A review on sun position sensors used in solar applicati

Renewable and Sustainable Energy Reviews 82, 2128-2146 DOI: 10.1016/j.rser.2017.08.040

Citation Report

#	Article	IF	CITATIONS
1	Socialization of Solar Energy Utilization in Ponpes Al Hidayah, Arjasa, Kangean Island, Sumenep. Journal of Physics: Conference Series, 2018, 997, 012047.	0.3	2
2	Sunflower Inspired Solar Tracking Strategy: A Sensorless Approach for Maximizing Photovoltaic Panel Energy Generation. , 2018, , .		2
3	A Review on Heliostat Field Layout and Control Strategy of Solar Tower Thermal Power Plants. , 2018, , .		1
4	Analysis of the effectiveness of the prototype PV tracking system. , 2018, , .		1
5	Technological Advances to Maximize Solar Collector Energy Output: A Review. Journal of Electronic Packaging, Transactions of the ASME, 2018, 140, .	1.2	16
6	Methods for Assessing and Optimizing Solar Orientation by Non-Planar Sensor Arrays. Sensors, 2019, 19, 2561.	2.1	0
7	High-Precision Luminosity Sensor for Solar Applications. IEEE Sensors Journal, 2019, 19, 12454-12464.	2.4	3
8	Control algorithms applied to active solar tracking systems: A review. Solar Energy, 2020, 212, 203-219.	2.9	49
9	A simulation model of the application of the solar STAF panel heat transfer and noise reduction with and without a transparent plate: A renewable energy review. Renewable and Sustainable Energy Reviews, 2020, 134, 110149.	8.2	14
10	Image Acquisition with Wide-angle Camera for Sun Location Tracking. , 2020, , .		0
11	Optimization of light-dependent resistor sensor for the application of solar energy tracking system. SN Applied Sciences, 2020, 2, 1.	1.5	7
12	A micromachined vector light sensor. Sensors and Actuators A: Physical, 2020, 311, 112045.	2.0	3
13	A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation. Sustainable Energy Technologies and Assessments, 2020, 37, 100618.	1.7	48
14	New Omnidirectional Sensor Based on Open-Source Software and Hardware for Tracking and Backtracking of Dual-Axis Solar Trackers in Photovoltaic Plants. Sensors, 2021, 21, 726.	2.1	5
15	Towards a Scalable Sun Position Sensor with Monolithic Integration of the 3d Optics for Miniaturized Satellite Attitude Control. , 2021, , .		3
16	Shape reconstruction of planar flexible spacecraft structures using distributed sun sensors. Acta Astronautica, 2021, 180, 328-339.	1.7	5
17	A Brief Review of Solar Indoor Lighting System Integrated with Optofluidic Technologies. Energy Technology, 2021, 9, 2001099.	1.8	2
18	A new sun-tracking approach for energy saving. Renewable Energy, 2021, 169, 820-835.	4.3	14

CITATION REPORT

#	Article	IF	CITATIONS
19	Design, Ground Testing and On-Orbit Performance of a Sun Sensor Based on COTS Photodiodes for the UPMSat-2 Satellite. Sensors, 2021, 21, 4905.	2.1	8
20	A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis. Applied Energy, 2021, 299, 117295.	5.1	45
21	Analysis of an Arduino based solar tracking system. Journal of Physics: Conference Series, 2021, 2051, 012011.	0.3	3
22	Toward the Development of a Low-Cost High-Precision Instrumented Mini-Solar Sensor. Springer Proceedings in Physics, 2019, , 127-133.	0.1	1
23	An Investigation on the Outcomes of Rail-Based Solar Tracking System Incorporating Minimum Torque Condition for Increasing the Photovoltaic Energy Capture on Sunny Days. Green Energy and Technology, 2020, , 357-397.	0.4	0
24	Design and Control of a Passive Solar Tracking System Using a Sky Imager. Mechanisms and Machine Science, 2020, , 170-178.	0.3	2
25	Artificial Neural Network Technique to Predict The Sun Position in Cloudy State with Tetrahedron Based Sensor. , 2021, , .		1
26	Visible Blind Quadrant Sun Position Sensor in a Silicon Carbide Technology. , 2022, , .		5
27	Dual feedback closed-loop control for one-axis solar trackers of parabolic trough collector systems. , 2021, , .		2
28	On the use of light sensors on CubeSat nanosatellites. Engineering Journal Science and Innovation, 2021, , .	0.1	0
30	Sun Sensor Design for Full Field of View Coverage. , 2022, , .		2
31	Performance assessment of a dualâ€axis solar tracker for concentrator photovoltaic systems. International Journal of Energy Research, 2022, 46, 13424-13440.	2.2	6
32	Angle Sensitive Optical Sensor for Light Source Tracker Miniaturization. , 2022, 6, 1-4.		2
33	Advanced solar desalination on superwetting surfaces. Journal of Materials Chemistry A, 2022, 10, 19348-19366.	5.2	9
34	Low-cost dual-axis solar tracker with photovoltaic energy processing for education. Sustainable Energy Technologies and Assessments, 2022, 53, 102542.	1.7	2
35	Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports, 2022, 8, 11992-12010.	2.5	53
36	Evaluation of control strategies applied in small-scale photovoltaic solar tracking systems: a review. IOP Conference Series: Materials Science and Engineering, 2022, 1253, 012017.	0.3	1
37	Design and Verification of an Integrated Panoramic Sun Sensor atop a Small Spherical Satellite. Sensors, 2022, 22, 8130.	2.1	3

#	Article	IF	CITATIONS
38	On the UPMSat-2 magnetometer's calibration methods performance comparison for poorly conditioned datasets. Measurement: Journal of the International Measurement Confederation, 2023, 207, 112381.	2.5	0
39	Development and deployment of a Hybrid Controller for a Dual-Axis Solar Tracker System. , 2022, , .		1
40	Innovative sensorless dual-axis solar tracking system using particle filter. Applied Energy, 2023, 338, 120946.	5.1	3
41	Microfabricated albedo insensitive sun position sensor system in silicon carbide with integrated 3D optics and CMOS electronics. Sensors and Actuators A: Physical, 2023, 354, 114268.	2.0	2
42	A Low-Latency, Low-Power CMOS Sun Sensor for Attitude Calculation using Photo-Voltaic Regime and On-chip Centroid Computation. IEEE Transactions on Instrumentation and Measurement, 2023, , 1-1.	2.4	0
43	Effect Difference Size of Tetrahedron Sun Tracker Based on Sensor for Energy Harvesting. , 2023, , .		1
45	Field of View and Accuracy Improvement of a Coarse Sun Sensor. , 2023, , .		1
46	The question of usage of light sensors at cubesat nanosatellites. AIP Conference Proceedings, 2023, , .	0.3	0