Biodegradable compatibilized polymer blends for packa review

Journal of Applied Polymer Science 135, 45726 DOI: 10.1002/app.45726

Citation Report

#	Article	IF	CITATIONS
1	Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polymer Chemistry, 2018, 9, 2517-2531.	1.9	68
2	Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer, 2018, 145, 348-373.	1.8	155
3	The New Generation from Biomembrane with Green Technologies for Wastewater Treatment. Polymers, 2018, 10, 1174.	2.0	13
4	Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials, 2018, 11, 2138.	1.3	43
5	Melt Stability of Starch-Filled LDPE during Multi-Pass Extrusion Determined by Melt-Flow and Non-Isothermal Thermogravimetric Investigations. ACS Symposium Series, 2018, , 115-136.	0.5	0
6	Carbon Dioxide–Derived Poly(propylene carbonate) as a Matrix for Composites and Nanocomposites: Performances and Applications. Macromolecular Materials and Engineering, 2018, 303, 1800366.	1.7	45
7	Microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) blend mulches in soil burial respirometric tests. World Journal of Microbiology and Biotechnology, 2018, 34, 101.	1.7	30
8	Toughness Enhancement of PHBV/TPU/Cellulose Compounds with Reactive Additives for Compostable Injected Parts in Industrial Applications. International Journal of Molecular Sciences, 2018, 19, 2102.	1.8	14
9	Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers, 2018, 10, 732.	2.0	197
10	Comparative thermal decomposition kinetic analysis of the biodegradable terpolymer poly(lactide-co-propylene carbonate) applied by various theoretical models. Polymer Testing, 2018, 71, 95-100.	2.3	2
11	The Role of Multiwalled Carbon Nanotubes in the Mechanical, Thermal, Rheological, and Electrical Properties of PP/PLA/MWCNTs Nanocomposites. Journal of Composites Science, 2019, 3, 64.	1.4	29
12	Preparation and performance evaluation of electrospun poly(3-hydroxybutyrate) composite scaffolds as a potential hard tissue engineering application. Journal of Bioactive and Compatible Polymers, 2019, 34, 386-400.	0.8	7
13	The vibroisolation effectiveness of fiber reinforced natural composites compared to the elastomer materials produced from non-renewable resources. E3S Web of Conferences, 2019, 116, 00059.	0.2	1
14	Performance evaluation of polymeric blend of vinyl acetate and acrylate-based copolymers in lubricating oil. Petroleum Science and Technology, 2019, 37, 845-852.	0.7	1
15	Biodegradable PBAT-Based Nanocomposites Reinforced with Functionalized Cellulose Nanocrystals from Pseudobombax munguba: Rheological, Thermal, Mechanical and Biodegradability Properties. Journal of Polymers and the Environment, 2019, 27, 757-766.	2.4	52
16	Mass transfer through PDMS/zeolite 4A MMMs for hydrogen separation: Molecular dynamics and grand canonical Monte Carlo simulations. International Communications in Heat and Mass Transfer, 2019, 108, 104259.	2.9	25
17	Recent advances of "soft―bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. Journal of CO2 Utilization, 2019, 34, 40-52.	3.3	42
18	Starch and its derivatives for paper coatings: A review. Progress in Organic Coatings, 2019, 135, 213-227.	1.9	89

