaced generations: Challenges and opportunities. International Journal of Electrical Power and Energy Systems, 2019, 109, 160-186.	3.3	206
51	Hybrid Intra-hour Solar PV Power Forecasting using Statistical and Skycam-based Methods. , 2019, , .		2
52	Forecasting of Photovoltaic Power Generation: Techniques and Key Factors. , 2019, , .		6
53	A hybrid methodology for the day-ahead PV forecasting exploiting a Clear Sky Model or Artificial Neural Networks. , 2019, , .		2
54	Very Short-Term Solar Generation Forecasting Based on LSTM with Temporal Attention Mechanism. , 2019, , .		25
55	Energy Management Strategy for Grid Connected Solar Powered Electric Vehicle Charging Station. , 2019, , .		7

#	Article	IF	CITATIONS
56	Short term solar irradiance forecasting using artificial neural network for a semi-arid climate in Morocco. , 2019, , .		7
57	Utilization of Artificial Neural Networks to Improve the Accuracy of a Hybrid Power System Model. , 2019, , .		1
58	Toward Better PV Panel's Output Power Prediction; a Module Based on Nonlinear Autoregressive Neural Network with Exogenous Inputs. Applied Sciences (Switzerland), 2019, 9, 3670.	1.3	5
59	Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western Mediterranean. Applied Energy, 2019, 235, 1226-1234.	5.1	21
60	Investigation and damping of lowâ€frequency oscillations of stochastic solar penetrated power system by optimal dual UPFC. IET Renewable Power Generation, 2019, 13, 376-388.	1.7	28
61	Forecasting of Turkey's electricity generation and CO ₂ emissions in estimating capacity factor. Environmental Progress and Sustainable Energy, 2019, 38, 56-65.	1.3	14
62	Short-term solar power prediction using multi-kernel-based random vector functional link with water cycle algorithm-based parameter optimization. Neural Computing and Applications, 2020, 32, 8011-8029.	3.2	21
63	A novel method for day-ahead solar powerÂprediction based on hidden Markov model and cosine similarity. Soft Computing, 2020, 24, 4991-5004.	2.1	19
64	Errors in PV power modelling due to the lack of spectral and angular details of solar irradiance inputs. Solar Energy, 2020, 197, 266-278.	2.9	35
65	Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. Journal of Cleaner Production, 2020, 250, 119476.	4.6	104
66	A hybrid deep learning model for short-term PV power forecasting. Applied Energy, 2020, 259, 114216.	5.1	241
67	Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. International Journal of Electrical Power and Energy Systems, 2020, 118, 105790.	3.3	171
68	Advancement of lithium-ion battery cells voltage equalization techniques: A review. Renewable and Sustainable Energy Reviews, 2020, 134, 110227.	8.2	86
69	Renewable energy and energy conservation area policy (REECAP) framework: A novel methodology for bottom-up and top-down principles integration. Energy Strategy Reviews, 2020, 32, 100544.	3.3	9
70	Deep learning in electrical utility industry: A comprehensive review of a decade of research. Engineering Applications of Artificial Intelligence, 2020, 96, 104000.	4.3	69
71	Photovoltaic Generation Forecast: Model Training and Adversarial Attack Aspects. Lecture Notes in Computer Science, 2020, , 634-649.	1.0	2
72	Review of power system impacts at high PV penetration Part II: Potential solutions and the way forward. Solar Energy, 2020, 210, 202-221.	2.9	50
73	Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renewable Energy, 2020, 162, 1665-1683.	4.3	200

#	Article	IF	CITATIONS
74	Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement: Journal of the International Measurement Confederation, 2020, 166, 108250.	2.5	100
75	Predicting Clear Sky Index for Performance Assessment of Roof Top on Grid PV Plant. , 2020, , .		0
76	Very Short-Term Power Forecasting of High Concentrator Photovoltaic Power Facility by Implementing Artificial Neural Network. Energies, 2020, 13, 3493.	1.6	9
77	A hybrid ARIMA–ANN method to forecast daily global solar radiation in three different cities in Morocco. European Physical Journal Plus, 2020, 135, 1.	1.2	24
78	Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method. Energy, 2020, 212, 118700.	4.5	17
79	Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting. Energies, 2020, 13, 5978.	1.6	10
80	Simulation of multi-annual time series of solar photovoltaic power: Is the ERA5-land reanalysis the next big step?. Sustainable Energy Technologies and Assessments, 2020, 42, 100829.	1.7	19
81	Nondestructive characterization of polymeric components of silicon solar modules by near-infrared absorption spectroscopy (NIRA). Solar Energy Materials and Solar Cells, 2020, 216, 110702.	3.0	14
82	Day-Ahead Forecasting for Small-Scale Photovoltaic Power Based on Similar Day Detection with Selective Weather Variables. Electronics (Switzerland), 2020, 9, 1117.	1.8	14
83	Linking spectral, thermal and weather effects to predict location-specific deviation from the rated power of a PV panel. Solar Energy, 2020, 208, 115-123.	2.9	14
84	Forecasting Day-Ahead Hourly Photovoltaic Power Generation Using Convolutional Self-Attention Based Long Short-Term Memory. Energies, 2020, 13, 4017.	1.6	20
85	Deep learning for very short term solar irradiation forecasting. , 2020, , .		2
86	Optimization of a Local Energy Market Operation in a Transactive Energy Environment. , 2020, , .		4
87	Forecasting Photovoltaic Power Production using a Deep Learning Sequence to Sequence Model with Attention. , 2020, , .		6
88	Short-Term Photovoltaic Power Forecasting Using an LSTM Neural Network and Synthetic Weather Forecast. IEEE Access, 2020, 8, 172524-172533.	2.6	172
89	PV Plant Power Nowcasting: A Real Case Comparative Study With an Open Access Dataset. IEEE Access, 2020, 8, 194428-194440.	2.6	17
90	A Local Training Strategy-Based Artificial Neural Network for Predicting the Power Production of Solar Photovoltaic Systems. IEEE Access, 2020, 8, 150262-150281.	2.6	28
91	A Survey of Machine Learning Models in Renewable Energy Predictions. Applied Sciences (Switzerland), 2020, 10, 5975.	1.3	99

#	Article	IF	CITATIONS
92	Stochastic Programming for Residential Energy Management with Electric Vehicle under Photovoltaic Power Generation Uncertainty. , 2020, , .		1
93	Direct Short-Term Forecast of Photovoltaic Power through a Comparative Study between COMS and Himawari-8 Meteorological Satellite Images in a Deep Neural Network. Remote Sensing, 2020, 12, 2357.	1.8	7
94	Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling. Energies, 2020, 13, 4541.	1.6	76
95	PV power output prediction from sky images using convolutional neural network: The comparison of sky-condition-specific sub-models and an end-to-end model. Journal of Renewable and Sustainable Energy, 2020, 12, .	0.8	18
96	Evaluation of 24-Hours forecasts of global solar irradiation from IFS, GFS and McClear models. AIP Conference Proceedings, 2020, , .	0.3	5
97	A Day-Ahead Irradiance Forecasting Strategy for the Integration of Photovoltaic Systems in Virtual Power Plants. IEEE Access, 2020, 8, 204226-204240.	2.6	14
98	Solar PV Power Forecasting Using Modified SVR with Gauss-Newton Method. , 2020, , .		6
99	A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power. Energies, 2020, 13, 6623.	1.6	112
100	Deep Learning Using Genetic Algorithm Optimization for Short Term Solar Irradiance Forecasting. , 2020, , .		14
101	Energy Forecasting Using an Ensamble of Machine Learning Methods Trained Only with Electricity Data. , 2020, , .		3
102	Forecasting Photovoltaic Power Generation Using Satellite Images. Energies, 2020, 13, 6603.	1.6	19
103	Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data. Sustainability, 2020, 12, 10295.	1.6	32
104	Autonomous Electrical System Monitoring and Control Strategies to Avoid Oversized Storage Capacity. IOP Conference Series: Earth and Environmental Science, 2020, 505, 012045.	0.2	2
105	High Accuracy Modeling for Solar PV Power Generation Using Noble BD-LSTM-Based Neural Networks with EMA. Applied Sciences (Switzerland), 2020, 10, 7339.	1.3	14
106	A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network. Forecasting, 2020, 2, 410-428.	1.6	4
107	Operational Simulation Environment for SCADA Integration of Renewable Resources. Energies, 2020, 13, 1333.	1.6	4
108	Inverter Efficiency Analysis Model Based on Solar Power Estimation Using Solar Radiation. Processes, 2020, 8, 1225.	1.3	29
109	Machine learningâ€based energy consumption clustering and forecasting for mixedâ€use buildings. International Journal of Energy Research, 2020, 44, 9659-9673.	2.2	25

