Ligand-Promoted Palladium-Catalyzed Aerobic Oxidati

Chemical Reviews 118, 2636-2679 DOI: 10.1021/acs.chemrev.7b00334

Citation Report

#	Article	IF	CITATIONS
1	Mechanistic Basis for Efficient, Site-Selective, Aerobic Catalytic Turnover in Pd-Catalyzed C–H Imidoylation of Heterocycle-Containing Molecules. Journal of the American Chemical Society, 2017, 139, 14533-14541.	13.7	24
2	Cationic Palladium(II) Complexes for Catalytic Wackerâ€Type Oxidation of Styrenes to Ketones Using O ₂ as the Sole Oxidant. European Journal of Inorganic Chemistry, 2017, 2017, 5604-5608.	2.0	14
3	Iron-Catalyzed C(sp ³)–H Acyloxylation of Aryl-2 <i>H</i> Azirines with Hypervalent Iodine(III) Reagents. Organic Letters, 2018, 20, 1663-1666.	4.6	27
4	Aerobic Co or Cu/NHPI-catalyzed oxidation of hydride siloxanes: synthesis of siloxanols. Green Chemistry, 2018, 20, 1467-1471.	9.0	56
5	Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates <i>via</i> direct dehydrogenative C(sp ²)–O cross-coupling. Chemical Communications, 2018, 54, 4437-4440.	4.1	6
6	Palladiumâ€Catalyzed Asymmetric Aminohydroxylation of 1,3â€Dienes. Angewandte Chemie, 2018, 130, 2396-2400.	2.0	21
7	Palladium atalyzed Asymmetric Aminohydroxylation of 1,3â€Đienes. Angewandte Chemie - International Edition, 2018, 57, 2372-2376.	13.8	92
8	CuBr ₂ -Catalyzed Mild Oxidation of 3,4-Dihydro-β-Carbolines and Application in Total Synthesis of 6-Hydroxymetatacarboline D. ACS Omega, 2018, 3, 544-553.	3.5	9
9	Tetramethylpiperidine <i>N</i> -Oxyl (TEMPO), Phthalimide <i>N</i> -Oxyl (PINO), and Related <i>N</i> -Oxyl Species: Electrochemical Properties and Their Use in Electrocatalytic Reactions. Chemical Reviews, 2018, 118, 4834-4885.	47.7	681
10	Câ^'H Alkenylation of Pyrroles by Electronically Matching Ligand Control. Chemistry - an Asian Journal, 2018, 13, 2418-2422.	3.3	14
11	Catalytic Aza-Wacker Annulation: Tuning Mechanism by the Activation Mode of Amide and Enantioselective Syntheses of Melinonine-E and Strychnoxanthine. Organic Letters, 2018, 20, 2386-2390.	4.6	22
12	Photochemical Nickel-Catalyzed Reductive Migratory Cross-Coupling of Alkyl Bromides with Aryl Bromides. Organic Letters, 2018, 20, 1880-1883.	4.6	104
13	Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions. ACS Catalysis, 2018, 8, 3708-3714.	11.2	11
14	Copper-Catalyzed Vinylogous Aerobic Oxidation of Unsaturated Compounds with Air. Journal of the American Chemical Society, 2018, 140, 5300-5310.	13.7	32
15	Palladium-Catalyzed Aerobic Oxidative Coupling of Allylic Alcohols with Anilines in the Synthesis of Nitrogen Heterocycles. Journal of Organic Chemistry, 2018, 83, 3941-3951.	3.2	35
16	Ligand-Directed Reactivity in Dioxygen and Water Binding to cis-[Pd(NHC)2(η2-O2)]. Journal of the American Chemical Society, 2018, 140, 264-276.	13.7	2
17	Palladium-Catalyzed Sequential Vinylic C–H Arylation/Amination of 2-Vinylanilines with Aryl boronic Acids: Access to 2-Arylindoles. Journal of Organic Chemistry, 2018, 83, 323-329.	3.2	26
18	Pd-Catalyzed Aerobic Oxidation Reactions: Strategies To Increase Catalyst Lifetimes. Journal of the American Chemical Society, 2018, 140, 748-757.	13.7	39

#	Article	IF	CITATIONS
19	Steigerung der Katalysatoreffizienz in der Câ€Hâ€Aktivierungskatalyse. Angewandte Chemie, 2018, 130, 2318-2328.	2.0	62
20	Increasing Catalyst Efficiency in Câ^'H Activation Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2296-2306.	13.8	206
21	Reactivity of rhodium and iridium peroxido complexes towards hydrogen in the presence of B(C ₆ F ₅) ₃ or [H(OEt ₂) ₂][B{3,5-(CF ₃) ₂ C ₆ H ₃ } Dalton Transactions, 2018, 47, 16299-16304.	suð>34 <td>ıb⁴].</td>	ıb ⁴].
22	Square-planar Co(<scp>iii</scp>) in {O ₄ } coordination: large ZFS and reactivity with ROS. Chemical Communications, 2018, 54, 12045-12048.	4.1	9
23	Platinum atalyzed Desaturation of Lactams, Ketones, and Lactones. Angewandte Chemie, 2018, 130, 16437-16441.	2.0	16
24	Extended Openâ€Chain Polyenides as Versatile Delocalized Anion Ligands for Metal Chain Clusters. Chemistry - A European Journal, 2018, 25, 1212-1216.	3.3	11
25	Efficient Palladiumâ€Catalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie, 2018, 130, 17084-17088.	2.0	18
26	Mechanistic studies: enantioselective palladium(<scp>ii</scp>)-catalyzed intramolecular aminoarylation of alkenes by dual N–H and aryl C–H bond cleavage. Organic Chemistry Frontiers, 2018, 5, 3256-3262.	4.5	4
27	Oxidation Potential Tunable Organic Molecules and Their Catalytic Application to Aerobic Dehydrogenation of Tetrahydroquinolines. Organic Letters, 2018, 20, 6436-6439.	4.6	20
28	Aerobic Catalytic Features in Photoredox- and Copper-Catalyzed Iodolactonization Reactions. Organic Letters, 2018, 20, 6462-6466.	4.6	28
29	Copper-Catalyzed Unstrained C–C Single Bond Cleavage of Acyclic Oxime Acetates Using Air: An Internal Oxidant-Triggered Strategy toward Nitriles and Ketones. Journal of Organic Chemistry, 2018, 83, 14713-14722.	3.2	38
30	Efficient Palladiumâ€Catalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie - International Edition, 2018, 57, 16842-16846.	13.8	29
31	Construction of <i>N</i> -Heterocyclic Systems Containing a Fully Substituted Allylic Carbon by Palladium/Phosphine Catalysis. Organic Letters, 2018, 20, 6965-6969.	4.6	4
32	Platinumâ€Catalyzed Desaturation of Lactams, Ketones, and Lactones. Angewandte Chemie - International Edition, 2018, 57, 16205-16209.	13.8	49
33	A Pd ^{II} Carbene Complex with Anthracene Sideâ€Arms for Ï€â€5tacking on Reduced Graphene Oxide (rGO): Activity towards Undirected C–H Oxygenation of Arenes. European Journal of Inorganic Chemistry, 2018, 2018, 4742-4746.	2.0	17
34	A chiral ligand accessible in one step: Synthesis of bis-((R)-(+)-bornyl)acenaphthenequinonediimine and of its zinc and nickel complexes. Inorganica Chimica Acta, 2018, 483, 305-309.	2.4	3
35	Nickel-Catalyzed Oxidative Coupling Reaction of Phenyl Benzyl Sulfoxides. Organometallics, 2018, 37, 3132-3141.	2.3	5
36	Copper-Catalyzed Electrochemical C–H Amination of Arenes with Secondary Amines. Journal of the American Chemical Society, 2018, 140, 11487-11494.	13.7	262

