Silk fibroin/hydroxyapatite composites for bone tissue

Biotechnology Advances 36, 68-91 DOI: 10.1016/j.biotechadv.2017.10.001

Citation Report

#	Article	IF	CITATIONS
1	Bacterial cellulose-based scaffold materials for bone tissue engineering. Applied Materials Today, 2018, 11, 34-49.	4.3	208
2	Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceramics International, 2018, 44, 10525-10530.	4.8	95
3	Evaluación del crecimiento de fibroblastos humanos en andamios de fibroÃna de Bombyx mori L Revista Colombiana De BiotecnologÃa, 2018, 20, 47-56.	0.2	1
4	Design and Evaluation of Europium Containing Mesoporous Bioactive Glass Nanospheres: Doxorubicin Release Kinetics and Inhibitory Effect on Osteosarcoma MG 63 Cells. Nanomaterials, 2018, 8, 961.	4.1	26
5	Biocomposites for Hard Tissue Replacement and Repair. Materials Horizons, 2018, , 281-296.	0.6	9
6	Stem Cell and Advanced Nano Bioceramic Interactions. Advances in Experimental Medicine and Biology, 2018, 1077, 317-342.	1.6	16
7	Silk Fibroin-Based Scaffold for Bone Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1077, 371-387.	1.6	41
8	Biomimetic synthesis of novel polyvinyl alcohol/hydroxyapatite composite microspheres for biomedical applications. Materials Research Express, 2018, 5, 115401.	1.6	12
9	Protein Nanofibril Assemblies Templated by Graphene Oxide Nanosheets Accelerate Early Cell Adhesion and Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2018, 10, 31988-31997.	8.0	37
10	Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. International Journal of Biological Macromolecules, 2018, 120, 876-885.	7.5	47
11	Biopolymer based nanomaterials in drug delivery systems: A review. Materials Today Chemistry, 2018, 9, 43-55.	3.5	362
12	Preparation of a Codelivery System Based on Vancomycin/Silk Scaffold Containing Silk Nanoparticle Loaded VEGF. ACS Biomaterials Science and Engineering, 2018, 4, 2836-2846.	5.2	36
13	Chemical Self-Assembly of Multifunctional Hydroxyapatite with a Coral-like Nanostructure for Osteoporotic Bone Reconstruction. ACS Applied Materials & Interfaces, 2018, 10, 25547-25560.	8.0	41
14	Biomimetic hydroxyapatite/gelatin composites for bone tissue regeneration: Fabrication, characterization, and osteogenic differentiation in vitro. Materials and Design, 2018, 156, 381-388.	7.0	32
15	Polymer-Based Electrospun Nanofibers for Biomedical Applications. Nanomaterials, 2018, 8, 259.	4.1	171
16	Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. International Journal of Biological Macromolecules, 2018, 119, 1228-1239.	7.5	203
17	Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships. Surface and Coatings Technology, 2018, 349, 251-259.	4.8	56
18	Recent Advances in Biomaterials Science and Engineering Research in India: A Minireview. ACS Biomaterials Science and Engineering, 2019, 5, 3-18.	5.2	8

#	Δρτιςις	IE	CITATIONS
#	Enhanced mechanical and octoogenic differentiation performance of hydroxyapatite/zein composite	IF	CHATIONS
19	for bone tissue engineering. Journal of Materials Science, 2019, 54, 719-729.	3.7	32
20	Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy. Carbohydrate Polymers, 2019, 224, 115161.	10.2	109
21	Chemistry of biomaterials: future prospects. Current Opinion in Biomedical Engineering, 2019, 10, 181-190.	3.4	58
22	Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation. Dental Materials, 2019, 35, 1397-1407.	3.5	30
23	Genetically Engineered Flagella Form Collagen-like Ordered Structures for Inducing Stem Cell Differentiation. IScience, 2019, 17, 277-287.	4.1	5
24	A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Progress in Materials Science, 2019, 106, 100588.	32.8	147
25	Evaluation of the biomedical properties of a Ca+-conjugated silk fibroin porous material. Materials Science and Engineering C, 2019, 104, 110003.	7.3	17
26	Nanostructured Biopolymers for Application as Drug-Delivery Vehicles. , 2019, , 189-210.		5
27	Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 136, 1247-1257.	7.5	88
28	The Transcivilizational Perspective: A Legitimate and Feasible Approach to International Law. Asian Journal of International Law, 2019, 9, 165-169.	0.2	1
29	Silk Fibroin Regulates Osteoconduction of Hydroxyapatite in Rat Spine Fusion Model. Journal of Hard Tissue Biology, 2019, 28, 341-348.	0.4	2
30	Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules, 2019, 9, 448.	4.0	142
31	Application of supercritical gel drying method on fabrication of mechanically improved and biologically safe three-component scaffold composed of graphene oxide/chitosan/hydroxyapatite and characterization studies. Journal of Materials Research and Technology, 2019, 8, 5201-5216.	5.8	25
32	Osteogenic differentiation of BMSCs in collagen-based 3D scaffolds. New Journal of Chemistry, 2019, 43, 1980-1986.	2.8	1
33	Biotechnological Applications of Polyhydroxyalkanoates. , 2019, , .		24
34	Nanofibers from Polyhydroxyalkanoates and Their Applications in Tissue Engineering. , 2019, , 409-420.		2
35	Strontium Ranelate Incorporated Enzyme-Cross-Linked Gelatin Nanoparticle/Silk Fibroin Aerogel for Osteogenesis in OVX-Induced Osteoporosis. ACS Biomaterials Science and Engineering, 2019, 5, 1440-1451.	5.2	28
36	Hierarchical nanomaterials <i>via</i> biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale, 2019, 11, 4147-4182.	5.6	122