#	Article	IF	CITATIONS
110	Probabilistic reference model for hourly PV power generation forecasting. E3S Web of Conferences, 2020, 152, 01002.	0.2	0
111	A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, 2020, , .	0.3	6
112	Dynamic forecasting-based load control of an autonomous photovoltaic installation. Computers and Electrical Engineering, 2020, 85, 106674.	3.0	3
113	Artificial Intelligence for Smart Renewable Energy Sector in Europe—Smart Energy Infrastructures for Next Generation Smart Cities. IEEE Access, 2020, 8, 77364-77377.	2.6	94
114	Optimal Framework to Maximize the Workplace Charging Station Owner Profit while Compensating Electric Vehicles Users. Mathematical Problems in Engineering, 2020, 2020, 1-12.	0.6	9
115	Data analytics in the electricity sector – A quantitative and qualitative literature review. Energy and AI, 2020, 1, 100009.	5.8	37
116	Smart Solar Home System with Solar Forecasting. , 2020, , .		8
117	A Lightweight Short-Term Photovoltaic Power Prediction for Edge Computing. IEEE Transactions on Green Communications and Networking, 2020, 4, 946-955.	3.5	22
118	A novel non-iterative correction method for short-term photovoltaic power forecasting. Renewable Energy, 2020, 159, 23-32.	4.3	40
119	Similarity-Based Models for Day-Ahead Solar PV Generation Forecasting. IEEE Access, 2020, 8, 104469-104478.	2.6	35
120	An Efficient Algorithm for Power Prediction in PV Generation System. International Journal of Renewable Energy Development, 2020, 9, 207-216.	1.2	4
121	Knowledge-Based Sensors for Controlling A High-Concentration Photovoltaic Tracker. Sensors, 2020, 20, 1315.	2.1	5
122	A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 2020, 124, 109792.	8.2	523
123	Hour-Ahead Photovoltaic Power Forecasting Using an Analog Plus Neural Network Ensemble Method. Energies, 2020, 13, 3259.	1.6	13
124	Energy Infrastructure of the Factory as a Virtual Power Plant: Smart Energy Management. , 0, , .		4
125	Ultra-Short-Term Photovoltaic Power Prediction Model Based on the Localized Emotion Reconstruction Emotional Neural Network. Energies, 2020, 13, 2857.	1.6	11
126	A review of deep learning with special emphasis on architectures, applications and recent trends. Knowledge-Based Systems, 2020, 194, 105596.	4.0	222
127	Hour-ahead photovoltaic power forecast using a hybrid GRA-LSTM model based on multivariate meteorological factors and historical power datasets. IOP Conference Series: Earth and Environmental Science, 2020, 431, 012059.	0.2	8

#	Article	IF	CITATIONS
128	Probabilistic photovoltaic power forecasting model based on deterministic forecasts. E3S Web of Conferences, 2020, 152, 01003.	0.2	0
129	Linear-Gompertz Model-Based Regression of Photovoltaic Power Generation by Satellite Imagery-Based Solar Irradiance. Energies, 2020, 13, 781.	1.6	5
130	A non-linear auto-regressive exogenous method to forecast the photovoltaic power output. Sustainable Energy Technologies and Assessments, 2020, 38, 100670.	1.7	32
131	Very-Short-Term Power Prediction for PV Power Plants Using a Simple and Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets. Electronics (Switzerland), 2020, 9, 289.	1.8	50
132	Improving solar forecasting using Deep Learning and Portfolio Theory integration. Energy, 2020, 195, 117016.	4.5	48
133	Differential evolution - based system design optimization for net zero energy buildings under climate change. Sustainable Cities and Society, 2020, 55, 102037.	5.1	20
134	Evolutionary multi-task optimization for parameters extraction of photovoltaic models. Energy Conversion and Management, 2020, 207, 112509.	4.4	75
135	Advanced Methods for Photovoltaic Output Power Forecasting: A Review. Applied Sciences (Switzerland), 2020, 10, 487.	1.3	158
136	Performance analysis based on probabilistic modelling of Quaid-e-Azam Solar Park (QASP) Pakistan. Energy Strategy Reviews, 2020, 29, 100479.	3.3	15
137	Interpretable Machine Learning In Sustainable Edge Computing: A Case Study of Short-Term Photovoltaic Power Output Prediction. , 2020, , .		10
138	Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules. Energy Conversion and Management, 2020, 211, 112764.	4.4	135
139	A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Conversion and Management, 2020, 212, 112766.	4.4	355
140	Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 2020, 53, 102104.	10.5	271
141	Spatio-temporal modeling with enhanced flexibility and robustness of solar irradiance prediction: A chain-structure echo state network approach. Journal of Cleaner Production, 2020, 261, 121151.	4.6	22
142	Thermo-environomic assessment of an integrated greenhouse with an adjustable solar photovoltaic blind system. Renewable Energy, 2020, 156, 1-13.	4.3	30
143	Multiscale LSTM-Based Deep Learning for Very-Short-Term Photovoltaic Power Generation Forecasting in Smart City Energy Management. IEEE Systems Journal, 2021, 15, 346-354.	2.9	38
144	Third generation of photovoltaic panels: A life cycle assessment. Renewable Energy, 2021, 164, 556-565.	4.3	29
145	Power forecasting of three silicon-based PV technologies using actual field measurements. Sustainable Energy Technologies and Assessments, 2021, 43, 100915.	1.7	14

#	Article	IF	CITATIONS
146	A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting. Energy Conversion and Management, 2021, 227, 113644.	4.4	100
147	Machine learning for protection of distribution networks and power electronics-interfaced systems. Electricity Journal, 2021, 34, 106886.	1.3	19
148	Deep Concatenated Residual Network With Bidirectional LSTM for One-Hour-Ahead Wind Power Forecasting. IEEE Transactions on Sustainable Energy, 2021, 12, 1321-1335.	5.9	105
149	High dimensional very short-term solar power forecasting based on a data-driven heuristic method. Energy, 2021, 219, 119647.	4.5	35
150	Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting. Renewable and Sustainable Energy Reviews, 2021, 135, 110450.	8.2	51
151	Deep Learning based Models for Solar Energy Prediction. Advances in Science, Technology and Engineering Systems, 2021, 6, 349-355.	0.4	18
152	Power Forecasting of a Photovoltaic Plant Located in ENEA Casaccia Research Center. Energies, 2021, 14, 707.	1.6	10
153	Stochastic model for prediction of microgrid photovoltaic power generation. AIP Conference Proceedings, 2021, , .	0.3	0
154	Tailoring Future Climate Data for Building Energy Simulation. Sustainable Development Goals Series, 2021, , 115-139.	0.2	0
155	Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models. Complexity, 2021, 2021, 1-22.	0.9	43
156	Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation. IEEE Access, 2021, 9, 30180-30192.	2.6	10
157	Development and comparison of PV production estimation models for mc-Si technologies in Chile and Spain. Journal of Cleaner Production, 2021, 281, 125360.	4.6	7
158	Short-Term Photovoltaic Power Forecasting Based on VMD and ISSA-GRU. IEEE Access, 2021, 9, 105939-105950.	2.6	40
159	An Ensemble Approach for Multi-Step Ahead Energy Forecasting of Household Communities. IEEE Access, 2021, 9, 36218-36240.	2.6	24
160	A Short-Term Photovoltaic Power Generation Forecast Method Based on LSTM. Mathematical Problems in Engineering, 2021, 2021, 1-11.	0.6	7
161	Demand Response of a Solar Photovoltaic Dominated Microgrid with Fluctuating Power Generation. Lecture Notes in Electrical Engineering, 2021, , 195-210.	0.3	1
162	Solar Photovoltaic Forecasting of Power Output Using LSTM Networks. Atmosphere, 2021, 12, 124.	1.0	49
163	Short-Term Photovoltaic Power Prediction Based on Similar Days and Improved SOA-DBN Model. IEEE Access, 2021, 9, 1958-1971.	2.6	20

#	Article	IF	CITATIONS
164	Temperature & Humidity-Weighted-Modified GRNN Based Prediction Model of Photovoltaic Power Generation. , 2021, , .		1
165	Short-Term Forecasting Photovoltaic Solar Power for Home Energy Management Systems. Inventions, 2021, 6, 12.	1.3	7
166	Spatial-Temporal Genetic-Based Attention Networks for Short-Term Photovoltaic Power Forecasting. IEEE Access, 2021, 9, 138762-138774.	2.6	7
167	Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids. Energy Reports, 2021, 7, 8465-8475.	2.5	62
168	A Novel Short-Term Photovoltaic Power Forecasting Approach based on Deep Convolutional Neural Network. International Journal of Green Energy, 2021, 18, 525-539.	2.1	25
169	Implementation of Different PV Forecast Approaches in a MultiGood MicroGrid: Modeling and Experimental Results. Processes, 2021, 9, 323.	1.3	16
170	Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System. Energies, 2021, 14, 789.	1.6	8
171	Voltage regulation methods for active distribution networks considering the reactive power optimization of substations. Applied Energy, 2021, 284, 116347.	5.1	36
172	TECHNICAL AND FINANCIAL ASSESSMENT OF PHOTOVOLTAIC SOLAR SYSTEMS FOR RESIDENTIAL COMPLEXES CONSIDERING THREE DIFFERENT COMMERCIAL TECHNOLOGIES AND COLOMBIA'S ENERGY POLICY. International Journal of Energy Economics and Policy, 2021, 11, 272-280.	0.5	1
173	Comparative Analysis of Machine Learning Models for Day-Ahead Photovoltaic Power Production Forecasting. Energies, 2021, 14, 1081.	1.6	24
174	Electrical Load Forecast by Means of LSTM: The Impact of Data Quality. Forecasting, 2021, 3, 91-101.	1.6	18
175	An Al-Powered System for Residential Demand Response. Electronics (Switzerland), 2021, 10, 693.	1.8	6
176	A novel recurrent neural network approach in forecasting short term solar irradiance. ISA Transactions, 2022, 121, 63-74.	3.1	33
177	Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. Applied Energy, 2021, 285, 116395.	5.1	48
178	A New Hybrid Model for Hourly Solar Radiation Forecasting Using Daily Classification Technique and Machine Learning Algorithms. Mathematical Problems in Engineering, 2021, 2021, 1-12.	0.6	14
179	Tackling the Risk of Stranded Electricity Assets with Machine Learning and Artificial Intelligence. , O, ,		6
180	Acid-Resistant BiVO ₄ Photoanodes: Insolubility Control by Solvents and Weak W Diffusion in the Lattice. ACS Applied Materials & Interfaces, 2021, 13, 12079-12090.	4.0	10
181	Technoeconomic Performance Analysis of Solar Tracking Methods for Roof-Type Solar Power Plants and Electric Vehicle Charging Stations. International Journal of Photoenergy, 2021, 2021, 1-11.	1.4	2