#	Article	IF	CITATIONS
19	Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 2019, 11, 758.	2.0	28
20	One-pot route to graft long-chain polymer onto silica nanoparticles and its application for high-performance poly(<scp>l</scp> -lactide) nanocomposites. RSC Advances, 2019, 9, 13908-13915.	1.7	17
21	Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products, 2019, 135, 238-245.	2.5	160
22	Antimicrobial Activity of Lignin and Lignin-Derived Cellulose and Chitosan Composites Against Selected Pathogenic and Spoilage Microorganisms. Polymers, 2019, 11, 670.	2.0	161
23	Introductory Chapter: Active Antimicrobial Food Packaging. , 2019, , .		2
24	Biopolymer blends from hardwood lignin and bio-polyamides: Compatibility and miscibility. International Journal of Biological Macromolecules, 2019, 132, 439-450.	3.6	41
25	Nacre-inspired Polymer Nanocomposites with High-performance and Multifunctional Properties Realized by a Facile Evaporation-induced Self-assembly Approach. ACS Sustainable Chemistry and Engineering, 2019, 7, 19787-19798.	3.2	11
26	Evaluation of rheological behavior, anaerobic and thermal degradation, and lifetime prediction of polylactide/poly(butylene adipate-co-terephthalate)/powdered nitrile rubber blends. Polymer Bulletin, 2019, 76, 2899-2913.	1.7	3
27	In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 2019, 27, 84-96.	2.4	42
28	Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 2019, 159, 184-198.	2.7	48
29	Synergistic effect of polylactic acid(PLA) and Poly(butylene succinate-co-adipate) (PBSA) based sustainable, reactive, super toughened eco-composite blown films for flexible packaging applications. Polymer Testing, 2020, 83, 106130.	2.3	47
30	Engineered nanomaterials for antimicrobial applications: A review. Applied Materials Today, 2020, 18, 100473.	2.3	143
31	Future trends of plastic bottle recycling: Compatibilization of PET and PLA. Polymer Testing, 2020, 81, 106160.	2.3	67
32	Electrospun poly(3-hydroxybutyrate)/chicken feather-derived keratin scaffolds: Fabrication, in vitro and in vivo biocompatibility evaluation. Journal of Biomaterials Applications, 2020, 34, 741-752.	1.2	14
33	Application of compatibilized polymer blends in packaging. , 2020, , 539-561.		5
34	Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 2020, 144, 112061.	2.5	135
35	Biodegradable poly(butylene succinate) nanofibrous membrane treated with oxygen plasma for superhydrophilicity. Surface and Coatings Technology, 2020, 381, 125147.	2.2	39
36	Partially miscible polymer blends of ethyl cellulose and hydroxyl terminated polybutadiene. Polymer, 2020, 211, 123067.	1.8	9

#	Article	IF	CITATIONS
37	Small amounts of poly(-lactic acid) on the properties of poly(-lactic acid)/microcrystalline cellulose/ poly(-lactic acid) blends. Results in Materials, 2020, 8, 100125.	0.9	7
38	Sulfonated biodegradable PBAT copolyesters with improved gas barrier properties and excellent water dispersibility: From synthesis to structure-property. Polymer Degradation and Stability, 2020, 182, 109391.	2.7	20
39	Influence of poly(butylene succinate) and calcium carbonate nanoparticles on the biodegradability of high density-polyethylene nanocomposites. Journal of Polymer Research, 2020, 27, 1.	1.2	13
40	Edible films and coatings for shelf life extension of mango: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 2432-2459.	5.4	40
41	Improving Sodium Alginate Films Properties by Phenolic Acid Addition. Materials, 2020, 13, 2895.	1.3	33
42	Highly toughened poly(lactic acid) (PLA) prepared through melt blending with ethylene-co-vinyl acetate (EVA) copolymer and simultaneous addition of hydrophilic silica nanoparticles and block copolymer compatibilizer. Polymer Testing, 2020, 91, 106735.	2.3	42
43	Reactive extrusion of poly (butylene succinate-co-adipate) and poly (ε-caprolactone) biodegradable blends through titanium-based transesterification catalyst. Polymer Degradation and Stability, 2020, 181, 109320.	2.7	13
44	UV-protecting films based on bacterial cellulose, glycerol and polyvinyl alcohol: effect of water activity on barrier, mechanical and optical properties. Cellulose, 2020, 27, 8199-8213.	2.4	15
45	Blend of cassava starch and high-density polyethylene with green tea for food packaging. Polymers From Renewable Resources, 2020, 11, 3-14.	0.8	12
46	Ternary Synergistic Strengthening and Toughening of Bio-Inspired TEMPO-Oxidized Cellulose Nanofibers/Borax/Polyvinyl Alcohol Composite Film with High Transparency. ACS Sustainable Chemistry and Engineering, 2020, 8, 15661-15669.	3.2	25
47	Non-Isothermal Crystallization Behavior and Thermal Properties of Polyethylene Tuned by Polypropylene and Reinforced with Reduced Graphene Oxide. Nanomaterials, 2020, 10, 1428.	1.9	12
48	Eco-friendly, self-repairing polymer materials based on reversible Diels-Alder chemistry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 888-895.	1.2	5
49	Influence of pinhão starch and natural extracts on the performance of thermoplastic cassava starch/PBAT extruded blown films as a technological approach for bioâ€based packaging material. Journal of Food Science, 2020, 85, 2832-2842.	1.5	13
50	Highly Stretchable and Flexible Melt Spun Thermoplastic Conductive Yarns for Smart Textiles. Nanomaterials, 2020, 10, 2324.	1.9	18
51	Study of the effect of dicumyl peroxide on morphological and physical properties of foam injection molded poly(lactic acid)/poly(butylene succinate) blends. EXPRESS Polymer Letters, 2020, 14, 673-684.	1.1	15
52	Development of graphiteâ€filled polymer blends for application in bipolar plates. Polymer Composites, 2020, 41, 3364-3375.	2.3	23
53	Tensile Behavior of Acrylonitrile Butadiene Styrene at Different Temperatures. Advances in Polymer Technology, 2020, 2020, 1-10.	0.8	7
54	Effect of carboxymethyl cellulose concentration on mechanical and water vapor barrier properties of corn starch films. Carbohydrate Polymers, 2020, 246, 116521.	5.1	61