#	Article	IF	CITATIONS
37	Control of Selectivity in Palladium(II)-Catalyzed Oxidative Transformations of Allenes. Accounts of Chemical Research, 2018, 51, 1520-1531.	15.6	156
38	Pd ^{II} â€Catalyzed Oxidative Tandem azaâ€Wacker/Heck Cyclization for the Construction of Fused 5,6â€Bicyclic N,Oâ€Heterocycles. Chemistry - an Asian Journal, 2018, 13, 1897-1901.	3.3	11
39	Mechanistic Insights on Pd/Cu-Catalyzed Dehydrogenative Coupling of Dimethyl Phthalate. ACS Catalysis, 2018, 8, 5827-5841.	11.2	12
40	Asymmetric Aza-Wacker-Type Cyclization of <i>N</i> -Ts Hydrazine-Tethered Tetrasubstituted Olefins: Synthesis of Pyrazolines Bearing One Quaternary or Two Vicinal Stereocenters. Journal of the American Chemical Society, 2018, 140, 7587-7597.	13.7	88
41	Palladium-Catalyzed Aerobic Homocoupling of Alkynes: Full Mechanistic Characterization of a More Complex Oxidase-Type Behavior. ACS Catalysis, 2018, 8, 7495-7506.	11.2	30
42	Regioselective Copper-Catalyzed Oxidative Coupling of α-Alkylated Styrenes with Tertiary Alkyl Radicals. Organic Letters, 2018, 20, 4032-4035.	4.6	22
43	Addition, Substitution, and Ring-Contraction Reactions of Quinones with N-Heterocyclic Carbenes. Journal of Organic Chemistry, 2018, 83, 9240-9249.	3.2	2
44	Kinetic and Mechanistic Characterization of Low-Overpotential, H ₂ O ₂ -Selective Reduction of O ₂ Catalyzed by N ₂ O ₂ -Ligated Cobalt Complexes. Journal of the American Chemical Society, 2018. 140. 10890-10899.	13.7	46
45	The Hydrazine–O ₂ Redox Couple as a Platform for Organocatalytic Oxidation: Benzo[<i>c</i>]cinnoline atalyzed Oxidation of Alkyl Halides to Aldehydes. Angewandte Chemie - International Edition, 2018, 57, 12494-12498.	13.8	14
46	Synthesis of α,βâ€Dicarbonylhydrazones by Aerobic Manganeseâ€Catalysed Oxidation. Advanced Synthesis and Catalysis, 2018, 360, 3768-3780.	4.3	0
47	The Hydrazine–O 2 Redox Couple as a Platform for Organocatalytic Oxidation: Benzo[c]cinnoline atalyzed Oxidation of Alkyl Halides to Aldehydes. Angewandte Chemie, 2018, 130, 12674-12678.	2.0	3
48	Redox-Induced Interconversion and Ligand-Centered Hemilability in Ni ^{II} Complexes of Redox-Noninnocent Azo-Aromatic Pincers. Inorganic Chemistry, 2018, 57, 5830-5841.	4.0	28
49	Regioselective C–H alkenylation of imidazoles and its application to the synthesis of unsymmetrically substituted benzimidazoles. Chemical Communications, 2018, 54, 6879-6882.	4.1	17
50	B ₂ pin ₂ -Mediated Palladium-Catalyzed Diacetoxylation of Aryl Alkenes with O ₂ as Oxygen Source and Sole Oxidant. Organic Letters, 2018, 20, 5090-5093.	4.6	14
51	A systematic examination of ligand basicity effects on bonding in palladium(0)- and palladium(II)-ethylene complexes. Inorganica Chimica Acta, 2018, 483, 191-202.	2.4	2
52	Cu-catalyzed oxygenation of alkene-tethered amides with O ₂ <i>via</i> unactivated C bond cleavage: a direct approach to cyclic imides. Chemical Science, 2019, 10, 9099-9103.	7.4	26
53	Transition-Metal-Controlled Synthesis of 11 <i>H</i> -Benzo[<i>a</i>]carbazoles and 6-Alkylidene-6 <i>H</i> -isoindo[2,1- <i>a</i>]indoles via Sequential Intermolecular/Intramolecular Cross-Dehydrogenative Coupling from 2-Phenylindoles. Organic Letters, 2019, 21, 6839-6843.	4.6	17
54	Copper-catalysed C–H functionalisation gives access to 2-aminobenzimidazoles. Organic and Biomolecular Chemistry, 2019, 17, 7943-7955.	2.8	8