ARTICLE IF CITATIONS # Spatiotemporal Optimization for Short-Term Solar Forecasting Based on Satellite Imagery. Energies, 182 10 1.6 2021, 14, 2216. Selection of Input Variables and Comparison of Artificial Neural Networks and One-Dimensional Convolutional Neural Networks for Prediction of Wind Power Generation in Yeongheung Wind 0.4 Power Plant. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 219-229. Multi-Behavior with Bottleneck Features LSTM for Load Forecasting in Building Energy Management 184 13 1.8 System. Electronics (Switzerland), 2021, 10, 1026. A holistic review on energy forecasting using big data and deep learning models. International Journal of Energy Research, 2021, 45, 13489-13530. 2-D Convolutional Deep Neural Network for the Multivariate Prediction of Photovoltaic Time Series. 186 1.6 11 Energies, 2021, 14, 2392. Photovoltaic Power Forecasting Methods., 0, , . Using a novel optimization algorithm for parameter extraction of photovoltaic cells and modules. 188 1.2 8 European Physical Journal Plus, 2021, 136, 1. Parameters identification of photovoltaic models using modified Rao-1 optimization algorithm. Optik, 1.4 16 2021, 231, 166439. Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants. Energies, 2021, 14, 190 2 1.6 2998. Comparison Between Random Forest and Recurrent Neural Network for Photovoltaic Power 0.4 Forecasting. Daehan Hwan'gyeong Gonghag Hoeji, 2021, 43, 347-355. Predicting Solar Insolation Incident on Horizontal Surface for Performance Assessment of Solar 192 1 Systems., 2021, , . A review of power system protection and asset management with machine learning techniques. Energy 1.8 Systems, 2022, 13, 855-892. Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System 194 1.6 2 Feasibility. Energiés, 2021, 14, 2893. Predictive Modeling for Rooftop Solar Energy Throughput: A Machine Learning-Based Optimization for Building Energy Demand Scheduling. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, . 1.4 A novel hybrid ensemble LSTMâ€FFNN forecasting model for very shortâ€term and shortâ€term PV 196 9 1.7 generation forecasting. IET Renewable Power Generation, 2022, 16, 3-18. Measurement and key influencing factors of the economic benefits for China's photovoltaic power 24 generation: A LCOE-based hybrid model. Renewable Energy, 2021, 169, 935-952. Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV 198 1.6 2 Generation Forecasting. Energies, 2021, 14, 2601. Short-Term Master-Slave Forecast Method for Distributed Photovoltaic Plants Based on the Spatial 199 Correlation. Mathematical Problems in Engineering, 2021, 2021, 1-13.

#	Article	IF	CITATIONS
200	Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification. Energy, 2021, 223, 119748.	4.5	9
201	Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge. Energy, 2021, 225, 120240.	4.5	107
202	Multistep Finite Control Set Model Predictive Control of Photovoltaic Power Generation System with Harmonic Compensation. Complexity, 2021, 2021, 1-11.	0.9	0
203	MODELLING OF INTRADAY PHOTOVOLTAIC POWER PRODUCTION. Malaysian Journal of Science, 2021, 40, 105-124.	0.2	1
204	Artificial neural networks for global and direct solar irradiance forecasting: a case study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-21.	1.2	6
205	An Hour-Ahead Photovoltaic Power Forecasting Based on LSTM Model. , 2021, , .		1
206	A Neural Network-based Time-Series Model for Predicting Global Solar Radiations. IETE Journal of Research, 2023, 69, 3418-3430.	1.8	7
207	Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renewable Energy, 2021, 171, 191-209.	4.3	66
208	Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves. Applied Energy, 2021, 292, 116929.	5.1	40
209	Prediction of solar energy guided by pearson correlation using machine learning. Energy, 2021, 224, 120109.	4.5	208
210	Two-stage dynamic management in energy communities using a decision system based on elastic net regularization. Applied Energy, 2021, 291, 116852.	5.1	22
211	Hybrid deep neural model for hourly solar irradiance forecasting. Renewable Energy, 2021, 171, 1041-1060.	4.3	82
212	A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction. Energies, 2021, 14, 4424.	1.6	22
213	Application of ANN for forecasting of PV plant output power – Case study Oryahovo. , 2021, , .		4
214	Sky Image-Based Localized, Short-Term Solar Irradiance Forecasting for Multiple PV Sites via Cloud Motion Tracking. International Journal of Photoenergy, 2021, 2021, 1-27.	1.4	14
215	Demand response integrated day-ahead energy management strategy for remote off-grid hybrid renewable energy systems. International Journal of Electrical Power and Energy Systems, 2021, 129, 106731.	3.3	43
216	Predicting the Performance of Solar Power Generation Using Deep Learning Methods. Applied Sciences (Switzerland), 2021, 11, 6887.	1.3	4
217	DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting. Applied Energy, 2021, 294, 116970.	5.1	12

#	Article	IF	CITATIONS
218	Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends. Journal of Solar Energy Engineering, Transactions of the ASME, 2022, 144, .	1.1	30
219	An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems. Applied Energy, 2021, 293, 116891.	5.1	7
220	Intra-Day Solar Power Forecasting Strategy for Managing Virtual Power Plants. Sensors, 2021, 21, 5648.	2.1	8
221	Algorithmic conservation in a changing climate. Current Opinion in Environmental Sustainability, 2021, 51, 30-35.	3.1	14
222	A State-of-Art-Review on Machine-Learning Based Methods for PV. Applied Sciences (Switzerland), 2021, 11, 7550.	1.3	47
223	Driving force model to evaluate China's photovoltaic industry: Historical and future trends. Journal of Cleaner Production, 2021, 311, 127637.	4.6	25
224	Machine Learning for Sustainable Energy Systems. Annual Review of Environment and Resources, 2021, 46, 719-747.	5.6	32
225	A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems. Energies, 2021, 14, 4690.	1.6	40
226	A MPPT Control Method Based on the Improved Wind-Driven Optimization. , 2021, , .		0
227	Forecasting of Energy Production for Photovoltaic Systems Based on ARIMA and ANN Advanced Models. International Journal of Photoenergy, 2021, 2021, 1-19.	1.4	25
228	Deep Convolutional Graph Rough Variational Auto-Encoder for Short-Term Photovoltaic Power Forecasting. , 2021, , .		8
229	Green synthesis of porous SiC ceramics using silicon kerf waste in different sintering atmospheres and pore structure optimization. Ceramics International, 2021, 47, 26366-26374.	2.3	34
230	Detecting and Mitigating Adversarial Examples in Regression Tasks: A Photovoltaic Power Generation Forecasting Case Study. Information (Switzerland), 2021, 12, 394.	1.7	6
231	Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information. Energy, 2021, 231, 120908.	4.5	75
232	Ultraâ€shortâ€ŧerm irradiance forecasting model based on groundâ€based cloud image and deep learning algorithm. IET Renewable Power Generation, 2022, 16, 2604-2616.	1.7	12
233	Ultraâ€shortâ€ŧerm photovoltaic power forecasting of multifeature based on hybrid deep learning. International Journal of Energy Research, 2022, 46, 1370-1386.	2.2	14
234	Development of a Low-Cost Data Acquisition System for Very Short-Term Photovoltaic Power Forecasting. Energies, 2021, 14, 6075.	1.6	3
235	Forecast-Based Consensus Control for DC Microgrids Using Distributed Long Short-Term Memory Deep Learning Models. IEEE Transactions on Smart Grid, 2021, 12, 3718-3730.	6.2	31