#	Article	IF	CITATIONS
55	Biodegradable blends of poly(butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance. Colloid and Polymer Science, 2020, 298, 463-475.	1.0	18
56	Economically Competitive Biodegradable PBAT/Lignin Composites: Effect of Lignin Methylation and Compatibilizer. ACS Sustainable Chemistry and Engineering, 2020, 8, 5338-5346.	3.2	113
57	Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties. Carbohydrate Polymers, 2020, 236, 116031.	5.1	32
58	Synthesis, characterization, and crystallization behaviors of poly(D-lactic acid)-based triblock copolymer. Scientific Reports, 2020, 10, 3627.	1.6	20
59	Fabrication of PBAT/polyethylene blends mulching film via blown film extrusion process. Korea Australia Rheology Journal, 2020, 32, 79-86.	0.7	3
60	Sustainable Blends of Poly(propylene carbonate) and Stereocomplex Polylactide with Enhanced Rheological Properties and Heat Resistance. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1267-1275.	2.0	18
61	Morphology Dependence Degradation of Electro- and Magnetoactive Poly(3-hydroxybutyrate-co-hydroxyvalerate) for Tissue Engineering Applications. Polymers, 2020, 12, 953.	2.0	18
62	Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science, 2020, 137, 49346.	1.3	18
63	Zooming on light packaging waste differences by scanning electron microscopy. Environmental Science and Pollution Research, 2020, 28, 59076-59082.	2.7	2
64	Himalayan Natural Fiber-Reinforced Epoxy Composites: Effect of <i>Grewia optiva/Bauhinia Vahlii</i> Fibers on Physico-mechanical and Dry Sliding Wear Behavior. Journal of Natural Fibers, 2021, 18, 192-202.	1.7	58
65	Preparation of stiffer ternary blends of polypropylene/polyamide 6/biodegradable polymers with improved interfacial adhesion. Journal of Applied Polymer Science, 2021, 138, 50248.	1.3	1
66	Ultrasonication Improves the Structures and Physicochemical Properties of Cassava Starch Films Containing Acetic Acid. Starch/Staerke, 2021, 73, 2000094.	1.1	8
67	Bacterial cellulose as a biodegradable food packaging material: A review. Food Hydrocolloids, 2021, 113, 106530.	5.6	122
68	Selective localization of nanohydroxyapatite in poly(3-hydroxybutyrate)/polycaprolactone blends composites and its effects on crystallization and molecular dynamics. Journal of Materials Science, 2021, 56, 3692-3712.	1.7	6
70	In vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619266.	2.0	61
71	Bioresourced fillers for rubber composite sustainability: current development and future opportunities. Green Chemistry, 2021, 23, 5337-5378.	4.6	80
72	An overview of biodegradable packaging in food industry. Current Research in Food Science, 2021, 4, 503-520.	2.7	153
73	Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Advances, 2021, 11, 17151-17196.	1.7	226