#	Article	IF	CITATIONS
55	Visible-Light-Induced Regioselective C(sp ³)-H Acyloxylation of Aryl-2 <i>H-</i> azirines with (Diacetoxy)iodobenzene. Journal of Organic Chemistry, 2019, 84, 11735-11740.	3.2	37
56	Pd-Catalyzed decarboxylative cross-coupling reactions of epoxides with α,β-unsaturated carboxylic acids. Chemical Communications, 2019, 55, 11123-11126.	4.1	19
57	Palladium Separation by Pd-Catalyzed Gel Formation via Alkyne Coupling. Chemistry of Materials, 2019, 31, 7386-7394.	6.7	28
58	Cooperativity and serial ligand catalysis in an allylic amination reaction by Pd(<scp>ii</scp>)-bis-sulfoxide and BrĀ̧nsted acids. Organic and Biomolecular Chemistry, 2019, 17, 7723-7734.	2.8	2
59	Visibleâ€Lightâ€Enabled Selective Oxidation of Primary Alcohols through Hydrogenâ€Atom Transfer and its Application in the Synthesis of Quinazolinones. Asian Journal of Organic Chemistry, 2019, 8, 1933-1941.	2.7	27
60	Synthesis of Flavanones via Palladium(II)-Catalyzed One-Pot β-Arylation of Chromanones with Arylboronic Acids. Journal of Organic Chemistry, 2019, 84, 10012-10023.	3.2	21
61	Selective Lateâ€Stage Oxygenation of Sulfides with Groundâ€State Oxygen by Uranyl Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 13499-13506.	13.8	164
62	Selective Lateâ€Stage Oxygenation of Sulfides with Groundâ€State Oxygen by Uranyl Photocatalysis. Angewandte Chemie, 2019, 131, 13633-13640.	2.0	27
63	Reusable Pd@PEG Catalyst for Aerobic Dehydrogenative Câ^'H/Câ^'H Arylations of 1,2,3â€Triazoles. Chemistry - A European Journal, 2019, 25, 11427-11431.	3.3	21
64	<i>sp</i> 2â€C–H Acetoxylation of Diversely Substituted (<i>E</i>)â€1â€(Arylmethylene)â€2â€phenylhydrazir Using PhI(OAc) ₂ as Acetoxy Source at Ambient Conditions. European Journal of Organic Chemistry, 2019, 2019, 5925-5933.	ies 2.4	5
65	Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones. Organic Chemistry Frontiers, 2019, 6, 3101-3106.	4.5	16
66	Pd/Biâ€Catalyzed Direct Synthesis of α,βâ€Unsaturated Nitriles Using Aromatic Alcohols and Acetonitrile. Asian Journal of Organic Chemistry, 2019, 8, 1824-1826.	2.7	6
67	New scents from bio-renewable cis-jasmone by aerobic palladium catalyzed oxidations. Applied Catalysis A: General, 2019, 584, 117171.	4.3	4
68	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. ChemSusChem, 2019, 12, 3931-3940.	6.8	33
69	Experimental and Computational Investigation of the Aerobic Oxidation of a Late Transition Metal-Hydride. Journal of the American Chemical Society, 2019, 141, 10830-10843.	13.7	14
70	Selective Aerobic Oxygenation of Tertiary Allylic Alcohols with Molecular Oxygen. Angewandte Chemie, 2019, 131, 11144-11148.	2.0	4
71	The Role of Iodanyl Radicals as Critical Chain Carriers in Aerobic Hypervalent Iodine Chemistry. CheM, 2019, 5, 2388-2404.	11.7	26
72	Copper(II)â€Catalyzed Aerobic Oxidation of Amines: Divergent Reaction Pathways by Solvent Control to Imines and Nitriles. Asian Journal of Organic Chemistry, 2019, 8, 1674-1679.	2.7	20

#	Article	IF	CITATIONS
73	Copper atalyzed Cyclization of Aryl Amines and Aryldiazonium Salts under Air: Access to <i>N</i> â€2â€Arylâ€Naphthotriazoles. Advanced Synthesis and Catalysis, 2019, 361, 5149-5159.	4.3	12
74	Aerobic Tetrazineâ€Catalyzed Oxidative Nitrosoâ€Dielsâ€Alder Reaction of Nâ€Arylhydroxylamines with Dienecarbamates: Access to Functionalized 1,6â€Dihydroâ€1,2â€oxazines. ChemCatChem, 2019, 11, 5282-5286.	. 3.7	6
75	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie, 2019, 131, 17308-17312.	2.0	3
76	Stepwise degradation of hydroxyl compounds to aldehydes <i>via</i> successive C–C bond cleavage. Chemical Communications, 2019, 55, 925-928.	4.1	22
77	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 17148-17152.	13.8	34
78	Switchable Synthesis of Aryl Sulfones and Sulfoxides through Solvent-Promoted Oxidation of Sulfides with O ₂ /Air. Organic Letters, 2019, 21, 8925-8929.	4.6	63
79	Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid-Accelerated Enantioselective C–H Functionalization. ACS Catalysis, 2019, 9, 11386-11397.	11.2	26
80	Biocompatible Dendrimer-Encapsulated Palladium Nanoparticles for Oxidation of Morin. ACS Omega, 2019, 4, 18685-18691.	3.5	17
81	Measurement of the shrinkage of natural and simulated lesions on root surfaces using CP-OCT. Journal of Dentistry, 2019, 90, 103213.	4.1	4
82	Improved Bimetallic Cobalt–Manganese Catalysts for Selective Oxidative Cleavage of Morpholine Derivatives. ACS Catalysis, 2019, 9, 11125-11129.	11.2	20
83	Palladium atalyzed Cascade Cyclization/Alkynylation Reactions. Chemistry - an Asian Journal, 2019, 14, 4114-4128.	3.3	43
84	Pd-Catalyzed Heck-Type Reaction: Synthesizing Highly Diastereoselective and Multiple Aryl-Substituted P-Ligands. Organic Letters, 2019, 21, 7138-7142.	4.6	15
86	Oxidation of Tetrahydro-l²-carbolines by Persulfate. Organic Letters, 2019, 21, 7475-7477.	4.6	11
87	Substrate Promiscuity of <i>ortho</i> -Naphthoquinone Catalyst: Catalytic Aerobic Amine Oxidation Protocols to Deaminative Cross-Coupling and <i>N</i> -Nitrosation. ACS Catalysis, 2019, 9, 9216-9221.	11.2	20
88	Rare-Earth Y(OTf) ₃ Catalyzed Coupling Reaction of Ethers with Azaarenes. Organic Letters, 2019, 21, 7450-7454.	4.6	18
89	Copper(I)-Catalyzed Oxyamination of \hat{l}^2 , \hat{l}^3 -Unsaturated Hydrazones: Synthesis of Dihydropyrazoles. Organic Letters, 2019, 21, 7787-7790.	4.6	30
90	Origin of the Difference in Reactivity between Ir Catalysts for the Borylation of C–H Bonds. Journal of the American Chemical Society, 2019, 141, 16479-16485.	13.7	41
91	Selective Wacker type oxidation of a macrocyclic diene to the corresponding monounsaturated ketone used as fragrance. RSC Advances, 2019, 9, 27865-27873.	3.6	1