#	Article	IF	Citations
37	Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4. Theranostics, 2019, 9, 4525-4541.	10.0	43
38	Osteoblast studied on gelatin based biomaterials in rabbit Bone Bioengineering. Materials Science and Engineering C, 2019, 104, 109892.	7.3	6
39	A novel technique in the preparation of environmentally friendly cellulose nanofiber/silk fibroin fiber composite films with improved thermal and mechanical properties. Journal of Cleaner Production, 2019, 234, 200-207.	9.3	41
40	"Tree to Boneâ€ı Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Biomacromolecules, 2019, 20, 2684-2693.	5.4	82
41	Tightly adhered silk fibroin coatings on Ti6Al4V biometals for improved wettability and compatible mechanical properties. Materials and Design, 2019, 175, 107825.	7.0	31
42	Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 17256-17269.	8.0	115
43	Effect of different cocoon stifling methods on the properties of silk fibroin biomaterials. Scientific Reports, 2019, 9, 6703.	3.3	17
44	Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. European Polymer Journal, 2019, 115, 251-267.	5.4	71
45	Upgrading prevascularization in tissue engineering: A review of strategies for promoting highly organized microvascular network formation. Acta Biomaterialia, 2019, 95, 112-130.	8.3	78
46	Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped CaP/Silk Fibroin Scaffold. ACS Biomaterials Science and Engineering, 2019, 5, 2134-2146.	5.2	25
47	A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomaterialia, 2019, 88, 503-513.	8.3	143
48	Regenerated Antheraea pernyi Silk Fibroin/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers, 2019, 11, 302.	4.5	15
49	Synthesis of nickel – hydroxyapatite by electrochemical method. IOP Conference Series: Materials Science and Engineering, 2019, 543, 012026.	0.6	4
50	The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. Journal of Materials Chemistry B, 2019, 7, 6890-6913.	5.8	29
51	Functionalized calcium orthophosphates (CaPO ₄) and their biomedical applications. Journal of Materials Chemistry B, 2019, 7, 7471-7489.	5.8	55
52	Effects of polyethylene glycol content on the properties of a silk fibroin/nano-hydroxyapatite/polyethylene glycol electrospun scaffold. RSC Advances, 2019, 9, 33941-33948.	3.6	9
53	Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers, 2019, 11, 1933.	4.5	259
54	Regulation of MSC and macrophage functions in bone healing by peptide LL-37-loaded silk fibroin nanoparticles on a titanium surface. Biomaterials Science, 2019, 7, 5492-5505.	5.4	25

		CITATION R	EPORT	
#	Article		IF	CITATIONS
55	The Biomedical Use of Silk: Past, Present, Future. Advanced Healthcare Materials, 2019	, 8, e1800465.	7.6	522
56	Using co-axial electrospray deposition to eliminate burst release of simvastatin from m and to enhance induced osteogenesis. Journal of Biomaterials Science, Polymer Edition 355-375.	croparticles , 2019, 30,	3.5	13
57	Biocompatible Fe3O4/chitosan scaffolds with high magnetism. International Journal of Macromolecules, 2019, 128, 406-413.	Biological	7.5	23
58	Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration. ACS Applied Materials & amp; Interfaces, 2019, 11, 3781-3799.		8.0	83
59	Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to toward bone reconstruction engineering. Colloids and Surfaces B: Biointerfaces, 2019,	o cell behavior 173, 512-520.	5.0	27
60	Osteoblast responses to injectable bone substitutes of kappa-carrageenan and nano hy Acta Biomaterialia, 2019, 83, 425-434.	vdroxyapatite.	8.3	54
61	In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydro process. Materials Chemistry and Physics, 2019, 222, 251-255.	othermal	4.0	31
62	Physiochemical characteristics and bone/cartilage tissue engineering potentialities of p macromolecules — A review. International Journal of Biological Macromolecules, 2019	rotein-based 9, 121, 13-22.	7.5	34
63	Review of craniofacial regeneration in China. Journal of Oral Rehabilitation, 2020, 47, 1	07-117.	3.0	0
64	An introduction to bone tissue engineering. International Journal of Artificial Organs, 20	020, 43, 69-86.	1.4	107
65	Silk fibroin/hydroxyapatite composite membranes: Production, characterization and to: evaluation. Toxicology in Vitro, 2020, 62, 104670.	kicity	2.4	17
66	a-C:H films produced by PECVD technique onto substrate of Ti6Al4V alloy: Chemical an responses. Applied Surface Science, 2020, 503, 144084.	d biological	6.1	12
67	3D Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electro nanofibers for biomineralization. Colloids and Surfaces A: Physicochemical and Enginee 2020, 585, 124048.	spun ring Aspects,	4.7	43
68	The synthesis of hydroxyapatite crystals with various morphologies via the solvotherma using double surfactants. Materials Letters, 2020, 259, 126881.	l method	2.6	14
69	Silk/Natural Rubber (NR) and 3,4-Dihydroxyphenylalanine (DOPA)-Modified Silk/NR Con Synthesis, Secondary Structure, and Mechanical Properties. Molecules, 2020, 25, 235.	iposites:	3.8	8
70	Topical application of silk fibroin-based hydrogel in preventing hypertrophic scars. Collo Surfaces B: Biointerfaces, 2020, 186, 110735.	oids and	5.0	32
71	Progress toward Safe Tumor Diagnosis and Therapy via Degradable Inorganic Nanomat Constructed with Metabolically Safe Elements. ACS Applied Nano Materials, 2020, 3, 1	erials 028-1042.	5.0	5
72	Biogenic silica nanostructures derived from Sorghum bicolor induced osteogenic differ through BSP, BMP-2 and BMP-4 gene expression. Process Biochemistry, 2020, 91, 231-	entiation 240.	3.7	6