#	Article	IF	CITATIONS
74	Substantial Effect of Water on Radical Melt Crosslinking and Rheological Properties of Poly(ε-Caprolactone). Polymers, 2021, 13, 491.	2.0	12
75	Controllable Poly(L-lactic acid) Soft Film with Respirability and Its Effect on Strawberry Preservation. Polymer Science - Series A, 2021, 63, 77-90.	0.4	4
76	Effect of compatibilizers on lignin/bio-polyamide blend carbon precursor filament properties and their potential for thermostabilisation and carbonisation. Polymer Testing, 2021, 95, 107133.	2.3	10
77	Development of Toughened Flax Fiber Reinforced Composites. Modification of Poly(lactic) Tj ETQq1 1 0.784314 1523.	rgBT /Over 1.3	lock 10 Tf 50 20
78	Recycling of polymer blends. Advanced Industrial and Engineering Polymer Research, 2021, 4, 53-69.	2.7	34
79	Preparation of the pistachio shell reinforced PLA biocomposites: Effect of filler treatment and PLA maleation. Journal of Thermoplastic Composite Materials, 2022, 35, 1342-1357.	2.6	18
80	Bionanocomposite Blown Films: Insights on the Rheological and Mechanical Behavior. Polymers, 2021, 13, 1167.	2.0	19
81	Dual Plasticizer/Thermal Stabilizer Effect of Epoxidized Chia Seed Oil (Salvia hispanica L.) to Improve Ductility and Thermal Properties of Poly(Lactic Acid). Polymers, 2021, 13, 1283.	2.0	19
82	A Review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers, 2021, 13, 1436.	2.0	169
83	Single-Use Plastics in the Food Services Industry: Can It Be Sustainable?. Materials Circular Economy, 2021, 3, 1.	1.6	14
84	Reactive compatibilization of poly(hydroxybutyrate-co-hydroxyvalerate)/polyvinyl alcohol blends. Polymer-Plastics Technology and Materials, 0, , 1-13.	0.6	1
85	Analysis of plasticization and reprocessing effects on the segmental cooperativity of polylactide by dielectric thermal spectroscopy. Polymer, 2021, 223, 123701.	1.8	9
86	The role of amphiphilic chitosan in hybrid nanocellulose–reinforced polylactic acid biocomposite. Polymers for Advanced Technologies, 2021, 32, 3446-3457.	1.6	8
87	Selective localization of organophilic clay Cloisite 30B in biodegradable poly(lactic) Tj ETQq1 1 0.784314 rgBT /O	verlock 10 1.3	Tf 50 222 T
88	Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide. Macromolecular Materials and Engineering, 2021, 306, 2100196.	1.7	14
89	Thermal properties and enzymatic degradation of PBS copolyesters containing dl-malic acid units. Chemosphere, 2021, 272, 129543.	4.2	8
90	Foaming biocompatible and biodegradable PBAT/PLGA as fallopian tube stent using supercritical carbon dioxide. Chinese Journal of Chemical Engineering, 2022, 47, 245-253.	1.7	2
91	Annealing Effect on Pla/Eva Blends Performance. Journal of Polymers and the Environment, 2022, 30, 541-554.	2.4	22

#	Article	IF	CITATIONS
92	A Comparative Analysis on the Effect of Variety of Grape Pomace Extracts on the Ice-Templated 3D Cryogel Features. Gels, 2021, 7, 76.	2.1	11
93	Structure of PBAT/PPC blends prepared by in-situ reactive compatibilization and properties of their blowing films. Materials Today Communications, 2021, 27, 102215.	0.9	15
94	Robust multiphase and multilayer starch/polymer (TPS/PBAT) film with simultaneous oxygen/moisture barrier properties. Journal of Colloid and Interface Science, 2021, 593, 290-303.	5.0	59
95	Evolução da morfologia e das propriedades mecânicas de blendas PA6/AES compatibilizadas com EPDM-MA. Research, Society and Development, 2021, 10, e210101018791.	0.0	3
96	Mechanical and Structural Properties of Nanocarbon Particles Reinforced in Plasticised Polylactic Acid for High Strength Application. Journal of Physical Science, 2021, 32, 41-56.	0.5	4
97	Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 2021, 9, 105322.	3.3	134
98	Chain Extension of Poly(Lactic Acid) (PLA)–Based Blends and Composites Containing Bran with Biobased Compounds for Controlling Their Processability and Recyclability. Polymers, 2021, 13, 3050.	2.0	16
99	Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. International Journal of Biological Macromolecules, 2021, 187, 422-440.	3.6	40
100	Alternative optimization routes for improving the performance of poly(3-hydroxybutyrate) (PHB) based plastics. Journal of Cleaner Production, 2021, 318, 128555.	4.6	38
101	Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Bioscience, 2021, 43, 101251.	2.0	70
102	Investigation into lignin modified PBAT/thermoplastic starch composites: Thermal, mechanical, rheological and water absorption properties. Industrial Crops and Products, 2021, 171, 113916.	2.5	51
103	Synergistic effects of soap nut extract and glutaraldehyde on the properties of natural rubber: A waste to wealth approach. Industrial Crops and Products, 2021, 172, 114063.	2.5	3
104	Collagen blended with natural polymers: Recent advances and trends. Progress in Polymer Science, 2021, 122, 101452.	11.8	45
105	Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites. Materials Horizons, 2021, , 63-133.	0.3	Ο
107	Peroxide-Induced Synthesis of Maleic Anhydride-Grafted Poly(butylene succinate) and Its Compatibilizing Effect on Poly(butylene succinate)/Pistachio Shell Flour Composites. Molecules, 2021, 26, 5927.	1.7	18
108	Obtaining and studying properties of biodestructable composite films based on polyethylene. Open Journal of Chemistry, 2020, , 030-036.	0.3	2
109	Plastics in Food Packaging. , 2022, , 178-186.		3
110	Modulation of the PLLA Morphology through Racemic Nucleation to Reach Functional Properties Required by 3D Printed Durable Applications. Materials, 2021, 14, 6650.	1.3	1