#	Article	IF	CITATIONS
92	Electrochemical Approach for Direct C–H Phosphonylation of Unprotected Secondary Amine. Organic Letters, 2019, 21, 7759-7762.	4.6	36
93	Frontiers of Green Catalytic Selective Oxidations. Green Chemistry and Sustainable Technology, 2019, ,	0.7	8
94	Design and synthesis of a highly efficient heterogeneous MnCo ₂ O ₄ oxide catalyst for alcohol oxidation: DFT insight into the synergistic effect between oxygen deficiencies and bimetal species. Catalysis Science and Technology, 2019, 9, 418-424.	4.1	26
95	Formal [4 + 2] benzannulation of 2-alkenyl indoles with aldehydes: a route to structurally diverse carbazoles and bis-carbazoles. Organic and Biomolecular Chemistry, 2019, 17, 1822-1826.	2.8	16
96	Rh/O ₂ -Catalyzed C8 Olefination of Quinoline <i>N</i> Oxides with Activated and Unactivated Olefins. Journal of Organic Chemistry, 2019, 84, 2786-2797.	3.2	47
97	Reduction of Nitrobenzene to Aniline by CO/H2O in the Presence of Palladium Nanoparticles. Catalysts, 2019, 9, 404.	3.5	18
98	Selective Aerobic Oxygenation of Tertiary Allylic Alcohols with Molecular Oxygen. Angewandte Chemie - International Edition, 2019, 58, 11028-11032.	13.8	23
99	Pyrrolo[3,4-c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to Maleimides. Organic Letters, 2019, 21, 5046-5050.	4.6	29
100	Neocuproine as a Redox-Active Ligand Platform on Iron and Cobalt. Inorganic Chemistry, 2019, 58, 9057-9066.	4.0	8
101	Cross-Coupling of Heteroatomic Electrophiles. Chemical Reviews, 2019, 119, 8192-8228.	47.7	151
102	Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C–H Acetoxylation Catalyzed by Pd(OAc) ₂ /4,5-Diazafluoren-9-one. Journal of the American Chemical Society, 2019, 141, 10462-10474.	13.7	31
103	Synthesis of anti-1,3 Amino Alcohol Motifs via Pd(II)/SOX Catalysis with the Capacity for Stereodivergence. Journal of the American Chemical Society, 2019, 141, 9468-9473.	13.7	24
104	<i>N</i> -Heterocarbene Palladium Complexes with Dianisole Backbones: Synthesis, Structure, and Catalysis. Organometallics, 2019, 38, 2539-2552.	2.3	25
105	Pd(OAc)2-catalyzed orthogonal synthesis of 2-hydroxybenzoates and substituted cyclohexanones from acyclic unsaturated 1,3-carbonyl compounds. Tetrahedron Letters, 2019, 60, 1653-1657.	1.4	6
106	Aerobic Acyloxylation of Allylic Câ^'H Bonds Initiated by a Pd 0 Precatalyst with 4,5â€Diazafluorenâ€9â€one as an Ancillary Ligand. ChemSusChem, 2019, 12, 3003-3007.	6.8	18
107	Core-shell structured Pd catalyst layer encapsulated by polydopamine for a gas-liquid-solid microreactor. Applied Surface Science, 2019, 487, 416-425.	6.1	11
108	Assembly of Functionalized 4â€Alkynylisoxazoles by Palladium atalyzed Threeâ€Component Cascade Cyclization/Alkynylation. Chemistry - an Asian Journal, 2019, 14, 2309-2315.	3.3	15
109	Pd-Catalyzed Decarboxylative <i>Ortho</i> -Halogenation of Aryl Carboxylic Acids with Sodium Halide NaX Using Carboxyl as a Traceless Directing Group. Organic Letters, 2019, 21, 3003-3007.	4.6	17

#	Article	IF	CITATIONS
110	Generic Ion Chromatography–Conductivity Detection Method for Analysis of Palladium Scavengers in New Drug Substances. Organic Process Research and Development, 2019, 23, 1060-1068.	2.7	13
111	Palladium-Catalyzed Stereospecific Oxidative Cascade Reaction of Allenes for the Construction of Pyrrole Rings: Control of Reactivity and Selectivity. ACS Catalysis, 2019, 9, 5184-5190.	11.2	31
112	Pd(II)-Catalyzed Asymmetric Oxidative Annulation of <i>N</i> -Alkoxyheteroaryl Amides and 1,3-Dienes. Organic Letters, 2019, 21, 2048-2051.	4.6	36
113	Chemoselective aerobic oxidation of 2-amino-N-benzylanilines into N-(2-aminophenyl)imines via a nitroxide-free copper catalysis. Tetrahedron Letters, 2019, 60, 1139-1142.	1.4	0
114	Weinreb Amides as Directing Groups for Transition Metal-Catalyzed C-H Functionalizations. Molecules, 2019, 24, 830.	3.8	42
115	Electrosynthesis of (<i>E</i>)-Vinyl Thiocyanates from Cinnamic Acids via Decarboxylative Coupling Reaction. Organic Letters, 2019, 21, 1958-1962.	4.6	68
116	Photoredox Mediated Acceptorless Dehydrogenative Coupling of Saturated N-Heterocycles. ACS Catalysis, 2019, 9, 3589-3594.	11.2	42
117	Palladium Catalyst with Task-Specific Ionic Liquid Ligands: Intracellular Reactions and Mitochondrial Imaging with Benzothiadiazole Derivatives. Journal of Organic Chemistry, 2019, 84, 5118-5128.	3.2	20
118	Copper(II)-Catalyzed Alkene Aminosulfonylation with Sodium Sulfinates For the Synthesis of Sulfonylated Pyrrolidones. Organic Letters, 2019, 21, 2890-2893.	4.6	38
119	Metalâ€Free Photocatalysts for Câ^'H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem, 2019, 12, 2898-2910.	6.8	95
120	A fast and ultrasensitive detection of zinc ions based on "signal on―mode of electrochemiluminescence from single oxygen generated by porphyrin grafted onto palladium nanocubes. Sensors and Actuators B: Chemical, 2019, 290, 203-209.	7.8	18
121	Tailoring the Size and Shape of Colloidal Noble Metal Nanocrystals as a Valuable Tool in Catalysis. Catalysis Surveys From Asia, 2019, 23, 127-148.	2.6	23
122	Recent Advances in Transitionâ€Metalâ€Mediated Chelation―Assisted Sulfonylation of Unactivated Câ^'H Bonds. Advanced Synthesis and Catalysis, 2019, 361, 1710-1732.	4.3	93
123	B2pin2-catalyzed oxidative cleavage of a C double bond with molecular oxygen. Organic Chemistry Frontiers, 2019, 6, 841-845.	4.5	45
124	Selective C–O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis. ACS Catalysis, 2019, 9, 2252-2260.	11.2	95
125	B2pin2-mediated copper-catalyzed oxidation of alkynes into 1,2-diketones using molecular oxygen. Tetrahedron Letters, 2019, 60, 843-846.	1.4	14
126	Transition-metal free selective C(α)–C(β) bond cleavage of trifluoromethyl ketones with amidines under air: facile access to 5-trifluoromethylated Imidazol-4-ones. Organic Chemistry Frontiers, 2019, 6, 858-862.	4.5	15
127	A Nonheme Thiolate-Ligated Cobalt Superoxo Complex: Synthesis and Spectroscopic Characterization, Computational Studies, and Hydrogen Atom Abstraction Reactivity. Journal of the American Chemical Society, 2019, 141, 3641-3653.	13.7	38