#	Article	IF	CITATIONS
236	A hybrid methodology for distribution level photovoltaic power production forecasting verified at the distribution system of Cyprus. IET Renewable Power Generation, 2022, 16, 19-32.	1.7	6
237	Machine learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage. Chemical Engineering Research and Design, 2021, 174, 414-441.	2.7	91
238	Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method. Applied Energy, 2021, 299, 117291.	5.1	56
239	SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. Applied Energy, 2021, 300, 117410.	5.1	63
240	Experimental testing of a real aggregator system performing rigorous optimal control of electrical and thermal storage. Journal of Energy Storage, 2021, 43, 103188.	3.9	2
241	Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges. Applied Energy, 2021, 301, 117446.	5.1	81
242	Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting. Energy Reports, 2021, 7, 5495-5509.	2.5	31
243	Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space. Expert Systems With Applications, 2021, 186, 115842.	4.4	17
244	A novel structural adaptive discrete grey prediction model and its application in forecasting renewable energy generation. Expert Systems With Applications, 2021, 186, 115761.	4.4	36
245	A Day-Ahead Power Output Forecasting of Three PV Systems Using Regression, Machine Learning and Deep Learning Techniques. Studies in Infrastructure and Control, 2021, , 1-14.	0.4	3
246	An Effective Hybrid NARX-LSTM Model for Point and Interval PV Power Forecasting. IEEE Access, 2021, 9, 36571-36588.	2.6	66
247	Machine Learning Based PV Power Generation Forecasting in Alice Springs. IEEE Access, 2021, 9, 46117-46128.	2.6	62
248	Two-Stage Attention Over LSTM With Bayesian Optimization for Day-Ahead Solar Power Forecasting. IEEE Access, 2021, 9, 107387-107398.	2.6	41
249	Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors. Energies, 2021, 14, 436.	1.6	39
250	Electric Vehicles charging strategy based on multimarket platforms for photovoltaic-powered workplace charging station. , 2021, , 573-587.		0
251	Analysis of Artificial Neural Networks for Forecasting Photovoltaic Energy Generation with Solar Irradiance. Brazilian Archives of Biology and Technology, 2021, 64, .	0.5	7
252	Forecasting Hourly Solar Radiation Using Artificial Intelligence Techniques. Canadian Journal of Electrical and Computer Engineering, 2021, 44, 497-508.	1.5	20
253	Photovoltaic Plant Output Power Forecast by Means of Hybrid Artificial Neural Networks. Advanced Structured Materials, 2020, , 203-222.	0.3	2

#	Article	IF	CITATIONS
254	A systematic review of solar driven waste to fuel pyrolysis technology for the Australian state of Victoria. Energy Reports, 2020, 6, 3212-3229.	2.5	14
255	Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine. Energy, 2020, 204, 117894.	4.5	143
256	Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network. Global Energy Interconnection, 2020, 3, 571-576.	1.4	18
257	Development of a Grid Connected Solar-Wind Hybrid System With Reduction in Levelized Tariff for a Remote Island in India. Journal of Solar Energy Engineering, Transactions of the ASME, 2020, 142, .	1.1	16
258	Solar Photovoltaic Power Forecasting. Journal of Electrical and Computer Engineering, 2020, 2020, 1-21.	0.6	17
259	Analyzing the Efficiency of Horizontal Photovoltaic Cells in Various Climate Regions. Journal of Energy and Natural Resources, 2019, 8, 77.	0.2	1
260	A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports. Energies, 2020, 13, 735.	1.6	27
261	Integration of PV into the Sarajevo Canton Energy System-Air Quality and Heating Challenges. Energies, 2021, 14, 123.	1.6	9
262	Ensemble models for solar power forecasting—a weather classification approach. AIMS Energy, 2020, 8, 252-271.	1.1	15
263	Convergence of Photovoltaic Power Forecasting and Deep Learning: State-of-Art Review. IEEE Access, 2021, 9, 136593-136615.	2.6	37
264	Day-Ahead Solar Irradiance Forecasting Model. , 2021, , .		1
265	ECG Data Compression Using ε-insensitive Quadratic Loss Function. Journal of Natural and Applied Sciences, 2018, 22, 380.	0.1	0
266	Robust ECG data compression method based on ε-insensitive Huber loss function. Sakarya University Journal of Science, 0, , 1-1.	0.3	2
267	Performance Characterisation and Optimisation of a Building Integrated Photovoltaic (BIPV) System in a Maritime Climate. Future Cities and Environment, 2019, 5, .	0.6	2
268	A Simple Predictive Performance Model of Solar Cell under Very Hot and Humide Climate. Journal of Power and Energy Engineering, 2019, 07, 26-47.	0.3	2
269	Maximum Power Flow Management for Stand-alone PV Based Battery Charging System. , 2019, , .		3
270	Photovoltaic Array Power Prediction Model Based on EEMD and PSO-KELM. , 2020, , .		2
271	Photovoltaic electric power estimation with a machine learning algorithm based on neural networks and validated with deterministic approaches. , 2020, , .		0

#	Article	IF	CITATIONS
272	Improved prediction method of PV output power based on optimised chaotic phase space reconstruction. IET Renewable Power Generation, 2020, 14, 1831-1840.	1.7	15
273	ANALYSIS OF THE EFFECTS OF CELL TEMPERATURE ON THE PREDICTABILITY OF THE SOLAR PHOTOVOLTAIC POWER PRODUCTION. International Journal of Energy Economics and Policy, 2020, 10, 208-219.	0.5	3
274	Combined PV Power and Load Prediction for Building-Level Energy Management Applications. , 2020, , .		3
275	Deterministic and Probabilistic Solar Power Forecasts: A Review on Forecasting Models. , 2021, , .		2
276	Design of floating photovoltaic power plant and its environmental effects in different stages: A review. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	3
277	Comprehensive and Comparative Analysis of GAM-Based PV Power Forecasting Models Using Multidimensional Tensor Product Splines against Machine Learning Techniques. Energies, 2021, 14, 7146.	1.6	5
278	Ultra-Short-Term Regional PV Power Forecasting Based on Fluctuation Pattern Recognition with Satellite Images. , 2020, , .		5
279	Photovoltaic power generation data filling model based on tensor decomposition. IOP Conference Series: Earth and Environmental Science, 0, 615, 012077.	0.2	1
280	Accurate prediction of photovoltaic power output based on long shortâ€ŧerm memory network. IET Optoelectronics, 2020, 14, 399-405.	1.8	20
281	Gaussian Kernel Based SVR Model for Short-Term Photovoltaic MPP Power Prediction. Computer Systems Science and Engineering, 2022, 41, 141-156.	1.9	7
282	Solar and wind power generation forecasts using elastic net in time-varying forecast combinations. Applied Energy, 2022, 306, 117983.	5.1	27
283	Applying Johansen VECM cointegration approach to propose a forecast model of photovoltaic power output plant in Reunion Island. AIMS Energy, 2020, 8, 179-213.	1.1	6
284	Online Sensorless Solar Power Forecasting for Microgrid Control and Automation. , 2021, , .		1
285	Forecasting and Modelling of Solar Radiation for Photovoltaic (PV) Systems. , 0, , .		0
286	Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. Applied Energy, 2022, 306, 118152.	5.1	10
287	Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. Energy, 2022, 240, 122733.	4.5	26
288	Prediction of hourly solar radiation in Tamil Nadu using ANN model with different learning algorithms. Energy Reports, 2022, 8, 664-671.	2.5	38
289	Research progress of the ultra-short term power forecast for PV power generation: A review. , 2021, ,		2

#	Article	IF	CITATIONS
290	Hybrid Models Based on LSTM and CNN Architecture with Bayesian Optimization for ShortTerm Photovoltaic Power Forecasting. , 2021, , .		3
291	Hourly Photovoltaic Power Forecasting Using CNN-LSTM Hybrid Model. , 2021, , .		7
292	Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation. Energies, 2021, 14, 7581.	1.6	2
293	Solar-to-Pharmaceutical Raw Material Production: Photoelectrochemical Naphthoquinone Formation Using Stabilized BiVO ₄ Photoanodes in Acid Media. ACS Applied Materials & Interfaces, 2021, 13, 57132-57141.	4.0	5
294	A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems. Applied Energy, 2022, 307, 118185.	5.1	36
295	Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods. Energy Reports, 2021, 7, 7601-7614.	2.5	41
296	Development of an incentive model for renewable energy resources using forecasting accuracy in South Korea. Energy Science and Engineering, 2022, 10, 3250-3266.	1.9	5
297	Parameter extraction of solar <scp>PV</scp> cell models using novel metaheuristic chaotic tunicate swarm algorithm. International Transactions on Electrical Energy Systems, 2021, 31, e13244.	1.2	8
298	Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages. Renewable Energy, 2022, 184, 776-790.	4.3	66
299	A Hybrid Method for Day-Ahead Photovoltaic Power Forecasting Based on Generative Adversarial Network Combined with Convolutional Autoencoder. SSRN Electronic Journal, 0, , .	0.4	0
300	Sliding window approach with first-order differencing for very short-term solar irradiance forecasting using deep learning models. Sustainable Energy Technologies and Assessments, 2022, 50, 101864.	1.7	14
301	The uncertainties involved in measuring national solar photovoltaic electricity generation. Renewable and Sustainable Energy Reviews, 2022, 156, 112000.	8.2	6
302	Solar Power Generation Prediction for Distribution Systems with High PV Penetration. , 2020, , .		0
303	Short-Term Solar Power Forecasts Considering Various Weather Variables. , 2020, , .		9
304	Hybrid Wind-PV Plant Sizing Strategies. Drivers and Cost Analysis. SSRN Electronic Journal, 0, , .	0.4	0
305	Solar power plant generation forecasting using NARX neural network model: A case study. International Journal of Energy Applications and Technologies, 2021, 8, 80-92.	0.1	1
306	Most Favorable Results for Forecasting Methods for Natural Gas and Photovoltaic Energy Consumption. , 2021, , .		1
307	A Recent Invasion Wave Of Deep Learning In Solar Power Forecasting Techniques Using Ann. , 2021, , .		4