#	Article	IF	CITATIONS
73	Functionalization of Silk Fibers by PDGF and Bioceramics for Bone Tissue Regeneration. Coatings, 2020, 10, 8.	2.6	8
74	Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers, 2020, 12, 7.	4.5	141
75	Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. International Journal of Biological Macromolecules, 2020, 165, 1164-1174.	7.5	47
76	Silk as templates for hydroxyapatite biomineralization: A comparative study of Bombyx mori and Antheraea pernyi silkworm silks. International Journal of Biological Macromolecules, 2020, 164, 2842-2850.	7.5	26
77	Homogeneous organic/inorganic hybrid scaffolds with high osteoinductive activity for bone tissue engineering. Polymer Testing, 2020, 91, 106798.	4.8	6
78	Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair. Molecules, 2020, 25, 4785.	3.8	34
79	Hydroxyapatite powders prepared using two different methods as modifying agents of PVP/collagen composites designed for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, , 1-11.	3.4	0
80	Preparation and characterization of new materials based on silk fibroin, chitosan and nanohydroxyapatite. International Journal of Polymer Analysis and Characterization, 2020, 25, 315-333.	1.9	9
81	Bionic Silk Fibroin Film Promotes Tenogenic Differentiation of Tendon Stem/Progenitor Cells by Activating Focal Adhesion Kinase. Stem Cells International, 2020, 2020, 1-10.	2.5	6
82	Sodium alginate/collagen composite multiscale porous scaffolds containing poly(ε-caprolactone) microspheres fabricated based on additive manufacturing technology. RSC Advances, 2020, 10, 39241-39250.	3.6	19
83	Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded With Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 697.	4.1	19
84	Silk Fibroin 3D Microparticle Scaffolds with Bioactive Ceramics: Chemical, Mechanical, and Osteoregenerative Characteristics. Advanced Engineering Materials, 2020, 22, 2000458.	3.5	0
85	Fibrous scaffolds for bone tissue engineering. , 2020, , 351-382.		3
86	Cytochrome c adsorption on various poly-L-glutamic acid-containing calcium phosphate particles. Open Ceramics, 2020, 2, 100009.	2.0	1
87	An insight into cell-laden 3D-printed constructs for bone tissue engineering. Journal of Materials Chemistry B, 2020, 8, 9836-9862.	5.8	21
88	Characterization of Ground Silk Fibroin through Comparison of Nanofibroin and Higher Order Structures. ACS Omega, 2020, 5, 22786-22792.	3.5	29
89	Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 598607.	4.1	57
90	Dual-Anchoring Intercalation Structure and Enhanced Bioactivity of Poly(vinyl alcohol)/Graphene Oxide–Hydroxyapatite Nanocomposite Hydrogels as Artificial Cartilage Replacement. Industrial & Engineering Chemistry Research, 2020, 59, 20359-20370.	3.7	13

#	Article	IF	CITATIONS
91	Hydroxyapatite as a biomaterial – a gift that keeps on giving. Drug Development and Industrial Pharmacy, 2020, 46, 1035-1062.	2.0	64
92	Factors Influencing the Interactions in Gelatin/Hydroxyapatite Hybrid Materials. Frontiers in Chemistry, 2020, 8, 489.	3.6	6
93	Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. International Journal of Energy Production and Management, 2020, 7, 233-245.	3.7	101
94	Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomaterialia, 2020, 112, 75-86.	8.3	23
95	A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma. Nano Research, 2020, 13, 2106-2117.	10.4	15
96	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	4.3	86
97	Recent Advances in Silk Sericin/Calcium Phosphate Biomaterials. Frontiers in Materials, 2020, 7, .	2.4	27
98	Advances in Electrospinning of Natural Biomaterials for Wound Dressing. Journal of Nanomaterials, 2020, 2020, 1-14.	2.7	46
99	Scaffolds and coatings for bone regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 27.	3.6	86
100	Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering. Advances in Experimental Medicine and Biology, 2020, 1249, 3-14.	1.6	15
101	Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis. Acta Biochimica Et Biophysica Sinica, 2020, 52, 590-602.	2.0	14
102	The lamininâ€211â€derived PPFEGCIWN motif accelerates wound reepithelialization and increases phosphoâ€FAKâ€Tyr397 and Rac1â€GTP levels in a rat excisional wound splinting model. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1100-1112.	2.7	0
103	Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. International Journal of Oral Science, 2020, 12, 6.	8.6	240
104	Surface Characterization of Electro-Assisted Titanium Implants: A Multi-Technique Approach. Materials, 2020, 13, 705.	2.9	12
105	3DÂprinting for the future of medicine. Journal of 3D Printing in Medicine, 2020, 4, 45-67.	2.0	5
106	Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. Journal of Materials Science, 2020, 55, 6352-6374.	3.7	68
107	Homogeneously dispersed composites of hydroxyapatite nanorods and poly(lactic acid) and their mechanical properties and crystallization behavior. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105841.	7.6	18
108	Degradation behaviors of three-dimensional hydroxyapatite fibrous scaffolds stabilized by different biodegradable polymers. Ceramics International, 2020, 46, 14124-14133.	4.8	14

#	Article	IF	CITATIONS
109	Three-dimensional porous composite scaffolds for <i>in vitro</i> marrow microenvironment simulation to screen leukemia drug. Biomedical Materials (Bristol), 2020, 15, 035016.	3.3	6
110	Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. Journal of Controlled Release, 2020, 321, 324-347.	9.9	125
111	Malleability and Pliability of Silkâ€Derived Electrodes for Efficient Deformable Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903357.	19.5	19
112	Chitosan Derivatives and Their Application in Biomedicine. International Journal of Molecular Sciences, 2020, 21, 487.	4.1	467
113	Polymer nanocomposites based on two-dimensional nanomaterials. , 2020, , 249-279.		7
114	Dynamic mechanical analysis of polyethylene terephthalate/hydroxyapatite biocomposites for tissue engineering applications. Journal of Materials Research and Technology, 2020, 9, 2350-2356.	5.8	22
115	Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Applied Surface Science, 2020, 520, 146311.	6.1	44
116	Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules, 2020, 154, 390-412.	7.5	103
117	Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 3441-3455.	4.6	20
118	Bioinspired 3D porous human placental derived extracellular matrix/silk fibroin sponges for accelerated bone regeneration. Materials Science and Engineering C, 2020, 113, 110990.	7.3	20
119	Sol-gel (template) synthesis of osteoplastic CaSiO3/HAp powder biocomposite: "In vitro―and "in vivo― biocompatibility assessment. Powder Technology, 2020, 367, 762-773.	4.2	25
120	Tanshinone IIA Delivery Silk Fibroin Scaffolds Significantly Enhance Articular Cartilage Defect Repairing <i>via</i> Promoting Cartilage Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 21470-21480.	8.0	35
121	Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. Science and Technology of Advanced Materials, 2020, 21, 242-266.	6.1	72
122	Gradient Biomineralized Silk Fibroin Nanofibrous Scaffold with Osteochondral Inductivity for Integration of Tendon to Bone. ACS Biomaterials Science and Engineering, 2021, 7, 841-851.	5.2	24
123	Bioactive and Biodegradable Polymer-Based Composites. , 2021, , 674-700.		1
124	Effect of the silica nanoparticle size on the osteoinduction of biomineralized silk-silica nanocomposites. Acta Biomaterialia, 2021, 120, 203-212.	8.3	19
125	Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioactive Materials, 2021, 6, 1255-1266.	15.6	82
126	Synthesis and characterization of collagen/calcium phosphate scaffolds incorporating antibacterial agent for bone tissue engineering application. Journal of Bioactive and Compatible Polymers, 2021, 36, 29-43.	2.1	12