#	Article	IF	CITATIONS
128	Catalytic Wackerâ€ŧype Oxidations Using Visible Light Photoredox Catalysis. ChemCatChem, 2019, 11, 1889-1892.	3.7	12
129	Aerobic Oxidative Alkenylation of Weak <i>O</i> -Coordinating Arylacetamides with Alkenes via a Rh(III)-Catalyzed C–H Activation. Organic Letters, 2019, 21, 1320-1324.	4.6	67
130	Aerobic conversion of benzylic sp ³ C–H in diphenylmethanes and benzyl ethers to Cî€O bonds under catalyst-, additive- and light-free conditions. Organic Chemistry Frontiers, 2019, 6, 952-958.	4.5	13
131	Computational study of regiodivergent pathways in the copper-catalyzed borocyanation of 1,3-dienes: Mechanism and origin of regioselectivity. Journal of Organometallic Chemistry, 2019, 904, 121014.	1.8	12
132	Preparation of Co–Mo–O ultrathin nanosheets with outstanding catalytic performance in aerobic oxidative desulfurization. Chemical Communications, 2019, 55, 13995-13998.	4.1	47
133	Platinum–(phosphinito–phosphinous acid) complexes as bi-talented catalysts for oxidative fragmentation of piperidinols: an entry to primary amines. RSC Advances, 2019, 9, 37825-37829.	3.6	4
134	Benchmark study of popular density functionals for calculating binding energies of three enter twoâ€electron bonds. Journal of Computational Chemistry, 2019, 40, 657-670.	3.3	11
135	Enantioselective Addition of Cyclic Ketones to Unactivated Alkenes Enabled by Amine/Pd(II) Cooperative Catalysis. ACS Catalysis, 2019, 9, 791-797.	11.2	72
136	Decarboxylative <i>ipso</i> Amination of Activated Benzoic Acids. Angewandte Chemie, 2019, 131, 902-906.	2.0	34
137	Decarboxylative <i>ipso</i> Amination of Activated Benzoic Acids. Angewandte Chemie - International Edition, 2019, 58, 892-896.	13.8	44
138	Palladiumâ€Catalyzed Asymmetric Dihydroxylation of 1,3â€Dienes with Catechols. Chinese Journal of Chemistry, 2019, 37, 226-232.	4.9	8
139	Synthesis, characterization and O2 reactivity of a bioinspired cobalt(II)-catecholate complex. Inorganica Chimica Acta, 2019, 488, 49-55.	2.4	5
140	Aerobic Co-/ <i>N</i> -Hydroxysuccinimide-Catalyzed Oxidation of <i>p-</i> Tolylsiloxanes to <i>p-</i> Carboxyphenylsiloxanes: Synthesis of Functionalized Siloxanes as Promising Building Blocks for Siloxane-Based Materials. Journal of the American Chemical Society, 2019, 141, 2143-2151.	13.7	32
141	The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow. Topics in Current Chemistry, 2019, 377, 2.	5.8	99
142	Synthesis of Amides by Mild Palladium-Catalyzed Aminocarbonylation of Arylsilanes with Amines Enabled by Copper(II) Fluoride. Journal of Organic Chemistry, 2019, 84, 338-345.	3.2	34
143	Accessing Remote <i>meta</i> ―and <i>para</i> (sp ²)â~H Bonds with Covalently Attached Directing Groups. Angewandte Chemie - International Edition, 2019, 58, 10820-10843.	13.8	273
144	Zugang zu <i>meta</i> ―und <i>para</i> C(sp ²)â€Hâ€Bindungen mithilfe kovalent gebundener dirigierender Gruppen. Angewandte Chemie, 2019, 131, 10934-10958.	2.0	56
145	Diastereoselective Cyclobutenol Synthesis: A Heterogeneous Palladiumâ€Catalyzed Oxidative Carbocyclizationâ€Borylation of Enallenols. Chemistry - A European Journal, 2019, 25, 210-215.	3.3	26

#	Article	IF	CITATIONS
146	Design and synthesis of immobilised orthopalladated catalyst for C C coupling. Polyhedron, 2019, 157, 410-415.	2.2	4
147	Catalytic Applications of Vanadium: A Mechanistic Perspective. Chemical Reviews, 2019, 119, 2128-2191.	47.7	323
148	Electrochemical Transitionâ€Metalâ€Catalyzed Câ^'H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. ChemSusChem, 2019, 12, 115-132.	6.8	63
149	Efficient Heterogeneous Palladium atalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie - International Edition, 2020, 59, 1992-1996.	13.8	24
150	Neutral, cationic and anionic organonickel and -palladium complexes supported by iminophosphine/phosphinoenaminato ligands. Dalton Transactions, 2020, 49, 322-335.	3.3	4
151	Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant. Green Chemistry, 2020, 22, 471-477.	9.0	95
152	Baseâ€Assisted Câ~'H Bond Cleavage in Crossâ€Coupling: Recent Insights into Mechanism, Speciation, and Cooperativity. Israel Journal of Chemistry, 2020, 60, 230-258.	2.3	40
153	Total Synthesis of Galanthamine and Lycoramine Featuring an Early-Stage C–C and a Late-Stage Dehydrogenation via C–H Activation. Organic Letters, 2020, 22, 1244-1248.	4.6	27
154	Controlling reactivity in the Fujiwara–Moritani reaction: Examining solvent effects and the addition of 1,3-dicarbonyl ligands on the oxidative coupling of electron rich arenes and acrylates. Tetrahedron Letters, 2020, 61, 151471.	1.4	3
155	Efficient Heterogeneous Palladiumâ€Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie, 2020, 132, 2008-2012.	2.0	10
156	Palladium-catalyzed intramolecular aerobic alkenylhydroxylation of allenamides with alkenyl iodides. Organic Chemistry Frontiers, 2020, 7, 3880-3886.	4.5	15
157	Exocyclic Coordination of Thiamacrocycles Leading to <i>cis</i> and <i>trans</i> -Palladium(II) Complexes and a Tripalladium(II) Complex Incorporating Acetimidic Anhydride. Inorganic Chemistry, 2020, 59, 15807-15812.	4.0	4
158	Palladium-Catalyzed Oxidative Dehydrosilylation for Contra-Thermodynamic Olefin Isomerization. ACS Catalysis, 2020, 10, 8736-8741.	11.2	9
159	Palladium Catalyzed Direct Alkenylation of Dihydropyrrolo[2,1―a]isoquinolines through the Oxidative Heck Reaction. European Journal of Organic Chemistry, 2020, 2020, 5729-5734.	2.4	6
160	Tailored quinones support high-turnover Pd catalysts for oxidative C–H arylation with O ₂ . Science, 2020, 370, 1454-1460.	12.6	42
161	Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids. Inorganic Chemistry, 2020, 59, 17573-17582.	4.0	19
162	Palladium-Catalyzed Stereoselective Aza-Wacker–Heck Cyclization: One-Pot Stepwise Strategy toward Tetracyclic Fused Heterocycles. Organic Letters, 2020, 22, 9337-9341.	4.6	14
163	Can Donor Ligands Make Pd(OAc) ₂ a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. Journal of the American Chemical Society, 2020, 142, 19678-19688.	13.7	25