#	Article	IF	CITATIONS
111	Film Blowing of PHB-Based Systems for Home Compostable Food Packaging. International Polymer Processing, 2020, 35, 440-447.	0.3	0
112	Tuning the thermal and mechanical properties of poly(vinyl alcohol) with 2,5-furandicarboxylic acid acting as a biobased crosslinking agent. Polymer Journal, 2022, 54, 335-343.	1.3	6
113	Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. Bioresource Technology, 2022, 344, 126397.	4.8	29
114	In situ grafting approach for preparing PLA/PHBV degradable blends with improved mechanical properties. Polymer Bulletin, 2022, 79, 9543-9562.	1.7	5
115	Biodegradable polymer blends and composites from renewable resources. , 2022, , 527-549.		22
116	Biodegradability of Polyolefin-Based Compositions: Effect of Natural Rubber. Polymers, 2022, 14, 530.	2.0	11
117	Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control, 2022, 136, 108875.	2.8	57
118	Effect of FKMâ€gâ€acrylamide reactive compatibilizer on mechanical, thermal and aging behaviors of fluoroelastomer (FKM)/silicone rubber (MVQ) blend. Polymer Engineering and Science, 0, , .	1.5	6
119	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie, 2022, 134, .	1.6	11
120	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie - International Edition, 2022, 61, .	7.2	146
121	Plastic-Free Bioactive Paper Coatings, Way to Next-Generation Sustainable Paper Packaging Application: A Review. Green and Sustainable Chemistry, 2022, 12, 9-27.	0.8	6
122	Trends in Polymer Degradation Across All Scales. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	11
123	Effects of dicumyl peroxide on crossâ€linking pure poly(butylene succinate) foaming materials for high expansion and high mechanical strength. Polymers for Advanced Technologies, 2022, 33, 1706-1714.	1.6	1
124	An investigation on the possible use of coffee silverskin in <scp>PLA</scp> / <scp>PBS</scp> composites. Journal of Applied Polymer Science, 2022, 139, .	1.3	18
125	Mechanical, barrier, thermal, surface hydrophobicity, optical and antibacterial properties of PBAT biopolymer after addition of natural plasticizer and silica nanoparticles. Pigment and Resin Technology, 2023, 52, 446-455.	0.5	2
126	A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts, 2022, 12, 319.	1.6	64
127	Chitosan/Silk Fibroin Materials for Biomedical Applications—A Review. Polymers, 2022, 14, 1343.	2.0	17
128	High poly ε-caprolactone biodegradation activity by a new Acinetobacter seifertii isolate. Folia Microbiologica, 2022, 67, 659-669.	1.1	3