#	Article	IF	CITATIONS
127	Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Acta Biomaterialia, 2021, 119, 419-431.	8.3	47
128	Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal. International Journal of Biological Macromolecules, 2021, 167, 726-735.	7.5	18
129	Enhancement of mechanical and biological performance on hydroxyapatite/silk fibroin scaffolds facilitated by microwave-assisted mineralization strategy. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111401.	5.0	19
130	Influence of silk fibroin on the preparation of nanofibrous scaffolds for the effective use in osteoregenerative applications. Journal of Drug Delivery Science and Technology, 2021, 61, 102182.	3.0	9
131	Viscoelastic Silk Fibroin Hydrogels with Tunable Strength. ACS Biomaterials Science and Engineering, 2021, 7, 636-647.	5.2	21
132	Fiber orientation effect on fracture toughness of silk fiber-reinforced zeolite/HDPE composites. FME Transactions, 2021, 49, 128-134.	1.4	1
133	Caffeic acid treatment augments the cell proliferation, differentiation, and calcium mineralization in the human osteoblast-like MG-63 cells. Pharmacognosy Magazine, 2021, 17, 38.	0.6	4
134	Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization. Journal of Materials Chemistry B, 2021, 9, 1277-1287.	5.8	33
135	Polymeric Biomaterials in Tissue Engineering: Retrospect and Prospects. , 2021, , 89-118.		1
136	Preparation of Silk Fibroin/Cellulose Blend Films. Journal of Physics: Conference Series, 2021, 1790, 012067.	0.4	3
137	Review of zirconia-based biomimetic scaffolds for bone tissue engineering. Journal of Materials Science, 2021, 56, 8309-8333.	3.7	19
138	Role of Block Copolymers in Tissue Engineering Applications. Cells Tissues Organs, 2022, , 76-89.	2.3	5
139	Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomedical Materials (Bristol), 2021, 16, 022004.	3.3	37
140	Multifunctional Hydroxyapatite-based Nanoparticles for Biomedicine: Recent Progress in Drug Delivery and Local Controlled Release. Current Mechanics and Advanced Materials, 2021, 1, 3-16.	0.1	6
141	Novel natural spider silk embedded electrospun nanofiber mats for wound healing. Materials Today Communications, 2021, 26, 101942.	1.9	13
142	Multivalent display of chemical signals on <scp>selfâ€assembled</scp> peptide scaffolds. Peptide Science, 2021, 113, e24224.	1.8	8
143	Osteoinductive potential and antibacterial characteristics of collagen coated iron oxide nanosphere containing strontium and hydroxyapatite in long term bone fractures. Arabian Journal of Chemistry, 2021, 14, 102984.	4.9	10
144	Biomimetic Silk Fibroin Hydrogels Strengthened by Silica Nanoparticles Distributed Nanofibers Facilitate Bone Repair. Advanced Healthcare Materials, 2021, 10, e2001646.	7.6	41

#	Article	IF	CITATIONS
145	Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. Materials, 2021, 14, 2096.	2.9	25
146	The prominent role of fully-controlled surface co-modification procedure using titanium nanotubes and silk fibroin nanofibers in the performance enhancement of Ti6Al4V implants. Surface and Coatings Technology, 2021, 412, 127001.	4.8	12
147	Effect of Cerium-Containing Hydroxyapatite in Bone Repair in Female Rats with Osteoporosis Induced by Ovariectomy. Minerals (Basel, Switzerland), 2021, 11, 377.	2.0	13
148	Conjugation of CMCS to silk fibroin for tuning mechanical and swelling behaviors of fibroin hydrogels. European Polymer Journal, 2021, 150, 110411.	5.4	13
149	Induction of Bone Remodeling by Raloxifene-Doped Iron Oxide Functionalized with Hydroxyapatite to Accelerate Fracture Healing. Journal of Biomedical Nanotechnology, 2021, 17, 932-941.	1.1	9
150	Recent Trends in the Development of Bone Regenerative Biomaterials. Frontiers in Cell and Developmental Biology, 2021, 9, 665813.	3.7	82
151	Recent progress on biomedical applications of functionalized hollow hydroxyapatite microspheres. Ceramics International, 2021, 47, 13552-13571.	4.8	14
152	Biodegradable ceramic matrix composites made from nanocrystalline hydroxyapatite and silk fibers via crymilling and uniaxial pressing. Materials Letters, 2021, 293, 129672.	2.6	5
153	Synthesis of silver modified hydroxyapatite nanoparticle and evaluation of its biological properties <i>in vitro</i> for potential biomedical application. Journal of the Ceramic Society of Japan, 2021, 129, 443-452.	1.1	2
154	A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. International Journal of Biological Macromolecules, 2021, 182, 286-297.	7.5	23
155	Biomechanical Properties of 3D-Printed Cervical Interbody Fusion Cage With Novel SF/nHAp Composites. Frontiers in Materials, 2021, 8, .	2.4	1
156	3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers, 2021, 13, 4065.	3.7	18
157	A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioactive Materials, 2022, 9, 281-298.	15.6	12
158	Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. International Journal of Biological Macromolecules, 2021, 184, 170-180.	7.5	55
159	Identification and location of sericin in silkworm with anti-sericin antibodies. International Journal of Biological Macromolecules, 2021, 184, 522-529.	7.5	4
160	Synthesis techniques, characterization and mechanical properties of natural derived hydroxyapatite scaffolds for bone implants: a review. SN Applied Sciences, 2021, 3, 1.	2.9	25
161	Silk Fibroin: A Promising Tool for Wound Healing and Skin Regeneration. International Journal of Polymer Science, 2021, 2021, 1-10.	2.7	21
162	Mineralized collagen scaffold bone graft accelerate the osteogenic process of HASCs in proper concentration. Regenerative Therapy, 2021, 18, 161-167.	3.0	4