		CITATION REPORT		
#	Article		IF	CITATIONS
164	Salient features of the <i>aza</i> Wacker cyclization reaction. Chemical Science, 2020,	11, 8073-8088.	7.4	39
165	Catalytic O ₂ activation with synthetic models of α-ketoglutarate dependen Chemical Communications, 2020, 56, 14369-14372.	nt oxygenases.	4.1	5
166	Efficient Palladiumâ€Catalyzed Aerobic Oxidative Carbocyclization to Sevenâ€Membere Chemistry - A European Journal, 2020, 26, 15513-15518.	d Heterocycles.	3.3	12
167	Regiocontrol in the oxidative Heck reaction of indole by ligand-enabled switch of the regioselectivity-determining step. Chemical Science, 2020, 11, 11042-11054.		7.4	22
168	Sodium pyruvate as a peroxide scavenger in aerobic oxidation under carbene catalysis. C Chemistry, 2020, 22, 6819-6826.	Green	9.0	15
169	Functionalization of the Imidazole Backbone by Means of a Tailored and Optimized Oxic Crossâ€Coupling. Advanced Synthesis and Catalysis, 2020, 362, 5079-5092.	lative Heck	4.3	8
170	Development of Routes for the Stereoselective Preparation of β-Aryl- <i>C</i> -glycosides Aryl Enones. Organic Letters, 2020, 22, 7650-7655.	s via <i>C</i> -1	4.6	18
171	Eosin Y-Catalyzed Visible-Light-Mediated Aerobic Transformation of Pyrazolidine-3-One E Catalysts, 2020, 10, 981.	Derivatives.	3.5	5
172	Bonding Energetics of Palladium Amido/Aryloxide Complexes in DMSO: Implications for Palladiumâ€Mediated Aniline Activation. Angewandte Chemie - International Edition, 20	20, 59, 23782-23790.	13.8	8
173	Amine-functionalized metal–organic framework-based Pd nanoparticles: highly efficier multifunctional catalysts for base-free aerobic oxidation of different alcohols. New Journ Chemistry, 2020, 44, 19113-19121.	nt al of	2.8	3
174	Pd-Catalyzed Aerobic Oxidative Coupling of Thiophenes: Synergistic Benefits of Phenant and a Cu Cocatalyst. Journal of the American Chemical Society, 2020, 142, 20318-2032	hroline Dione 3.	13.7	21
175	Bonding Energetics of Palladium Amido/Aryloxide Complexes in DMSO: Implications for Palladiumâ€Mediated Aniline Activation. Angewandte Chemie, 2020, 132, 23990-23998	3.	2.0	3
176	Direct electrooxidation of alkynes to benzoin bis-ethers. Organic Chemistry Frontiers, 20 4064-4068.)20, 7,	4.5	19
177	Aerobic Oxidative Functionalization of Indoles. Advanced Synthesis and Catalysis, 2020,	. 362, 3795-3823.	4.3	64
178	Palladium-catalysed Heck-type alkenylation reactions in the synthesis of quinolines. Mec insights and recent applications. Catalysis Science and Technology, 2020, 10, 5345-536		4.1	18
179	Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redo Non-Innocence. Journal of the American Chemical Society, 2020, 142, 10824-10832.	х	13.7	24
180	Dual-fixations of europium cations and TEMPO species on metal–organic frameworks oxidation of alcohols. Dalton Transactions, 2020, 49, 8060-8066.	for the aerobic	3.3	12
181	Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidatio bonds. Green Chemistry, 2020, 22, 4357-4363.	n of C–H	9.0	68

#	Article	IF	CITATIONS
182	Remote γ-C(sp ³)–H Alkylation of Aliphatic Carboxamides via an Unexpected Regiodetermining Pd Migration Process: Reaction Development and Mechanistic Study. ACS Catalysis, 2020, 10, 8212-8222.	11.2	32
183	Recent advances in metal catalyzed or mediated cyclization/functionalization of alkynes to construct isoxazoles. Organic Chemistry Frontiers, 2020, 7, 2325-2348.	4.5	44
184	Catalytic C–H aerobic and oxidant-induced oxidation of alkylbenzenes (including toluene derivatives) over VO ²⁺ immobilized on core–shell Fe ₃ O ₄ @SiO ₂ at room temperature in water. RSC Advances, 2020, 10, 23543-23553.	3.6	16
185	An effective non-chromatographic method for the purification of phenanthrolines and related ligands. Tetrahedron Letters, 2020, 61, 152080.	1.4	0
186	The key role of R–NHC coupling (R = C, H, heteroatom) and M–NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chemical Science, 2020, 11, 6957-6977.	7.4	87
187	Utility of Organoboron Reagents in Arylation of Cyclopropanols via Chelated Pd(II) Catalysis: Chemoselective Access to I ² -Aryl Ketones. Journal of Organic Chemistry, 2020, 85, 7711-7727.	3.2	20
188	Oxidation of Alkenes by Water with H ₂ Liberation. Journal of the American Chemical Society, 2020, 142, 5980-5984.	13.7	30
189	Catalytic Behavior of Monoâ€ <i>N</i> â€Protected Aminoâ€Acid Ligands in Ligandâ€Accelerated Câ^'H Activation by Palladium(II). Angewandte Chemie - International Edition, 2020, 59, 10873-10877.	13.8	24
190	Nickel and Palladium Complexes with Reactive σâ€Metalâ€Oxygen Covalent Bonds. Israel Journal of Chemistry, 2020, 60, 373-393.	2.3	7
191	Catalytic Behavior of Mono―N â€Protected Aminoâ€Acid Ligands in Ligandâ€Accelerated Câ^'H Activation by Palladium(II). Angewandte Chemie, 2020, 132, 10965-10969.	2.0	6
192	Pyridines Bearing Poly(ethylene glycol) Chains: Synthesis and Use as Ligands. Asian Journal of Organic Chemistry, 2020, 9, 761-764.	2.7	0
193	Recent advances in Pd-catalyzed asymmetric addition reactions. Advances in Organometallic Chemistry, 2020, 74, 325-403.	1.0	13
194	Continuous photocatalyzed aerobic oxidation of benzylic organotrifluoroborates to benzaldehydes under Taylor flow conditions. Journal of Flow Chemistry, 2020, 10, 347-352.	1.9	10
195	Preparation of cyclic imides from alkene-tethered amides: application of homogeneous Cu(<scp>ii</scp>) catalytic systems. RSC Advances, 2020, 10, 7698-7707.	3.6	8
196	Oxidative Cyclization of Sulfamates onto Pendant Alkenes. Organic Letters, 2020, 22, 896-901.	4.6	21
197	Nâ€Heterocyclic Carbene atalyzed Activation of Ynals for the Construction of Functional Pyridines. Asian Journal of Organic Chemistry, 2020, 9, 385-390.	2.7	11
198	Design and synthesis of a versatile cooperative catalytic aerobic oxidation system with co-immobilization of palladium nanoparticles and laccase into the cavities of MCF. Journal of Catalysis, 2020, 382, 305-319.	6.2	17
199	Pd nanoparticles stabilized with phosphine-functionalized porous ionic polymer for efficient catalytic hydrogenation of nitroarenes in water. New Journal of Chemistry, 2020, 44, 3681-3689.	2.8	20