#	Article	IF	Citations
129	Mechanical and microstructural properties of expanded polyethylene powder/mica filled hybrid polystyrene composites. Mechanics of Advanced Materials and Structures, 2023, 30, 2610-2619.	1.5	29
130	Biodegradable mulch films produced from soy-filled polymer resins. Materials Today Communications, 2022, 31, 103331.	0.9	6
131	Starch-polyester bilayer films with phenolic acids for pork meat preservation. Food Chemistry, 2022, 385, 132650.	4.2	31
132	Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. Polymer Reviews, 2022, 62, 653-721.	5.3	6
133	Simplifying Complex Contaminant Mixtures: Selective Ammonia Adsorption and Toxicity Reduction using 3D Printable Polymer–Zeolite. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	3
134	Recycling of Pretreated Polyolefin-Based Ocean-Bound Plastic Waste by Incorporating Clay and Rubber. Recycling, 2022, 7, 25.	2.3	9
135	Analysis of Selected Properties of Microporous PLA as a Result of Abiotic Degradation. Materials, 2022, 15, 3133.	1.3	0
136	Development and Characterization of Polylactide Blends with Improved Toughness by Reactive Extrusion with Lactic Acid Oligomers. Polymers, 2022, 14, 1874.	2.0	4
137	Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs). Bioengineering, 2022, 9, 225.	1.6	26
138	Robust and high barrier thermoplastic starch – PLA blend films using starch- <i>graft</i> -poly(lactic) Tj ETQq1 1	0,784314	1 rgBT /Overle
139	<i>In Situ</i> Formation of Microfibrillar PBAT in PGA Films: An Effective Way to Robust Barrier and Mechanical Properties for Fully Biodegradable Packaging Films. ACS Omega, 2022, 7, 21280-21290.	1.6	17
140	Biodegradable plastics as a substitute to traditional polythenes: a step toward a safer environment. , 2022, , 193-215.		1
141	Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules, 2022, 27, 4135.	1.7	16
142	Deep Eutectic Solvent-Extracted Lignin as an Efficient Additive for Entirely Biobased Polylactic Acid Composites. ACS Applied Polymer Materials, 2022, 4, 5861-5871.	2.0	13
143	Microbial Processes for Upcycling Food Wastes Into Sustainable Bioplastics. , 2023, , 51-74.		2
144	Polymer blends analyzed with confocal laser scanning microscopy. Polymer Bulletin, 2023, 80, 5929-5964.	1.7	5
145	Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: a short review. Polymer Bulletin, 2023, 80, 5965-5997.	1.7	8
146	Biodegradability of bioplastic blown film in a marine environment. Frontiers in Marine Science, 0, 9, .	1.2	6

#	Article	IF	CITATIONS
147	Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate) and Their Functionalization with Glycerol Triacetate and Chitin Nanocrystals for Food Packaging Applications. ACS Applied Polymer Materials, 2022, 4, 6592-6601.	2.0	11
148	The Potential of an Itaconic Acid Diester as Environmentally Friendly Plasticizer for Injectionâ€Molded Polylactide Parts. Macromolecular Materials and Engineering, 2022, 307, .	1.7	8
149	New Materials Based on Molecular Interaction between Hyaluronic Acid and Bovine Albumin. Molecules, 2022, 27, 4956.	1.7	3
150	Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. European Polymer Journal, 2022, 178, 111505.	2.6	21

Biodegradable binary blends of poly (butylene succinate) or poly ($\hat{\mu}$ -caprolactone) with poly (butylene) Tj ETQq0 0 0 ggBT /Overlock 10 1

152	Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock: Circular bioeconomy approach. Environmental Technology and Innovation, 2022, 28, 102872.	3.0	26
153	Polylactic Acid/Halloysite Nanotube Bionanocomposite Films for Food Packaging. Advanced Structured Materials, 2023, , 141-168.	0.3	0
154	Machine-Learning-Based Predictions of Polymer and Postconsumer Recycled Polymer Properties: A Comprehensive Review. ACS Applied Materials & amp; Interfaces, 2022, 14, 42771-42790.	4.0	12
155	Carbon nanotubes-filled polylactic acid/polycaprolactone biodegradable blends: Effect of the polycaprolactone viscosity and carbon nanotubes addition on the microstructure, electrical and mechanical properties. Journal of Thermoplastic Composite Materials, 2023, 36, 3485-3498.	2.6	2
156	Thermally conductive and mechanically strengthened bioâ€epoxy/boron nitride nanocomposites: The effects of particle size, shape, and combination. Polymer Composites, 2022, 43, 9027-9039.	2.3	10
157	Improved dielectric and AC conductivity properties of P(VDF-TrFE)-Nafion blends for high-temperature flexible capacitor applications. Current Applied Physics, 2022, 44, 63-70.	1.1	0
158	Characterization of compatibility of Polypropylene/Poly(butylene succinate) blends: Impact of weight ratios on interfacial polarization. Journal of Molecular Liquids, 2022, 368, 120633.	2.3	2
159	Microbial D-lactic acid production, In Situ separation and recovery from mature and young coconut husk hydrolysate fermentation broth. Biochemical Engineering Journal, 2022, 188, 108680.	1.8	4
160	Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chemistry, 2023, 405, 134964.	4.2	43
161	Correlation between chain structures of corn starch and properties of its film prepared at different degrees of disorganization. International Journal of Biological Macromolecules, 2023, 226, 580-587.	3.6	4
162	Biodegradable polymers: A review about biodegradation and its implications and applications. Packaging Technology and Science, 2023, 36, 81-95.	1.3	16
	Study on thermal, rheological, mechanical, morphological, and barrier properties of poly(butylene) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 5
163	Journal of Thermal Analysis and Calorimetry, 2023, 148, 1853-1865.	2.0	4