#	Article	IF	CITATIONS
163	Silk fibroin nanomaterials. , 2021, , 171-202.		0
164	Natural biopolymeric nanomaterials for tissue engineering: overview and recent advances. , 2021, , 675-696.		1
165	Biopolymer-based nanofilms: Utility and toxicity. , 2021, , 353-385.		1
166	Silk Fibroin-based Soft Biomaterial/Scaffolds for Tissue Engineering Strategies. RSC Soft Matter, 2021, , 88-111.	0.4	1
167	Sophisticated Biocomposite Scaffolds from Renewable Biomaterials for Bone Tissue Engineering. , 2019, , 17-31.		3
168	Recent Achievements and Future Challenges in Nanoscience and Nanotechnology. Eurasian Chemico-Technological Journal, 2020, 22, 241.	0.6	10
169	Chitosan in Biomedical Engineering: A Critical Review. Current Stem Cell Research and Therapy, 2019, 14, 93-116.	1.3	165
170	Characterization of Electrospun Silk Fibroin Scaffolds for Bone Tissue Engineering: A Review. Tecno Lógicas, 2020, 23, 33-51.	0.3	7
171	Applications of Polymeric Composites in Bone Tissue Engineering and Jawbone Regeneration. Polymers, 2021, 13, 3429.	4.5	15
172	Osteo-conductive hydrogel scaffolds of poly(vinylalcohol) with silk fibroin particles for bone augmentation: Structural formation and in vitro testing. Journal of Bioactive and Compatible Polymers, 0, , 088391152110557.	2.1	0
173	Calcium Phosphate Mineralization on Calcium Carbonate Particle Incorporated Silk-Fibroin Composites. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2019, 15, 301-306.	0.5	1
174	Biomimetic Inorganic Nanoparticle-Loaded Silk Fibroin-Based Coating with Enhanced Antibacterial and Osteogenic Abilities. ACS Omega, 2021, 6, 30027-30039.	3.5	5
175	Early Recognition of the PCL/Fibrous Carbon Nanocomposites Interaction with Osteoblast-like Cells by Raman Spectroscopy. Nanomaterials, 2021, 11, 2890.	4.1	9
176	Bionic Silk Fibroin Film Induces Morphological Changes and Differentiation of Tendon Stem/Progenitor Cells. Applied Bionics and Biomechanics, 2020, 2020, 1-10.	1.1	10
177	Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. Journal of Environmental Management, 2022, 302, 113989.	7.8	44
178	Research on the Application of Conductive Materials in Tissue Engineering. Hans Journal of Nanotechnology, 2021, 11, 278-287.	0.0	0
179	Different types of biomaterials: Structure and application: A short review. Advanced Technologies, 2020, 9, 69-79.	0.4	7
180	Silk: An Amazing Biomaterial for Future Medication. , 2020, , 39-49.		2

#	Article	IF	CITATIONS
181	Preparation and characterization of magnetic chitosan hydroxyapatite nanoparticles for protein drug delivery and antibacterial activity. Journal of Materials Research, 2021, 36, 4307-4316.	2.6	5
182	Silkâ€based microcarriers: current developments and future perspectives. IET Nanobiotechnology, 2020, 14, 645-653.	3.8	11
183	Biological macromolecules in tissue engineering. , 2022, , 381-392.		3
184	Antibiotics-free wound dressing combating bacterial infections: A clean method using silkworm cocoon shell for preparation. Materials Chemistry and Physics, 2022, 277, 125484.	4.0	8
185	Sandwich-like nanocomposite electrospun silk fibroin membrane to promote osteogenesis and antibacterial activities. Applied Materials Today, 2022, 26, 101273.	4.3	4
186	Bio-inspired composite by hydroxyapatite mineralization on (bis)phosphonate-modified cellulose-alginate scaffold for bone tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 127958.	4.7	9
187	Chitosan/ \hat{l}^2 -TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	3.3	7
188	Biomedical Applications of Silkworm (Bombyx Mori) Proteins in Regenerative Medicine (a Narrative) Tj ETQq1 1	0.784314 2.7	rgBT /Overlo
189	A comparative insight into the mechanical properties, antibacterial potential, and cytotoxicity profile of nano-hydroxyapatite and nano-whitlockite-incorporated poly-L-lactic acid for bone tissue engineering. Applied Nanoscience (Switzerland), 2022, 12, 47-68.	3.1	5
190	Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Stem Cell Research and Therapy, 2021, 12, 591.	5.5	20
191	Recent progress in surgical adhesives for biomedical applications. Smart Materials in Medicine, 2022, 3, 41-65.	6.7	32
192	Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy. Journal of Materials Chemistry B, 2021, 9, 9734-9743.	5.8	13
193	Effectiveness of bio-dispersant in homogenizing hydroxyapatite for proliferation and differentiation of osteoblast. Journal of Colloid and Interface Science, 2022, 611, 491-502.	9.4	14
194	N-Acetyl-Cysteine-Loaded Biomimetic Nanofibrous Scaffold for Osteogenesis of Induced-Pluripotent-Stem-Cell-Derived Mesenchymal Stem Cells and Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 767641.	4.1	3
195	Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 802794.	4.1	6
196	Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Materials Today Bio, 2022, 13, 100206.	5.5	19
197	Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Materials Science and Engineering C, 2022, 134, 112690.	7.3	13
198	A review of recent advances on osteogenic applications of Silk fibroin as a potential bio-scaffold in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-16.	3.4	1