#	Article	IF	CITATIONS
200	Palladium Complexes Bearing Chiral bis(NHC) Chelating Ligands on a Spiro Scaffold: Synthesis, Characterization, and Their Application in the Oxidative Kinetic Resolution of Secondary Alcohols. Organometallics, 2020, 39, 605-613.	2.3	6
201	Copperâ€doped sulfonic acidâ€functionalized MILâ€101(Cr) metal–organic framework for efficient aerobic oxidation reactions. Applied Organometallic Chemistry, 2020, 34, e5445.	3.5	14
202	Direct Oxygenation of C–H Bonds through Photoredox and Palladium Catalysis. Journal of Organic Chemistry, 2020, 85, 3426-3439.	3.2	27
203	Visibleâ€Lightâ€Promoted Regio―and Stereoselective Oxyalkenylâ€ation of Phosphinyl Allenes. Advanced Synthesis and Catalysis, 2020, 362, 2701-2708.	4.3	10
204	Mechanism of the reaction of an NHC-coordinated palladium(II)-hydride with O2 in acetonitrile. Polyhedron, 2020, 182, 114501.	2.2	5
205	A dual light-driven palladium catalyst: Breaking the barriers in carbonylation reactions. Science, 2020, 368, 318-323.	12.6	185
206	High and reversible oxygen uptake in carbon dot solutions generated from polyethylene facilitating reactant-enhanced solar light harvesting. Nanoscale, 2020, 12, 10480-10490.	5.6	15
207	Recent developments in palladium-catalyzed C–S bond formation. Organic Chemistry Frontiers, 2020, 7, 1395-1417.	4.5	98
208	Visible-light-promoted oxidative desulphurisation: a strategy for the preparation of unsymmetrical ureas from isothiocyanates and amines using molecular oxygen. Green Chemistry, 2020, 22, 2956-2962.	9.0	37
209	Nanomolar Detection of Palladium (II) through a Novel Seleno-Rhodamine-based fluorescent and colorimetric chemosensor. Dyes and Pigments, 2020, 179, 108355.	3.7	16
210	Recyclable nanocellulose-confined palladium nanoparticles with enhanced room-temperature catalytic activity and chemoselectivity. Science China Materials, 2021, 64, 621-630.	6.3	19
211	Benzyl Palladium Intermediates: Unique and Versatile Reactive Intermediates for Aromatic Functionalization. Advanced Synthesis and Catalysis, 2021, 363, 587-601.	4.3	22
212	The Impact of Solvent Quality on the Heck Reaction: Detection of Hydroperoxide in 1-Methyl-2-pyrrolidinone (NMP). Organic Process Research and Development, 2021, 25, 627-631.	2.7	8
213	A Novel Approach to <i>N</i> â€Tf 2â€Arylâ€2,3â€Dihydroquinolin―4(1 <i>H</i>)â€ones via a Ligandâ€Free Pd(II)â€Catalyzed Oxidative Azaâ€Michael Cyclization. European Journal of Organic Chemistry, 2021, 2021, 618-622.	2.4	7
214	<scp>Palladiumâ€catalyzed</scp> Aerobic Benzannulation of Pyrazoles with Alkynes. Bulletin of the Korean Chemical Society, 2021, 42, 489-491.	1.9	9
215	Nâ€Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air. Angewandte Chemie, 2021, 133, 2168-2172.	2.0	6
216	Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648.	47.7	361
217	Formate-driven catalysis and mechanism of an iridium–copper complex for selective aerobic oxidation of aromatic olefins in water. Chemical Science, 2021, 12, 5796-5803.	7.4	6

#	Article	IF	CITATIONS
218	Stabilization of the Pd–NHC framework with 1,2,4-triazol-5-ylidene ligands toward decomposition in alkaline media. Inorganic Chemistry Frontiers, 2021, 8, 3382-3401.	6.0	15
219	Catalyst- and solvent-free C _{sp2} –H functionalization of 4-hydroxycoumarins <i>via</i> C-3 dehydrogenative aza-coupling under ball-milling. Green Chemistry, 2021, 23, 4762-4770.	9.0	21
220	Divergent synthesis of flavones and flavanones from 2′-hydroxydihydrochalcones <i>via</i> palladium(<scp>ii</scp>)-catalyzed oxidative cyclization. RSC Advances, 2021, 11, 14000-14006.	3.6	15
221	Sequential Insertion of Alkynes, Alkenes, and CO into the Pd–C Bond of <i>ortho</i> -Palladated Primary Phenethylamines: from η ³ -Allyl Complexes and Enlarged Palladacycles to Functionalized Arylalkylamines. Organometallics, 2021, 40, 539-556.	2.3	5
222	Aerobic asymmetric oxygenation catalysis: a well forgotten… future?. Mendeleev Communications, 2021, 31, 8-13.	1.6	5
223	Pd(II)-Catalyzed Annulation Reactions of Epoxides with Benzamides to Synthesize Isoquinolones. Organic Letters, 2021, 23, 863-868.	4.6	22
224	A comprehensive review of caged phosphines: synthesis, catalytic applications, and future perspectives. Organic Chemistry Frontiers, 2021, 8, 1599-1656.	4.5	29
225	Recent advances in the application of tetrabromomethane in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 4288-4314.	4.5	13
226	Platinumâ€Catalyzed α,βâ€Desaturation of Cyclic Ketones through Direct Metal–Enolate Formation. Angewandte Chemie - International Edition, 2021, 60, 7956-7961.	13.8	15
227	Selective Synthesis of 4,4′-Dimethylbiphenyl from 2-Methylfuran. ACS Sustainable Chemistry and Engineering, 2021, 9, 3316-3323.	6.7	11
228	Platinumâ€Catalyzed α,βâ€Desaturation of Cyclic Ketones through Direct Metal–Enolate Formation. Angewandte Chemie, 2021, 133, 8035-8040.	2.0	4
229	Ultraviolet-light-induced aerobic oxidation of benzylic C(sp3)-H of alkylarenes under catalyst- and additive-free conditions. Tetrahedron, 2021, 82, 131947.	1.9	2
230	Aerobic Alcohol Oxidation by a Zeolitic Octahedral Metal Oxide based on Iron Vanadomolybdates Under Mild Conditions. ChemCatChem, 2021, 13, 1763-1771.	3.7	16
231	Synthesis of 3-Carbonyl Trisubstituted Furans via Pd-Catalyzed Aerobic Cycloisomerization Reaction: Development and Mechanistic Studies. Journal of Organic Chemistry, 2021, 86, 3923-3942.	3.2	10
232	"Benchtop―Biaryl Coupling Using Pd/Cu Cocatalysis: Application to the Synthesis of Conjugated Polymers. Organic Letters, 2021, 23, 2873-2877.	4.6	8
233	Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angewandte Chemie - International Edition, 2021, 60, 15686-15704.	13.8	45
234	Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angewandte Chemie, 2021, 133, 15818-15836.	2.0	8
235	Features of the liquid-phase oxidation of alkenes to carbonyl compounds in the presence of palladium compounds. Kataliz V Promyshlennosti, 2021, 1, 67-73.	0.3	0

