Distribution of Ixodes ricinus ticks and prevalence of ti questing ticks in the Arctic Circle region of northern No

Ticks and Tick-borne Diseases 9, 97-103 DOI: 10.1016/j.ttbdis.2017.10.002

Citation Report

#	TICLE		CITATIONS
1	k-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma agocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from reational islands in southern Norway. Ticks and Tick-borne Diseases, 2018, 9, 1098-1102.		27
2	The importance of study duration and spatial scale in pathogen detection—evidence from a tick-infested island. Emerging Microbes and Infections, 2018, 7, 1-11.	6.5	16
3	Tick-Borne Flaviviruses and the Type I Interferon Response. Viruses, 2018, 10, 340.	3.3	38
4	A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasites and Vectors, 2019, 12, 338.	2.5	22
5	Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiology, 2019, 19, 199.	3.3	17
6	Ixodes inopinatus in northern Germany: occurrence and potential vector role for Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum in comparison with Ixodes ricinus. Parasitology Research, 2019, 118, 3205-3216.	1.6	30
7	Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway. International Journal for Parasitology: Parasites and Wildlife, 2019, 8, 127-134.	1.5	27
8	Recent establishment of tick-borne encephalitis foci with distinct viral lineages in the Helsinki area, Finland. Emerging Microbes and Infections, 2019, 8, 675-683.	6.5	27
9	Ixodid ticks and tick-borne encephalitis virus prevalence in the South Asian part of Russia (Republic of) Tj ETQqO (0 0 rgBT /0 2.2	Dverlock 10 T
10	Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Scientific Reports, 2019, 9, 18144.	3.3	10

11	Tickâ€borne encephalitis virus in cows and unpasteurized cow milk from Norway. Zoonoses and Public Health, 2019, 66, 216-222.	2.2	50
12	Genetic diversity of Francisella tularensis in Poland with comments on MLVA genotyping and a proposition of a novel rapid v4-genotyping. Ticks and Tick-borne Diseases, 2020, 11, 101322.	2.7	4
13	Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: The western seaboard is a lowâ€prevalence region. Zoonoses and Public Health, 2020, 67, 130-137.	2.2	10
14	Cervids as sentinelâ€species for tickâ€borne encephalitis virus in Norway ―A serological study. Zoonoses and Public Health, 2020, 67, 342-351.	2.2	19

15	How to survive winter?. , 2020, , 101-125.	1
16	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.	0
18	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.	0

19 Chemical ecology in the Southern Ocean. , 2020, , 251-278.

#	Article	IF	CITATIONS
23	Physiological traits of the Greenland sharkSomniosus microcephalusobtained during the TUNU-Expeditions to Northeast Greenland. , 2020, , 11-41.		0
24	Metazoan adaptation to deep-sea hydrothermal vents. , 2020, , 42-67.		4
25	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. , 2020, , 68-86.		1
27	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
28	The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.		0
29	The Southern Ocean: an extreme environment or just home of unique ecosystems?. , 2020, , 218-233.		1
30	Metabolic and taxonomic diversity in antarctic subglacial environments. , 2020, , 279-296.		2
31	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. , 2020, , 301-318.		1
32	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. , 2020, , 319-342.		0
33	Life at the extremes. , 2020, , 343-354.		0
34	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. , 2020, , 234-250.		0
37	Spatial patterns of pathogen prevalence in questing Ixodes ricinus nymphs in southern Scandinavia, 2016. Scientific Reports, 2020, 10, 19376.	3.3	14
38	A Mini-Review of Ixodes Ticks Climate Sensitive Infection Dispersion Risk in the Nordic Region. International Journal of Environmental Research and Public Health, 2020, 17, 5387.	2.6	17
39	Investigation of Vector-Borne Viruses in Ticks, Mosquitos, and Ruminants in the Thrace District of Turkey. Vector-Borne and Zoonotic Diseases, 2020, 20, 670-679.	1.5	1
40	Survival of Tick-Borne Encephalitis Virus in Goat Cheese and Milk. Food and Environmental Virology, 2020, 12, 264-268.	3.4	18
41	Two-year monitoring of tick abundance and influencing factors in an urban area (city of Hanover,) Tj ETQq1 1 0.	784314 rg 2.7	BT_Overlock
42	Management Options for Ixodes ricinus-Associated Pathogens: A Review of Prevention Strategies. International Journal of Environmental Research and Public Health, 2020, 17, 1830.	2.6	37
43	Geographical distribution and prevalence of tickâ€borne encephalitis virus in questing <i>lxodes ricinus</i> ticks and phylogeographic structure of the <i>lxodes ricinus</i> vector in Norway. Zoonoses and Public Health, 2020, 67, 370-381.	2.2	15