#	Article	IF	Citations
199	Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. Journal of Polymer Research, 2022, 29, 1.	2.4	15
200	Bio-nanocomposites in Biomedical Application. Composites Science and Technology, 2022, , 275-291.	0.6	2
202	Fibrous Aerogels for Solar Vapor Generation. Frontiers in Chemistry, 2022, 10, 843070.	3.6	5
203	Biological, physical, and chemical properties of wallostonite-added \hat{I}^2 -SiAlON ceramics. Ceramics International, 2022, , .	4.8	0
204	The fabrication of multifunctional sodium alginate scaffold incorporating ibuprofen-loaded modified PLLA microspheres based on cryogenic 3D printing. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1269-1288.	3.5	3
205	High Anticorrosion Properties due to Electron Spin Polarization of Hydroxyapatite with Point Defects. Industrial & Engineering Chemistry Research, 2022, 61, 4179-4190.	3.7	2
206	Silk-based bioinspired structural and functional materials. IScience, 2022, 25, 103940.	4.1	9
207	Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics, 2022, 14, 697.	4.5	9
208	Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. International Journal of Nanomedicine, 2022, Volume 17, 1511-1529.	6.7	24
209	Silk fibroin microfiberâ€reinforced polycaprolactone composites with enhanced biodegradation and biological characteristics. Journal of Biomedical Materials Research - Part A, 2022, , .	4.0	5
210	Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. International Journal of Biological Macromolecules, 2022, 208, 912-924.	7.5	29
211	Injectable composite hydrogel based on carbon particles for photothermal therapy of bone tumor and bone regeneration. Journal of Materials Science and Technology, 2022, 118, 64-72.	10.7	16
212	Free or fixed state of nHAP differentially regulates hBMSC morphology and osteogenesis through the valve role of ITGA7. Bioactive Materials, 2022, 18, 539-551.	15.6	6
213	A General Protein Unfolding hemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. Advanced Science, 2022, 9, e2102557.	11.2	40
214	Mechanical Properties of Differently Nanostructured and High-Pressure Compressed Hydroxyapatite-Based Materials for Bone Tissue Regeneration. Minerals (Basel, Switzerland), 2021, 11, 1390.	2.0	8
215	Silkâ€Based Bioengineered Diaphyseal Cortical Bone Unit Enclosing an Implantable Bone Marrow toward Atrophic Nonunion Grafting. Advanced Healthcare Materials, 2022, 11, e2102031.	7.6	11
216	Robust bioactive protein-based screws with dual crosslinked network for internal bone fixation. Composites Part B: Engineering, 2022, 238, 109884.	12.0	6
218	Ancient Fibrous Materials from Silkworm and Spider Silks: Biomechanical Patterns. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
219	Biomimetic hydroxyapatite-chitosan nanoparticles deliver the erythromycin for improved antibacterial activity. Journal of Drug Delivery Science and Technology, 2022, 72, 103374.	3.0	3
220	Multilayer MXene Heterostructures and Nanohybrids for Multifunctional Applications: A Review. , 2022, 4, 1174-1206.		25
221	A review of current advancements for wound healing: Biomaterial applications and medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2542-2573.	3.4	52
222	A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers, 2022, 14, 2117.	4.5	25
223	Synchronously promoted mechanical and biotribological properties of carbon fiber composites by constructing Si3N4 nanowires@pyrolytic carbon intertwined network. Ceramics International, 2022, 48, 27462-27471.	4.8	1
224	Membranes for the life sciences and their future roles in medicine. Chinese Journal of Chemical Engineering, 2022, 49, 1-20.	3.5	5
225	Formation of poly(ε aprolactone)â€embedded bioactive nanoparticles/collagen hierarchical scaffolds with the designed and customized porous structures. Journal of Applied Polymer Science, 2022, 139, .	2.6	4
226	Proportion-dependent osteogenic activity of electrospun nano-hydroxyapatite/polylactic acid fiber membrane in vitro and in vivo. Materials and Design, 2022, 219, 110834.	7.0	6
227	Zinc substituted hydroxyapatite/silk fiber/methylcellulose nanocomposite for bone tissue engineering applications. International Journal of Biological Macromolecules, 2022, 214, 324-337.	7.5	5
228	Molecular simulations of the interfacial properties in silk–hydroxyapatite composites. Nanoscale, 2022, 14, 10929-10939.	5.6	6
229	Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. , 2022, 139, 213032.		23
230	Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers, 2022, 14, 2940.	4.5	9
231	Extrusion Printed Silk Fibroin Scaffolds with Post-mineralized Calcium Phosphate as a Bone Structural Material. International Journal of Bioprinting, 2022, 8, 596.	3.4	2
232	Black phosphorous nanomaterials as a new paradigm for postoperative tumor treatment regimens. Journal of Nanobiotechnology, 2022, 20, .	9.1	5
234	Îμ-Poly-l-lysine-modified natural silk fiber membrane wound dressings with improved antimicrobial properties. International Journal of Biological Macromolecules, 2022, 220, 1049-1059.	7.5	9
235	3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health, 2022, 22, .	2.3	5
236	A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129886.	4.7	8
237	Silkworm spinning inspired 3D printing toward a high strength scaffold for bone regeneration. Journal of Materials Chemistry B, 2022, 10, 6946-6957.	5.8	3