#	Article	IF	CITATIONS
308	The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of theWind Power and Photovoltaic Energy. CMES - Computer Modeling in Engineering and Sciences, 2022, 130, 1-32.	0.8	0
309	The Management of Energy Transformation through Laser Charging in WPT for 5G Application: Prediction Model of the In0.3Ga0.7As Solar Cell. Wireless Communications and Mobile Computing, 2022, 2022, 1-8.	0.8	3
310	Development and Comparison of Two Novel Hybrid Neural Network Models for Hourly Solar Radiation Prediction. Applied Sciences (Switzerland), 2022, 12, 1435.	1.3	18
312	An Interval-Valued Time Series Forecasting Scheme With Probability Distribution Features for Electric Power Generation Prediction. IEEE Access, 2022, 10, 6417-6429.	2.6	3
313	Short-term Solar Power Prediction Learning Directly from Satellite Images With Regions of Interest. IEEE Transactions on Sustainable Energy, 2022, 13, 629-639.	5.9	34
314	A <scp><i>k</i>â€</scp> nearest neighborâ€based averaging model for probabilistic <scp>PV</scp> generation forecasting. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022, 35, .	1.2	8
315	Application of Al/IoT for Smart Renewable Energy Management in Smart Cities. Studies in Computational Intelligence, 2022, , 115-138.	0.7	5
316	Optimized Support Vector Regression-Based Model for Solar Power Generation Forecasting on the Basis of Online Weather Reports. IEEE Access, 2022, 10, 15594-15604.	2.6	7
317	A Novel Deep Learning Approach for Short Term Photovoltaic Power Forecasting Based on GRU-CNN Model. E3S Web of Conferences, 2022, 336, 00064.	0.2	8
318	Increasing the Accuracy of Hourly Multi-Output Solar Power Forecast with Physics-Informed Machine Learning. Sensors, 2022, 22, 749.	2.1	17
319	A New Probabilistic Ensemble Method for an Enhanced Day-Ahead PV Power Forecast. IEEE Journal of Photovoltaics, 2022, 12, 581-588.	1.5	17
320	An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. Applied Energy, 2022, 309, 118473.	5.1	49
321	Global solar radiation time series forecasting using different architectures of the multilayer perceptron model. Journal of Physics: Conference Series, 2022, 2180, 012017.	0.3	0
322	Design and Evaluation of a Heterogeneous Lightweight Blockchain-Based Marketplace. Sensors, 2022, 22, 1131.	2.1	1
323	Machine learning-based very short-term load forecasting in microgrid environment: evaluating the impact of high penetration of PV systems. Electrical Engineering, 2022, 104, 2667-2677.	1.2	4
324	Performance optimization of photovoltaic systems: Reassessment of political optimization with a quantum Nelder-mead functionality. Solar Energy, 2022, 234, 39-63.	2.9	13
325	A Review of Machine Learning-Based Photovoltaic Output Power Forecasting: Nordic Context. IEEE Access, 2022, 10, 26404-26425.	2.6	19
326	Data-Driven Techniques for Optimizing the Renewable Energy Systems Operations. , 2022, , 1-22.		2

#	Article	IF	CITATIONS
327	A Review of Multitemporal and Multispatial Scales Photovoltaic Forecasting Methods. IEEE Access, 2022, 10, 35073-35093.	2.6	16
329	Quantification of the Impact of Fine Particulate Matter on Solar Energy Resources and Energy Performance of Different Photovoltaic Technologies. ACS Environmental Au, 2022, 2, 275-286.	3.3	6
330	Gray-Related Support Vector Machine Optimization Strategy and Its Implementation in Forecasting Photovoltaic Output Power. International Journal of Photoenergy, 2022, 2022, 1-9.	1.4	7
331	Sensitive Parameter Analysis for Solar Irradiance Short-Term Forecasting: Application to LoRa-Based Monitoring Technology. Sensors, 2022, 22, 1499.	2.1	4
332	Semi-asynchronous personalized federated learning for short-term photovoltaic power forecasting. Digital Communications and Networks, 2023, 9, 1221-1229.	2.7	11
333	24-Hour ahead PV power forecasting based on the univariate hybrid machine learning model. International Journal of Ambient Energy, 0, , 1-20.	1.4	2
334	A Hybrid Solar Irradiance Forecasting Using Full Wavelet Packet Decomposition and Bi-Directional Long Short-Term Memory (BiLSTM). Arabian Journal for Science and Engineering, 2022, 47, 14185-14211.	1.7	14
335	Optimization Models under Uncertainty in Distributed Generation Systems: A Review. Energies, 2022, 15, 1932.	1.6	11
336	Near-term, national solar capacity factor forecasts aided by trend attributes and artificial intelligence. International Journal of Energy and Environmental Engineering, 2022, 13, 1129-1146.	1.3	1
337	Interval Prediction of Photovoltaic Power Using Improved NARX Network and Density Peak Clustering Based on Kernel Mahalanobis Distance. Complexity, 2022, 2022, 1-22.	0.9	3
338	An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants. Energies, 2022, 15, 2243.	1.6	41
339	Application of machine learning methods in photovoltaic output power prediction: A review. Journal of Renewable and Sustainable Energy, 2022, 14, .	0.8	10
340	Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models. Energies, 2022, 15, 2457.	1.6	17
341	A new hybrid algorithm based on golden eagle optimizer and grey wolf optimizer for 3D path planning of multiple UAVs in power inspection. Neural Computing and Applications, 2022, 34, 11911-11936.	3.2	13
342	BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones. Energies, 2022, 15, 2226.	1.6	9
343	A review of artificial intelligence applied for the solution of issues in the extensive adaption of solar and wind energy. International Journal of Ambient Energy, 2022, 43, 7419-7436.	1.4	1
344	Correct and remap solar radiation and photovoltaic power in China based on machine learning models. Applied Energy, 2022, 312, 118775.	5.1	13
345	Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. Applied Energy, 2022, 312, 118725.	5.1	45

#	Article	IF	CITATIONS
346	Progress in regional PV power forecasting: A sensitivity analysis on the Italian case study. Renewable Energy, 2022, 189, 983-996.	4.3	29
347	Computationally expedient Photovoltaic power Forecasting: A LSTM ensemble method augmented with adaptive weighting and data segmentation technique. Energy Conversion and Management, 2022, 258, 115563.	4.4	22
348	Generalization of solar power yield modeling using knowledge transfer. Expert Systems With Applications, 2022, 201, 116992.	4.4	3
349	Building-Integrated Photovoltaic (BIPV) products and systems: A review of energy-related behavior. Energy and Buildings, 2022, 262, 111998.	3.1	67
350	Forecasting of short-term photovoltaic power generation using combined interval type-2 Takagi-Sugeno-Kang fuzzy systems. International Journal of Electrical Power and Energy Systems, 2022, 140, 108002.	3.3	13
351	Influence of hydrogen on grid investments for smart microgrids. International Journal of Electrical Power and Energy Systems, 2022, 141, 107968.	3.3	7
352	Multi-index Integration Evaluation Method of Automotive Spare Parts Demand Forecasting Models. , 2021, , .		0
354	A Solar and Wind: Hybrid Energy System Connected to the Grid Reduces Voltage Fluctuation and Improve Reliability. , 2021, , .		1
355	A Comparative Analysis of Artificial Neural Networks for Photovoltaic Power Forecast Using Remotes and Local Measurements. Journal of Solar Energy Engineering, Transactions of the ASME, 2022, 144, .	1.1	4
356	Day-Ahead Solar Generation Prediction from Weather Forecasts in the UK Using LSR-Fuzzy-Markov Chain. , 2021, , .		0
357	Tackling Climate Change with Machine Learning. ACM Computing Surveys, 2023, 55, 1-96.	16.1	195
358	Machine Learning and Deep Learning in Energy Systems: A Review. Sustainability, 2022, 14, 4832.	1.6	67
359	A New Long-Term Photovoltaic Power Forecasting Model Based on Stacking Generalization Methodology. Natural Resources Research, 2022, 31, 1265-1287.	2.2	12
360	Cloud Computing and IoT Based Intelligent Monitoring System for Photovoltaic Plants Using Machine Learning Techniques. Energies, 2022, 15, 3014.	1.6	24
361	A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification. Energies, 2022, 15, 2837.	1.6	4
362	Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renewable and Sustainable Energy Reviews, 2022, 162, 112473.	8.2	32
363	Machine Learning Techniques for Renewable Energy Forecasting: A Comprehensive Review. Green Energy and Technology, 2022, , 3-39.	0.4	1
364	A Review of Machine Learning Models in Renewable Energy. Internet of Things, 2022, , 259-276.	1.3	1