164	A road map on synthetic strategies and applications of biodegradable polymers. Polymer Bulletin, 2023, 80, 11507-11556.	1.7	1	
-----	---	-----	---	--

#	Article	IF	CITATIONS
165	Mechanical Properties of Polylactide Filled with Micronized Chalcedonite. Journal of Composites Science, 2022, 6, 387.	1.4	3
166	Acceleration of Biodegradation Using Polymer Blends and Composites. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	2
167	Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties. Polymers, 2023, 15, 261.	2.0	6
168	The barrier properties of sustainable multiphase and multicomponent packaging materials: A review. Progress in Materials Science, 2023, 133, 101071.	16.0	39
169	Degradable Selfâ€healable Networks for Use in Biomedical Applications. Advanced Functional Materials, 2023, 33, .	7.8	15
170	Biological extraction of chitin from fish scale waste using proteolytic bacteria Stenotrophomonas koreensis and its possible application as an active packaging material. Biomass Conversion and Biorefinery, 0, , .	2.9	1
171	Modern biodegradable materials with accelerated degradation for dairy and food products (subject) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
172	Dual-crosslinked starchâ^'poly(ester urethane)â^'oligochitosan films with high starch content: Application as biodegradable food packaging. Food Packaging and Shelf Life, 2023, 37, 101064.	3.3	7
174	Polymer blends of poly(lactic acid) and starch for the production of films applied in food packaging: A brief review. Polymers From Renewable Resources, 2023, 14, 108-153.	0.8	4
175	The Semicrystalline Morphology of Polybutylene Succinate Supports a General Scheme Based on Intracrystalline Dynamics. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	4
176	Laminated Cyclic Olefin Copolymer Foil by Pulsed Laser Deposition. Coatings, 2023, 13, 596.	1.2	0
177	Biodegradable Nanofibrillated Cellulose/Poly-(butylene adipate-co-terephthalate) Composite Film with Enhanced Barrier Properties for Food Packaging. Molecules, 2023, 28, 2689.	1.7	1
180	Aquatic Biodegradation of Poly(β-Hydroxybutyrate) and Polypropylene Blends with Compatibilizer and the Generation of Micro- and Nano-Plastics on Biodegradation. Journal of Polymers and the Environment, 0, , .	2.4	2
181	Conductive bio-epoxy/boron nitride nanocomposites: effect of combination of nanotubes and epichlorohydrin surface-modified nanosheets. Iranian Polymer Journal (English Edition), 2023, 32, 661-672.	1.3	1
182	Development and application of <scp>pH</scp> â€indicator film based on freezeâ€dried purpleâ€fleshed sweet potato, starch, and <scp>CMC</scp> . International Journal of Food Science and Technology, 2023, 58, 6689-6697.	1.3	1
183	Biodegradable polymer nanocomposites for food packaging applications. , 2023, , 639-674.		1
195	Biodegradable Polymers—a Review on Properties, Processing, and Degradation Mechanism. Circular Economy and Sustainability, 2024, 4, 339-362.	3.3	2
201	New area of food packaging design research: A systematic review. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	CITATIONS
205	XRD Studies of the Morphological Changes Generated by Interface Agents for Obtaining New Scalable Sustainable Blends Based on Starch and PCL. , 0, , .		0
218	Recent Trends in Biodegradable Packaging of Foods and Food Products. , 2023, , 215-232.		0
221	Biodegradable and biobased plastic materials based on starch. , 2024, , 311-334.		0
228	Biodegradable polymer-based nanocomposite foams for electromagnetic interference shielding. , 2024, , 179-219.		0