#	Article	IF	CITATIONS
238	Porous biomaterials for tissue engineering: a review. Journal of Materials Chemistry B, 2022, 10, 8111-8165.	5.8	27
239	Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceuticals, 2022, 15, 1023.	3.8	8
240	Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns. Acta Biomaterialia, 2022, 153, 38-67.	8.3	17
241	Scaffolds for bone-tissue engineering. Matter, 2022, 5, 2722-2759.	10.0	25
242	Enhanced osteogenesis and angiogenesis of biphasic calcium phosphate scaffold by synergistic effect of silk fibroin coating and zinc doping. Journal of Biomaterials Applications, 2023, 37, 1007-1017.	2.4	1
243	Core–Shell Structured Porous Calcium Phosphate Bioceramic Spheres for Enhanced Bone Regeneration. ACS Applied Materials & Interfaces, 2022, 14, 47491-47506.	8.0	8
244	Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials, 2022, 15, 6952.	2.9	9
245	Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics, 2022, 14, 2250.	4.5	9
246	Biocompatible Scaffold Based on Silk Fibroin for Tissue Engineering Applications. Journal of the Institution of Engineers (India): Series C, 2023, 104, 201-217.	1.2	1
247	Biomimetic Calcium Phosphate Coated Macro-Microporous Poly(ε-caprolactone)/Silk Fibroin (PCL/SF) Scaffold for Bone Tissue Engineering. Macromolecular Research, 0, , .	2.4	0
248	Surface-fill H2S-releasing silk fibroin hydrogel for brain repair through the repression of neuronal pyroptosis. Acta Biomaterialia, 2022, 154, 259-274.	8.3	18
249	Recent advances in regenerative biomaterials. Regenerative Biomaterials, 2022, 9, .	5.6	54
250	Review on Recent Developments in Bioinspired-Materials for Sustainable Energy and Environmental Applications. Sustainability, 2022, 14, 16931.	3.2	5
251	Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 1453-1490.	3.5	6
252	Strontium-doped mesoporous bioactive glass microspheres developed for drug delivering and enhancing the bioactivity of polylactic acid scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 279-291.	3.4	0
253	Harnessing electromagnetic fields to assist bone tissue engineering. Stem Cell Research and Therapy, 2023, 14, .	5.5	10
254	A study on coating of collagen-containing hydroxyapatite on titanium using electrochemical deposition method. Korean Journal of Dental Materials, 2022, 49, 199-211.	0.1	0
255	The Cytotoxicity of Carbon Nanotubes and Hydroxyapatite, and Graphene and Hydroxyapatite Nanocomposites against Breast Cancer Cells. Nanomaterials, 2023, 13, 556.	4.1	1

#	Article	IF	CITATIONS
256	Silk-Based Biomaterials for Designing Bioinspired Microarchitecture for Various Biomedical Applications. Biomimetics, 2023, 8, 55.	3.3	8
257	A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. International Journal of Molecular Sciences, 2023, 24, 2660.	4.1	6
258	Chitosan Nanocomposites as Scaffolds for Bone Tissue Regeneration. Biological and Medical Physics Series, 2023, , 377-394.	0.4	3
259	Bioinspired advanced nanomaterials for infection control and promotion of bone growth. , 2023, , 161-187.		0
260	Biodegradable silk fibroin scaffold doped with mineralized collagen induces bone regeneration in rat cranial defects. International Journal of Biological Macromolecules, 2023, 235, 123861.	7.5	5
261	Gelatin hydrogel reinforced with mussel-inspired polydopamine-functionalized nanohydroxyapatite for bone regeneration. International Journal of Biological Macromolecules, 2023, 240, 124287.	7.5	8
262	Augmented Repair and Regeneration of Critical Size Rabbit Calvaria Defects with 3D Printed Silk Fibroin Microfibers Reinforced PCL Composite Scaffolds. , 2023, 1, 942-955.		0
263	Biopolymer-based composites for tissue engineering applications: A basis for future opportunities. Composites Part B: Engineering, 2023, 258, 110701.	12.0	44
264	Fabrication and <i>In Vitro</i> Drug Delivery Evaluation of Cephalexin Monohydrate-Loaded PLA:PVA/HAP:TiO ₂ Fibrous Scaffolds for Bone Regeneration. ACS Omega, 2023, 8, 5017-5032.	3.5	7
265	A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering, 2023, 10, 204.	3.5	19
266	Biomineralization-inspired mineralized hydrogel promotes the repair and regeneration of dentin/bone hard tissue. Npj Regenerative Medicine, 2023, 8, .	5.2	6
267	Finite Element Analysis of Mechanical Properties of Different Topologies of Bone Scaffold Biomimetic Materials. Modeling and Simulation, 2023, 12, 668-676.	0.1	0
268	HydroxyapatiteÂmaterials-synthesis routes, mechanical behavior, theoreticalÂinsights, and artificial intelligence models: a review. Journal of the Australian Ceramic Society, 2023, 59, 565-596.	1.9	2
269	Green chemistry fabrication of durable antimicrobial peptide-immobilized silk fibroin films for accelerated full-thickness wound healing. Materials Today Chemistry, 2023, 29, 101468.	3.5	6
270	Phosphoserine-loaded chitosan membranes promote bone regeneration by activating endogenous stem cells. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
271	Bone regeneration by hydroxyapatite-gelatin nanocomposites. Emergent Materials, 2023, 6, 583-593.	5.7	1
272	Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction. International Journal of Nanomedicine, 0, Volume 18, 1875-1895.	6.7	4
273	Advanced silk materials for musculoskeletal tissue regeneration. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	1