CITATION REPORT

		CITATION REPORT		
#	ARTICLE	IF	;	CITATIONS
44	north-western Europe. Ticks and Tick-borne Diseases, 2020, 11, 101388.	2.	.7	55
45	Low prevalence of tick-borne encephalitis virus antibodies in Norwegian blood donors. Infect Diseases, 2021, 53, 44-51.	tious 2.	.8	12
46	Tickborne Encephalitis Virus. , 2021, , 127-149.			0
47	Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review. Ins 12, 83.	ects, 2021, 2	.2	54
48	High-elevational occurrence of two tick species, Ixodes ricinus and I. trianguliceps, at their na distribution range. Parasites and Vectors, 2021, 14, 161.	orthern 2.	.5	17
49	LOUPING-ILL VIRUS SEROSURVEY OF WILLOW PTARMIGAN (LAGOPUS LAGOPUS LAGOPUS Journal of Wildlife Diseases, 2021, 57, 282-291.) IN NORWAY. O	.8	6
51	TBE in Norway. Tick-borne Encephalitis - the Book, 2021, , .	0	.1	1
52	Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Eurosurveillance, 2019, 24, .	7.	.0	33
53	Chapter 12a: Epidemiology by country – an overview. Tick-borne Encephalitis - the Book, C), , . 0	.1	8
54	TBE in Norway. Tick-borne Encephalitis - the Book, 0, , .	О	.1	0
56	Adaptive Features of the Biology of Closely Related Species of Ixodid Ticks That Determine T Distribution (Illustrated on the Example of the Taiga Tick Ixodes persulcatus Sch. 1930 and t	['] heir :he Castor) Tj ETQq0 0 0	.nggBT /O	værlock 10
57	Chapter 12a: Epidemiology by country – an overview. Tick-borne Encephalitis - the Book, 2	2022, , . 0	.1	1
58	TBE in Norway. Tick-borne Encephalitis - the Book, 2022, , .	0	.1	0
59	The Changing Epidemiology of Tick-Borne Encephalitis (TBE). , 2022, , .			1
60	Pathogens in Ixodes persulcatus and Ixodes ricinus ticks (Acari, Ixodidae) in Karelia (Russia). Tick-borne Diseases, 2022, 13, 102045.	Ticks and 2.	.7	5
61	Distribution and Characterisation of Tick-Borne Flavi-, Flavi-like, and Phenuiviruses in the Che Region of Russia. Viruses, 2022, 14, 2699.	elyabinsk 3.	.3	2
62	Hybrids of Ixodes ricinus and Ixodes persulcatus ticks effectively acquire and transmit tick-be encephalitis virus. Frontiers in Cellular and Infection Microbiology, 0, 13, .	orne 3.	.9	3
63	The current state of the problem of tick-borne encephalitis in Russia and the world. Epidemic Vaktsinoprofilaktika, 2023, 22, 104-123.	plogiya I O	.8	3

IF ARTICLE CITATIONS TBE in Norway. Tick-borne Encephalitis - the Book, 2023, , . 0.1 0 64 Chapter 12a: TBE-epidemiology by country – an overview. Tick-borne Encephalitis - the Book, 2023, , . 0.1 Distribution of ticks in the Western Palearctic: an updated systematic review (2015–2021). Parasites 66 2.5 3 and Vectors, 2023, 16, . Prevalence of tickâ€borne encephalitis virus in questing <i>lxodes ricinus</i>) nymphs in southern Scandinavia and the possible influence of meteorological factors. Zoonoses and Public Health, 0, , . The Influence of Climatogeographic Conditions on the Expansion of the Range of Ixodes Ticks. 68 1.3 0 Entomology and Applied Science Letters, 2023, 10, 1-9. Ticks and tick-borne microbes identified through passive and active surveillance in Alaska. Journal of 1.8 Medical Entomology, 0, , . Serological screening for tickâ€borne encephalitis virus in eight Norwegian herds of semiâ€domesticated 70 2.2 0 reindeer (<scp><i>Rangifer tarandus tarandus</i></scp>). Zoonoses and Public Health, 0, , . Winter activity of Ixodes ricinus in Sweden. Parasites and Vectors, 2023, 16, . 2.5 Development of a Real-Time PCR Method for the Detection of European and Siberian Subtypes of 72 1.9 0 Tick-Borne Encephalitis Virus. Microbiology Research, 2023, 14, 1545-1558. Development Features of Ixodes ricinus \tilde{A} — I. persulcatus Hybrids under Laboratory Conditions. 3.6 Microorganisms, 2023, 11, 2252. Tick-Borne Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization 74 61.1 1 Practices, United States, 2023. MMWR Recommendations and Reports, 2023, 72, 1-29. Hazard potential of Swiss Ixodes ricinus ticks: Virome composition and presence of selected bacterial and protozoan pathogens. PLoS ONE, 2023, 18, e0290942. The Prevalence, Seroprevalence, and Risk Factors of Tick-Borne Encephalitis Virus in Dogs in Lithuania, 76 3.3 1 a Highly Endemic State. Viruses, 2023, 15, 2265. Immunity to Tick-Borne Encephalitis Virus NS3 Protein Induced with a Recombinant Modified Vaccinia 4.4 Virus Ankara Fails to Afford Mice Protection against TBEV Infection. Vaccines, 2024, 12, 105.

CITATION REPORT