#	Article	IF	CITATIONS
366	Missing-Data Tolerant Hybrid Learning Method for Solar Power Forecasting. IEEE Transactions on Sustainable Energy, 2022, 13, 1843-1852.	5.9	5
367	Estimating clear-sky PV electricity production without exogenous data. Solar Energy Advances, 2022, 2, 100015.	1.2	4
368	The Efficiency Prediction of the Laser Charging Based on GA-BP. Energies, 2022, 15, 3143.	1.6	2
369	Expectation-Based Probabilistic Naive Approach for Forecasting Involving Optimized Parameter Estimation. Arabian Journal for Science and Engineering, 2022, , 1-8.	1.7	1
370	Forecasting Solar Energy Production Using Machine Learning. International Journal of Photoenergy, 2022, 2022, 1-7.	1.4	19
371	Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints. Energies, 2022, 15, 3320.	1.6	27
372	A novel long term solar photovoltaic power forecasting approach using LSTM with Nadam optimizer: A case study of India. Energy Science and Engineering, 2022, 10, 2909-2929.	1.9	34
373	Novel data-driven energy management of a hybrid photovoltaic-reverse osmosis desalination system using deep reinforcement learning. Applied Energy, 2022, 317, 119184.	5.1	11
374	Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey. Renewable and Sustainable Energy Reviews, 2022, 162, 112396.	8.2	16
375	A CNN-Assisted deep echo state network using multiple Time-Scale dynamic learning reservoirs for generating Short-Term solar energy forecasting. Sustainable Energy Technologies and Assessments, 2022, 52, 102275.	1.7	11
376	Hybridization of hybrid structures for time series forecasting: a review. Artificial Intelligence Review, 2023, 56, 1201-1261.	9.7	24
377	Short-Term Prediction of Photovoltaic Power Based on Fusion Device Feature-Transfer. Energy Engineering: Journal of the Association of Energy Engineers, 2022, 119, 1419-1438.	0.3	1
379	Evidential Extreme Learning Machine Algorithm-Based Day-Ahead Photovoltaic Power Forecasting. Energies, 2022, 15, 3882.	1.6	6
380	PV solar power forecasting based on hybrid MFFNN-ALO. , 2022, , .		4
381	Multi-resolution, multi-horizon distributed solar PV power forecasting with forecast combinations. Expert Systems With Applications, 2022, 205, 117690.	4.4	12
382	Integrating data decomposition and machine learning methods: An empirical proposition and analysis for renewable energy generation forecasting. Expert Systems With Applications, 2022, 204, 117635.	4.4	21
383	Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting. International Journal of Renewable Energy Development, 2022, 11, 815-828.	1.2	3
384	Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System. Energies, 2022, 15, 4227.	1.6	12

#	Article	IF	CITATIONS
385	Optimization of Pt loading on the counter electrode for efficient and bifacial dye-sensitized solar cells with polymer gel electrolyte. Korean Journal of Chemical Engineering, 0, , .	1.2	0
386	Prediction of a Grid-Connected Photovoltaic Park's Output with Artificial Neural Networks Trained by Actual Performance Data. Applied Sciences (Switzerland), 2022, 12, 6458.	1.3	13
387	Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates. Energies, 2022, 15, 4341.	1.6	11
388	Using machine learning in photovoltaics to create smarter and cleaner energy generation systems: A comprehensive review. Journal of Cleaner Production, 2022, 364, 132701.	4.6	41
389	Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers. Energy, 2022, 255, 124558.	4.5	5
390	Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning. Renewable and Sustainable Energy Reviews, 2022, 167, 112680.	8.2	25
391	An Accurate Dynamic Forecast of Photovoltaic Energy Generation. Fluid Dynamics and Materials Processing, 2022, 18, 1683-1698.	0.5	0
393	The Role of Artificial Intelligence (AI) in Creating Smart Energy Infrastructure for the Next Generation and Protection Climate Change. Smart Innovation, Systems and Technologies, 2023, , 457-464.	0.5	6
394	New power system operational state estimation with cluster of electric vehicles. Journal of the Franklin Institute, 2023, 360, 8918-8935.	1.9	2
395	Accurate photovoltaic power prediction models based on deep convolutional neural networks and gated recurrent units. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 6303-6320.	1.2	4
396	Regression-based spatial GIS analysis for an accurate assessment of renewable energy potential. Energy for Sustainable Development, 2022, 69, 118-133.	2.0	8
397	Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy. Applied Energy, 2022, 323, 119598.	5.1	13
398	What drives the accuracy of PV output forecasts?. Applied Energy, 2022, 323, 119603.	5.1	8
399	A parallel Archimedes optimization algorithm based on Taguchi method for application in the control of variable pitch wind turbine. Mathematics and Computers in Simulation, 2023, 203, 306-327.	2.4	12
400	Assessment of Different Deep Learning Methods of Power Generation Forecasting for Solar PV System. Applied Sciences (Switzerland), 2022, 12, 7529.	1.3	16
401	Dynamic forecasting model of a hybrid photovoltaic/gravity energy storage system for residential applications. Energy and Buildings, 2022, 271, 112325.	3.1	13
402	Al applications in smart cities' energy systems automation. Repa Proceeding Series, 2022, 3, 1-5.	0.4	1
404	Measurement and Comparative Analysis of Evaporation under the Panel of Panji Floating Photovoltaic Power Station. , 2022, , .		1

#	Article	IF	CITATIONS
405	Photovoltaic power intra―and dayâ€ahead predictions with differential learning producing <scp>PDE</scp> â€modular models based on the node Lâ€ŧransform derivatives. Environmental Progress and Sustainable Energy, 0, , .	1.3	1
406	Photovoltaic Power Generation Forecasting Based on the ARIMA-BPNN-SVR Model. Global Journal of Energy Technology Research Updates, 0, 9, 18-38.	0.2	1
407	Shortâ€ŧerm photovoltaic power prediction based on MDCMâ€GA‣STM model. Journal of Engineering, 2022, 2022, 994-1005.	0.6	1
408	Machine Learning Prediction of Turning Precision Using Optimized XGBoost Model. Applied Sciences (Switzerland), 2022, 12, 7739.	1.3	6
409	Deep belief rule based photovoltaic power forecasting method with interpretability. Scientific Reports, 2022, 12, .	1.6	4
410	A Review on India's Solar Energy Prospective: Potential, Environmental Protection and Policies Framework. Journal of the Institution of Engineers (India): Series A, 2022, 103, 1299-1313.	0.6	2
412	Ultra-short-term prediction method of PV power output based on the CNN–LSTM hybrid learning model driven by EWT. Journal of Renewable and Sustainable Energy, 2022, 14, .	0.8	4
413	Solar power time series forecasting utilising wavelet coefficients. Neurocomputing, 2022, 508, 182-207.	3.5	6
414	A Multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network. Energy Reports, 2022, 8, 10346-10362.	2.5	28
415	ECLIPSE: Envisioning CLoud Induced Perturbations in Solar Energy. Applied Energy, 2022, 326, 119924.	5.1	13
416	Wavelet-based neural network with genetic algorithm optimization for generation prediction of PV plants. Energy Reports, 2022, 8, 10976-10990.	2.5	24
417	A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks. Renewable Energy, 2022, 199, 560-586.	4.3	17
418	Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Reports, 2022, 8, 12063-12080.	2.5	57
419	Different normalization techniques as data preprocessing for one step ahead forecasting of solar global horizontal irradiance. , 2022, , 209-230.		6
420	Comparison of PV Power Generation Forecasting in a Residential Building using ANN and DNN. IFAC-PapersOnLine, 2022, 55, 291-296.	0.5	5
421	Four-Stage Space-Time Hybrid Model For Distributed Photovoltaic Power Forecasting. IEEE Transactions on Industry Applications, 2023, 59, 1129-1138.	3.3	5
422	Time Series Processing with Cognitive Maps. The Case of General Forecast Modeling for Time Series of Similar Nature. , 2022, , .		2
423	Machine Learning-Based Approach to Nonlinear Functional Data Analysis for Photovoltaic Power Forecasting. , 2022, , .		0

#	Article	IF	CITATIONS
424	Multi-site Forecasting of Energy Time Series with Spatio-Temporal Graph Neural Networks. , 2022, , .		1
425	The impact of weather changes on the supply and demand of electric power and wholesale prices of electricity in Germany. Sustainability Science, 2022, 17, 1813-1825.	2.5	5
426	Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting. Applied Sciences (Switzerland), 2022, 12, 8769.	1.3	12
427	Market Value and Agents Benefits of Enhanced Short-Term Solar PV Power Generation Forecasting. Machines, 2022, 10, 730.	1.2	0
428	Wind Power Prediction Method: Support Vector Regression Optimized by Improved Jellyfish Search Algorithm. Energies, 2022, 15, 6404.	1.6	10
429	Predicting photovoltaic power generation using double-layer bidirectional long short-term memory-convolutional network. International Journal of Energy and Environmental Engineering, 2023, 14, 497-510.	1.3	2
430	Short-Term Power Prediction of a Photovoltaic Power Station Based on the SSA-CEEMDAN-FCN Model. Computational Intelligence and Neuroscience, 2022, 2022, 1-9.	1.1	0
431	Performance assessment of SARIMA, MLP and LSTM models for short-term solar irradiance prediction under different climates in Morocco. International Journal of Ambient Energy, 2023, 44, 334-350.	1.4	5
433	A case study of NeuralProphet and nonlinear evaluation for high accuracy prediction in short-term forecasting in PV solar plant. Heliyon, 2022, 8, e10639.	1.4	4
434	Investigating photovoltaic solar power output forecasting using machine learning algorithms. Engineering Applications of Computational Fluid Mechanics, 2022, 16, 2002-2034.	1.5	16
435	Prophetic Energy Assessment with Smart Implements in Hydroelectricity Entities Using Artificial Intelligence Algorithm. International Transactions on Electrical Energy Systems, 2022, 2022, 1-12.	1.2	4
436	A systematic review of machine learning applications in the operation of smart distribution systems. Energy Reports, 2022, 8, 12379-12407.	2.5	10
437	Convolutional-LSTM networks and generalization in forecasting of household photovoltaic generation. Engineering Applications of Artificial Intelligence, 2022, 116, 105458.	4.3	16
438	Photovoltaic power prediction based on SVMD-PCA-EL model. , 2022, , .		0
440	A hybrid method for dayâ€ahead photovoltaic power forecasting based on generative adversarial network combined with convolutional autoencoder. IET Renewable Power Generation, 2023, 17, 644-658.	1.7	5
441	Prediction of Photovoltaic Power by the Informer Model Based on Convolutional Neural Network. Sustainability, 2022, 14, 13022.	1.6	13
442	Transformer-Based Hybrid Forecasting Model for Multivariate Renewable Energy. Applied Sciences (Switzerland), 2022, 12, 10985.	1.3	2
443	Artificial intelligence in renewable energy: A comprehensive bibliometric analysis. Energy Reports, 2022, 8, 14072-14088.	2.5	63