#	Article	IF	CITATIONS
275	Current advancements of hybrid coating on Mg alloys for medical applications. Results in Engineering, 2023, 18, 101162.	5.1	6
276	Supercritical CO ₂ -assisted fabrication of CM-PDA/SF/nHA nanofibrous scaffolds for bone regeneration and chemo-photothermal therapy against osteosarcoma. Biomaterials Science, 2023, 11, 5218-5231.	5.4	2
277	Mechanical, biocompatibility and antibacterial studies of gelatin/polyvinyl alcohol/silkfibre polymeric scaffold for bone tissue engineering. Heliyon, 2023, 9, e16886.	3.2	5
278	Evaluation of new robust silk fibroin hydrogels for posterior scleral reinforcement in rabbits. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
279	Mg S/HA Microscaffolds Display Excellent Biodegradability and Controlled Release of Si and Mg Bioactive lons to Synergistically Promote Vascularized Bone Regeneration. Advanced Materials Interfaces, 2023, 10, .	3.7	2
280	Layered Double Hydroxides: A Novel Promising 2D Nanomaterial for Bone Diseases Treatment. Advanced Science, 2023, 10, .	11.2	10
281	Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	10
282	Injectable Self-Setting Ternary Calcium-Based Bone Cement Promotes Bone Repair. ACS Omega, 2023, 8, 16809-16823.	3.5	1
283	Silk fibroin carriers with sustained release capacity for treating neurological diseases. Frontiers in Pharmacology, 0, 14, .	3.5	0
284	Bio-scaffold for bone tissue engineering with focus on bacterial cellulose, biological materials for hydroxyapatite synthesis and growth factors. European Polymer Journal, 2023, 194, 112168.	5.4	7
285	Injectable hydrogels for cartilage and bone tissue regeneration: A review. International Journal of Biological Macromolecules, 2023, 246, 125674.	7.5	10
286	Silk Protein-Mediated Biomineralization: From Bioinspired Strategies and Advanced Functions to Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2023, 15, 33191-33206.	8.0	8
287	Natural fibre reinforced vegetable-oil based polyurethane composites: a review. Journal of Polymer Research, 2023, 30, .	2.4	3
288	Sustainable Sources of Raw Materials for Additive Manufacturing of Boneâ€Substituting Biomaterials. Advanced Healthcare Materials, 2024, 13, .	7.6	2
289	Bioinspired self-healing injectable nanocomposite hydrogels based on oxidized dextran and gelatin for growth-factor-free bone regeneration. International Journal of Biological Macromolecules, 2023, 251, 126145.	7.5	2
290	Recent Advances in Bioengineering Bone Revascularization Based on Composite Materials Comprising Hydroxyapatite. International Journal of Molecular Sciences, 2023, 24, 12492.	4.1	2
291	Bio-inspired Protective Composite Structures for Automotive Applications. SpringerBriefs in Materials, 2023, , 87-115.	0.3	0
292	The New Silk Road: Silk Fibroin Blends and Composites for Next Generation Functional and Multifunctional Materials Design. Polymer Reviews, 2023, 63, 1014-1077.	10.9	4

#	Article	IF	CITATIONS
293	Metal-polyDNA nanoparticles reconstruct osteoporotic microenvironment for enhanced osteoporosis treatment. Science Advances, 2023, 9, .	10.3	6
294	Engineered functional doped hydroxyapatite coating on titanium implants for osseointegration. Journal of Materials Research and Technology, 2023, 27, 122-152.	5.8	5
295	Nanostructures and biomaterials based on silk polymer for medical diagnostic and therapeutic applications. Polymer Bulletin, 0, , .	3.3	0
296	Hydroxyapatite: A journey from biomaterials to advanced functional materials. Advances in Colloid and Interface Science, 2023, 321, 103013.	14.7	5
297	Amorphous iron-calcium phosphate-mediated biomineralized scaffolds for vascularized bone regeneration. Materials and Design, 2023, 235, 112413.	7.0	1
298	Recent advances of silk fibroin materials: From molecular modification and matrix enhancement to possible encapsulation-related functional food applications. Food Chemistry, 2024, 438, 137964.	8.2	1
299	Polyester polymer scaffold-based therapeutics for osteochondral repair. Journal of Drug Delivery Science and Technology, 2023, 90, 105116.	3.0	0
300	Electrospun polycaprolactone/silk fibroin nanofiber scaffold with aligned fiber orientation for articular chondrocyte regeneration. Frontiers in Materials, 0, 10, .	2.4	0
302	Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Materials Today Bio, 2023, 23, 100858.	5.5	0
303	The synergistic route for enhancing rice by-product derived nanoparticles in sustained release of bioactive compound. Cellulose, 2023, 30, 11473-11491.	4.9	3
304	Bioactive Conjugated Polymerâ€Based Biodegradable 3D Bionic Scaffolds for Facilitating Bone Defect Repair. Advanced Healthcare Materials, 0, , .	7.6	2
305	Silk fibroin/chitosan pH-sensitive controlled microneedles. Journal of Materials Science, 2023, 58, 17711-17725.	3.7	0
306	Harmonizing Thickness and Permeability in Bone Tissue Engineering: A Novel Silk Fibroin Membrane Inspired by Spider Silk Dynamics. Advanced Materials, 0, , .	21.0	0
307	Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Materials Today Bio, 2024, 24, 100920.	5.5	0
308	Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers, 2024, 16, 206.	4.5	4
309	Trends in silk biomaterials. , 2024, , 9-39.		0
310	Recent trends in controlled drug delivery based on silk platforms. , 2024, , 417-444.		0
311	Incorporation of black phosphorus nanosheets into poly(propylene fumarate) biodegradable bone cement to enhance bioactivity and osteogenesis. Journal of Orthopaedic Surgery and Research, 2024,	2.3	0

		CITATION REPORT		
#	Article	IF	-	CITATIONS
312	Role and importance of hydroxyapatite in the healthcare sector. , 2024, , 159-207.			0
313	Hierarchical Scaffold with Directional Microchannels Promotes Cell Ingrowth for Bone Regeneration. Advanced Healthcare Materials, 2024, 13, .	7	.6	0
314	Functionalized nanoceramics. , 2024, , 721-752.			0
315	Structural characterisation of deer sinew peptides as calcium carriers, their promotion of cell proliferation and their effect on bone deposition in mice. Food and Function, 2024, 2	MC3T3-E1 .5, 2587-2603. 4	.6	0
316	Regenerated silk fibroin coating stable liquid metal nanoparticles enhance photothermal antimicrobial activity of hydrogel for wound infection repair. International Journal of Biol Macromolecules, 2024, 263, 130373.	ogical 7	.5	0
317	Apatite/Chitosan Composites Formed by Cold Sintering for Drug Delivery and Bone Tissu Applications. Nanomaterials, 2024, 14, 441.	e Engineering 4	.1	0
318	Multiple biomaterials for immediate implant placement tissue repair: Current status and perspectives. , 2024, 3, .	future		0
319	Dual Factor-Loaded Artificial Periosteum Accelerates Bone Regeneration. ACS Biomateria and Engineering, 2024, 10, 2200-2211.	ls Science 5	.2	0
320	Printing of 3D biomimetic structures for the study of bone metastasis: A review. Acta Bio 2024, 178, 24-40.	omaterialia, 8	.3	0