#	Article	IF	Citations
444	Assessing stacked physics-informed machine learning models for co-located wind–solar power forecasting. Sustainable Energy, Grids and Networks, 2022, 32, 100943.	2.3	8
445	Development of a Machine learning assessment method for renewable energy investment decision making. Applied Energy, 2022, 327, 120096.	5.1	28
446	Differential attention net: Multi-directed differential attention based hybrid deep learning model for solar power forecasting. Energy, 2023, 263, 125746.	4.5	8
447	Probabilistic LSTM-Autoencoder Based Hour-Ahead Solar Power Forecasting Model for Intra-Day Electricity Market Participation: A Polish Case Study. IEEE Access, 2022, 10, 110628-110638.	2.6	10
448	Short-Term Solar PV Power Generation Day-Ahead Forecasting Using Artificial Neural Network: Assessment and Validation. International Journal of Robotics and Control Systems, 2022, 2, 562-580.	0.6	1
449	Prediction of Solar Photovoltaic Energy Output Based on Thin-Film Technology Utilizing Various Machine Learning Techniques. , 2022, , .		1
450	Effect of Nitrogen Flow Rate on Microstructure and Optical Properties of Ta2O5 Coatings. Coatings, 2022, 12, 1745.	1.2	2
451	A hybrid machine learning method with explicit time encoding for improved Malaysian photovoltaic power prediction. Journal of Cleaner Production, 2023, 382, 134979.	4.6	15
452	Diverse cloud and aerosol impacts on solar photovoltaic potential in southern China and northern India. Scientific Reports, 2022, 12, .	1.6	2
453	A combination of novel hybrid deep learning model and quantile regression for shortâ€ŧerm deterministic and probabilistic PV maximum power forecasting. IET Renewable Power Generation, 0, , .	1.7	7
454	An Empirical Analysis of Machine Learning Algorithms for Solar Power Forecasting in a High Dimensional Uncertain Environment. IETE Technical Review (Institution of Electronics and) Tj ETQq0 0 0 rgBT /Ov	erbo r k 10	Тf 50 337 Td
455	Solar Power Forecasting Using CNN-LSTM Hybrid Model. Energies, 2022, 15, 8233.	1.6	46
456	Research on adaptive soft sensing modeling method of photovoltaic power generation process based on online semi-supervised selective ensemble learning. Energy Reports, 2022, 8, 15221-15233.	2.5	0
457	Photovoltaic Power Predictor Module Based onÂHistorical Production andÂWeather Conditions Data. Communications in Computer and Information Science, 2022, , 461-472.	0.4	0
458	Artificial intelligence and machine learning in energy systems: A bibliographic perspective. Energy Strategy Reviews, 2023, 45, 101017.	3.3	44
459	Power optimization of a photovoltaic system with artificial intelligence algorithms over two seasons in tropical area. MethodsX, 2023, 10, 101959.	0.7	3
460	A Survey of the Researches on Grid-Connected Solar Power Generation Systems and Power Forecasting Methods Based on Ground-Based Cloud Atlas. Energy Engineering: Journal of the Association of Energy Engineers, 2023, 120, 385-408.	0.3	1
461	Intermittent solar power hybrid forecasting system based on pattern recognition and feature extraction. Energy Conversion and Management, 2023, 277, 116579.	4.4	9

#	Article	IF	CITATIONS
462	Multi-step ahead wind power forecasting based on dual-attention mechanism. Energy Reports, 2023, 9, 239-251.	2.5	9
463	Trends and gaps in photovoltaic power forecasting with machine learning. Energy Reports, 2023, 9, 447-471.	2.5	24
464	Study on the Influence of Distributed Photovoltaic on Distance Protection of Collecting Line. , 2022, ,		0
465	A Review on Machine Learning Models in Forecasting of Virtual Power Plant Uncertainties. Archives of Computational Methods in Engineering, 2023, 30, 2081-2103.	6.0	5
466	Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System. Energies, 2022, 15, 9086.	1.6	0
467	Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region. Energies, 2022, 15, 8671.	1.6	9
468	Forecasting of solar radiation for a cleaner environment using robust machine learning techniques. Environmental Science and Pollution Research, 2023, 30, 30919-30932.	2.7	4
469	A Review on Machine Learning Applications for Solar Plants. Sensors, 2022, 22, 9060.	2.1	3
470	An Incremental Learning Framework for Photovoltaic Production and Load Forecasting in Energy Microgrids. Electronics (Switzerland), 2022, 11, 3962.	1.8	18
471	A comprehensive review of solar irradiation estimation and forecasting using artificial neural networks: data, models and trends. Environmental Science and Pollution Research, 2023, 30, 5407-5439.	2.7	7
472	Forecasting of photovoltaic power generation using deep learning Al. , 2022, , .		1
473	An Effective Hybrid Symbolic Regression–Deep Multilayer Perceptron Technique for PV Power Forecasting. Energies, 2022, 15, 9008.	1.6	5
474	Deep learning model for regional solar radiation estimation using satellite images. Ain Shams Engineering Journal, 2023, 14, 102057.	3.5	5
475	FCDT-IWBOA-LSSVR: An innovative hybrid machine learning approach for efficient prediction of short-to-mid-term photovoltaic generation. Journal of Cleaner Production, 2023, 385, 135716.	4.6	13
476	Short term photovoltaic power prediction based on transfer learning and considering sequence uncertainty. Journal of Renewable and Sustainable Energy, 2023, 15, .	0.8	3
477	Data Compensation with Gaussian Processes Regression: Application in Smart Building's Sensor Network. Energies, 2022, 15, 9190.	1.6	2
478	Short-Term Photovoltaic Power Forecasting Based on Historical Information and Deep Learning Methods. Sensors, 2022, 22, 9630.	2.1	6
479	Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review. Energies, 2023, 16, 106.	1.6	10

#	Article	IF	CITATIONS
480	Surrogated-assisted multimodal multi-objective optimization for hybrid renewable energy system. Complex & Intelligent Systems, 2023, 9, 4075-4087.	4.0	2
481	Forecast of Photovoltaic Plant Output Using Long Short-Term Memory (LSTM) Network: North Morocco Case Study. Lecture Notes in Networks and Systems, 2023, , 575-586.	0.5	0
482	Solar Photovoltaic Power Forecasting: A Review. Sustainability, 2022, 14, 17005.	1.6	20
483	A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence. Energies, 2023, 16, 1013.	1.6	4
484	A Comprehensive Review on Ensemble Solar Power Forecasting Algorithms. Journal of Electrical Engineering and Technology, 0, , .	1.2	17
485	Ensemble Machine Learning for Predicting the Power Output from Different Solar Photovoltaic Systems. Energies, 2023, 16, 671.	1.6	7
486	A TCN-Based Hybrid Forecasting Framework for Hours-Ahead Utility-Scale PV Forecasting. IEEE Transactions on Smart Grid, 2023, 14, 4073-4085.	6.2	6
487	Optimal Integration of Photovoltaic Systems in Distribution Networks from a Technical, Financial, and Environmental Perspective. Energies, 2023, 16, 562.	1.6	7
488	Decomposition integration and error correction method for photovoltaic power forecasting. Measurement: Journal of the International Measurement Confederation, 2023, 208, 112462.	2.5	16
489	A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs. Energy, 2023, 268, 126636.	4.5	6
490	Real-time Predictive Method for Intelligent Monitoring and Management of Distributed Power Access. , 2018, , .		0
491	Short-term Solar Power Prediction using Long Short-Term Memory in Solar Plant with Deep Learning Machine. , 2022, , .		0
492	Modeling and identification of power forecasting scheme for real PV system using Grey box neural network based NARMAX model. , 2022, , .		1
493	Harmonics Compensation for Grid Connected to PV System Using Two-Step Finite Set Predictive Control. , 2022, , .		0
494	Day-Ahead and Week-Ahead Solar PV Power Forecasting Using Deep Learning Neural Networks. , 2022, , .		1
495	Multiple Step Ahead Forecasting of Rooftop Solar Power Based on a Novel Hybrid Model of CEEMDAN - Bidirectional LSTM Network with Structure Optimized by PSO Method. , 2022, , .		Ο
496	Clobal Solar Radiation Modelling using an Artificial Neural Network for Kazaure, Jigawa State, Nigeria. Journal of Electrical Engineering and Automation, 2022, 4, 316-331.	0.7	0
497	How Does Neural Network Model Capacity Affect Photovoltaic Power Prediction? A Study Case. Sensors, 2023, 23, 1357.	2.1	5

#	Article	IF	CITATIONS
498	Impact of large-scale photovoltaic-energy storage power generation system access on differential protection of main transformer under symmetrical faults. Frontiers in Energy Research, 0, 11, .	1.2	0
499	Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis. Energy, 2023, 271, 126963.	4.5	8
500	Hourly forecasting of the photovoltaic electricity at any latitude using a network of artificial neural networks. Sustainable Energy Technologies and Assessments, 2023, 57, 103197.	1.7	7
501	Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods. Energies, 2023, 16, 1495.	1.6	4
502	Dayâ€ahead scheduling of a hybrid renewable energy system based on generation forecasting using a deepâ€learning approach. Energy Science and Engineering, 2023, 11, 1688-1704.	1.9	3
503	Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output. Renewable Energy, 2023, 206, 135-147.	4.3	10
504	Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renewable Energy, 2023, 205, 1010-1024.	4.3	48
505	Optimal Transmission Expansion Planning with Long-Term Solar Photovoltaic Generation Forecast. Energies, 2023, 16, 1719.	1.6	1
506	Modelling and real time performance evaluation of a 5ÂMW grid-connected solar photovoltaic plant using different artificial neural networks. Energy Conversion and Management, 2023, 279, 116767.	4.4	12
507	Interval forecasting of photovoltaic power generation on green ship under Multi-factors coupling. Sustainable Energy Technologies and Assessments, 2023, 56, 103088.	1.7	0
508	A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks. Forecasting, 2023, 5, 213-228.	1.6	10
509	A Novel Ultra-short-term Photovoltaic Power Generation Forecasting Method Based on Seasonal Autoregressive Integrated Moving Average. Journal of Physics: Conference Series, 2023, 2427, 012006.	0.3	1
510	Hourly stepwise forecasting for solar irradiance using integrated hybrid models CNN-LSTM-MLP combined with error correction and VMD. Energy Conversion and Management, 2023, 280, 116804.	4.4	21
511	Dayâ€ahead continuous double auctionâ€based peerâ€toâ€peer energy trading platform incorporating trading losses and network utilisation fee. IET Smart Grid, 2023, 6, 312-329.	1.5	3
512	Solar Power Photovoltaic Output Forecasting Using Multiple Methods Approach, Case Study: Cambodia. , 2022, , .		0
513	A Level-Based Learning Swarm Optimizer with Stochastic Fractal Search for Parameters Identification of Solar Photovoltaic Models. Mathematical Problems in Engineering, 2023, 2023, 1-16.	0.6	1
514	Short-term prediction for distributed photovoltaic power based on improved similar time period. Frontiers in Energy Research, 0, 11, .	1.2	0
515	Solar PV Power Estimation and Upscaling Forecast Using Different Artificial Neural Networks Types: Assessment, Validation, and Comparison. IEEE Access, 2023, 11, 19279-19300.	2.6	2

#	Article	IF	CITATIONS
516	Quantifying the predictability of renewable energy data for improving power systems decision-making. Patterns, 2023, 4, 100708.	3.1	1
517	Ultra-short-term PV power prediction using optimal ELM and improved variational mode decomposition. Frontiers in Energy Research, 0, 11, .	1.2	2
518	A comparative analysis of ANN based time series models for predicting PV output. , 2022, , .		0
519	A Review of Energy Management Systems and Organizational Structures of Prosumers. Energies, 2023, 16, 3179.	1.6	2
520	Short-term Photovoltaic Power Forecasting Using SOM-based Regional Modelling Methods. Chinese Journal of Electrical Engineering, 2023, 9, 158-176.	2.3	1
521	A Review on Forecasting Models and Anomaly Detection for Household Energy Consumption. , 2022, , .		0
522	Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM. Sustainability, 2023, 15, 6538.	1.6	5
523	Multi-Step Solar Power Forecasting using Deep Learning Methods. , 2022, , .		Ο
524	Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model. Energy, 2023, 277, 127557.	4.5	9
525	A novel method based on time series ensemble model for hourly photovoltaic power prediction. Energy, 2023, 276, 127542.	4.5	15
526	Progress and prospectives of solution-processed kesterite absorbers for photovoltaic applications. Nanoscale, 2023, 15, 8900-8924.	2.8	5
530	Short-Term Load Demand Forecasting Using Artificial Neural Network. Lecture Notes in Electrical Engineering, 2023, , 165-177.	0.3	0
535	Day-Ahead Power Forecasting of Renewable Energy Sources Using Neural Networks and Machine Learning. , 2023, , .		0
543	Forecasting the Global and Diffuse Solar Irradiance of Bangkok's Tropical Climate using Long-Short Term Memory (LSTM) Technique. , 2023, , .		0
548	Differential Evolution-based System for Net-zero Energy Buildings Under Climate Change. Sustainable Development Goals Series, 2023, , 231-254.	0.2	0
550	A Hybrid Model for Solar Radiation Forecasting towards Energy Efficient Buildings. , 2023, , .		0
552	Performance Analysis of Regression Models in Solar PV Forecasting. , 2023, , .		0
559	Short-Term Forecasting for Photovoltaic Power Based on Successive Variational Modal Decomposition and Cascaded Deep Learning Model. , 2023, , .		1

#	ARTICLE	IF	CITATIONS
561	Short-Term Photovoltaic Power Prediction Based on ICHOA-GRU. , 2023, , .		0
566	Comprehensive Review and Evaluation of Machine Learning Approaches for Solar PV Output Power Forecasting. , 2023, , .		0
570	PV Power Production and Consumption Estimation with Uncertainty bounds in Smart Energy Grids. , 2023, , .		0
571	Data-Driven Techniques for Optimizing the Renewable Energy Systems Operations. , 2023, , 3317-3338.		0
573	Assessing Critical Data Types for Deep Leaming-Based PV Generation Forecasting. , 2023, , .		1
574	Forecasting method for photovoltaic power based on data preprocessing and temporal convolutional network. , 2023, , .		0
575	Applications of Artificial Intelligence in Renewable Energy: a brief review. , 2023, , .		0
588	Electric Vehicles Uncertainty Forecasting. , 2022, , .		0
589	Short-Term Photovoltaic Power Forecasting Via Sparse Coding and Dictionary Based Techniques. , 2023, , .		0
592	Machine Learning Based Framework for Prediction of Photovoltaic Output Power. , 2023, , .		0
594	The Implementation of Moving Average to Reduce the Photovoltaic System Active Power Fluctuations. , 2023, , .		0
605	Exploring Forecasting and Prediction Processes for Decision-Making to Promote the Photovoltaic Energy Integration into the Grid: A Mini Review. , 2023, , .		0
606	Gaussian Processes for Efficient Photovoltaic Power Prediction. , 2023, , .		0
609	Distributed Photovoltaic Power Forecast Methods: A Review. , 2023, , .		0
612	Prediction of waste and compost generation for Nashik city using neural network. AIP Conference Proceedings, 2023, , .	0.3	0
618	LORAP: Local Deep Neural Network forÂSolar Radiation Prediction. Communications in Computer and Information Science, 2023, , 366-380.	0.4	0
620	Forecasting of PV Plant Output Using Interpretable Temporal Fusion Transformer Model. , 2023, , .		0
621	Photovoltaic Power Prediction Considering Direct and Scattered Radiation Effect. , 2023, , .		0

#	Article	IF	CITATIONS
622	Transductive-Transfer Learning Based Deep Neural Networks for Day-Ahead PV Power Forecasting in Smart Grid Application: A Comparative Analysis. , 2023, , .		0
623	Solar Irradiance Forecasting Using Machine Learning. , 2023, , .		0
626	Research on Integration Scheme of Rooftop Photovoltaic System Access to the Bus in Substation. , 2023, , .		0
629	A Bayesian Structural Time Series Approach for Forecasting Photovoltaic Power Generation. , 2023, , .		0
634	Solar Energy Forecasting Techniques Based on Machine Learning: Survey. , 2023, , .		0
636	Wind Energy Prediction: Artificial Intelligence Perspective. , 2023, , .		0
640	A Survey on Comprehensive Evaluation Method of Low Carbon Benefit of Fishery Power Grid. , 2023, , .		0
641	An Efficient Algorithm for Energy Management in Smart Grid for Various Improvements. Lecture Notes in Electrical Engineering, 2024, , 31-43.	0.3	0
647	Capacity Optimization of a Renewable Energy System Coupled with Large-Scale Hydrogen Production and Storage. Springer Proceedings in Physics, 2024, , 412-421.	0.1	0
651	Modelling Ageing and Power Production of Solar PV Using Machine Learning Techniques. , 2023, , .		0
653	Parameter Estimation of Photovoltaic Cell Model Based on Improved Particle Swarm Optimization. , 2023, , .		0
655	Renewable Energy Forecasting: a case study of a PV Solar Plant in a Small Island. , 2023, , .		0
658	Al-Integrated Solar Energy Systems for Sustainable Energy in Africa. Green Energy and Technology, 2024, , 435-448.	0.4	0
665	Power Sequencial Data - Forecasting Trend. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 369-379.	0.2	0
668	The Use of City Information Modelling (CIM) for Realizing Zero Energy Community: A Path Towards Carbon Neutrality. , 2024, , 215-247.		0
675	Microgrid energy management system for optimum energy scheduling based on combination of swarm intelligent and cuckoo search algorithm. AIP Conference Proceedings, 2024, , .	0.3	0
678	Solar power forecasting using recurrent deep neural network. AIP Conference Proceedings, 2024, , .	0.3	0
679	Exploratory Data Analysis and Energy Predictions With Advanced AI and ML Techniques. Advances in Computational Intelligence and Robotics Book Series, 2024, , 336-370.	0.4	Ο

ARTICLE

IF CITATIONS