ARTICLE IF CITATIONS # Palladium catalyzed oxidation of biorenewable \hat{I}^2 -citronellol and geraniol for the synthesis of 236 2.0 4 polyfunctionalized fragrances. Molecular Catalysis, 2021, 504, 111449. Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes. ACS Catalysis, 2021, 11, 3749-3754. 11.2 39 Multichannel gas-uptake/evolution reactor for monitoring liquid-phase chemical reactions. Review of 238 2 1.3 Scientific Instruments, 2021, 92, 044103. A Bis (BICAAC) Palladium(II) Complex: Synthesis and Implementation as Catalyst in Heck-Mizoroki and Suzuki-Miyaura Cross Coupling Reactions. Inorganic Chemistry, 2021, 60, 6209-6217. Transition-metal-switchable divergent synthesis of nitrile-containing pyrazolo[1,5-a]pyridines and 240 9.0 12 indolizines. Chinese Chemical Letters, 2021, 32, 3967-3971. Solventâ€Switched Oxidation Selectivities with O 2 : Controlled Synthesis of αâ€Difluoro(thio)methylated Alcohols and Ketones. Angewandte Chemie, 2021, 133, 12145-12152. Synthesis and characterization of mixed ligand cyclopalladates with 2-phenylpyridine and substituted 244 phenanthrolines: Investigation into the hydroxylation reaction of 2-phenylpyridine. Inorganica 2.4 3 Chimica Acta, 2021, 518, 120254. Catalytic evaluation of biocompatible chitosan-stabilized gold nanoparticles on oxidation of morin. 10.2 Carbóhydrate Polymers, 2021, 258, 117699. Efficient Heterogeneous Palladium Catalysts in Oxidative Cascade Reactions. Accounts of Chemical 246 15.6 36 Research, 2021, 54, 2275-2286. Synthesis of Bidentate Nitrogen Ligands by Rh-Catalyzed C–H Annulation and Their Application to 247 4.6 24 Pd-Catalyzed Aerobic C–H Alkenylation. Organic Letters, 2021, 23, 3657-3662. Sulfamate-tethered aza-Wacker approach towards analogs of Bactobolin A. Medicinal Chemistry 248 2.4 9 Research, 2021, 30, 1348-1357. Aerobic Oxidative C–H Olefination of Arylamides with Unactivated Olefins via a Rh(III)-Catalyzed C–H 4.6 Activation. Organic Letters, 2021, 23, 2964-2970. Solvent‣witched Oxidation Selectivities with O₂: Controlled Synthesis of αâ€Difluoro(thio)methylated Alcohols and Ketones. Angewandte Chemie - International Edition, 2021, 60, 250 13.8 34 12038-12045. Design strategy and recent progress of fluorescent probe for noble metal ions (Ag, Au, Pd, and Pt). 18.8 46 Coordination Chemistry Reviews, 2021, 432, 213712. Palladiumâ€Catalyzed Threeâ€Component Coupling Reaction via Benzylpalladium Intermediate. Chemical 252 5.8 4 Record, 2021, , . Visibleâ€Lightâ€Driven Selective Airâ€Oxygenation of Câ^'H Bond via CeCl₃ Catalysis in Water. 6.8 ChemSusChem, 2021, 14, 2689-2693. Palladium-Catalyzed Regioselective Allylic Oxidation of Amorphadiene, a Precursor of Artemisinin. 254 3.24 Journal of Organic Chemistry, 2021, 86, 7603-7608. Benzoquinone Cocatalyst Contributions to DAF/Pd(OAc)₂-Catalyzed Aerobic Allylic Acetoxylation in the Absence and Presence of a Co(salophen) Cocatalyst. ACS Catalysis, 2021, 11, 11.2 6363-6370.

#	Article	IF	CITATIONS
256	Regiodivergent Functionalization of Isoquinolineâ€1,3(2 H ,4 H)â€dione Derivatives via Aerobic Umpolung. Asian Journal of Organic Chemistry, 2021, 10, 1508-1513.	2.7	1
257	Palladium-Catalyzed Aminocyclization–Coupling Cascades: Preparation of Dehydrotryptophan Derivatives and Computational Study. Journal of Organic Chemistry, 2021, 86, 8766-8785.	3.2	2
258	Enhancement of p-type thermoelectric power factor by low-temperature calcination in carbon nanotube thermoelectric films containing cyclodextrin polymer and Pd. Applied Physics Letters, 2021, 118, .	3.3	13
259	Formation and stabilization of nanosized Pd particles in catalytic systems: lonic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coordination Chemistry Reviews, 2021, 437, 213860.	18.8	36
260	Palladium-Catalyzed Dehydrogenative C-2 Alkenylation of 5-Arylimidazoles and Related Azoles with Styrenes. Catalysts, 2021, 11, 762.	3.5	3
261	Photophysical Properties of Simple Palladium(0) Complexes Bearing Triphenylphosphine Derivatives. Inorganic Chemistry, 2021, 60, 9516-9528.	4.0	7
262	Tethered Silanoxyiodination of Alkenes. Journal of Organic Chemistry, 2021, 86, 9233-9243.	3.2	10
263	Aerobic Heterogeneous Palladium-Catalyzed Oxidative Allenic Câ^'H Arylation: Benzoquinone as a Direct Redox Mediator between O ₂ and Pd. CCS Chemistry, 2021, 3, 1127-1137.	7.8	6
264	Visible Light-Driven, Copper-Catalyzed Aerobic Oxidative Cleavage of Cycloalkanones. Journal of Organic Chemistry, 2021, 86, 8263-8273.	3.2	13
265	Nitrosoarene-Catalyzed HFIP-Assisted Transformation of Arylmethyl Halides to Aromatic Carbonyls under Aerobic Conditions. Organic Letters, 2021, 23, 6148-6152.	4.6	3
266	Features of the Liquid-Phase Oxidation of Alkenes to Carbonyl Compounds in the Presence of Palladium Compounds. Catalysis in Industry, 2021, 13, 263-268.	0.7	3
267	Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones. Beilstein Journal of Organic Chemistry, 2021, 17, 1727-1732.	2.2	8
268	Mononucleating nicotinohydazone complexes with VO2+, Cu2+, and Ni2+ ions. Characteristic, catalytic, and biological assessments. Journal of Molecular Liquids, 2021, 334, 116001.	4.9	17
269	Markovnikov Wackerâ€Tsuji Oxidation of Allyl(hetero)arenes and Application in a Oneâ€Pot Photoâ€Metalâ€Biocatalytic Approach to Enantioenriched Amines and Alcohols. Advanced Synthesis and Catalysis, 2021, 363, 4096-4108.	4.3	16
270	Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. Coordination Chemistry Reviews, 2021, 438, 213907.	18.8	21
271	Influence of phosphine (pincer) ligands on the transition metal hydrides reactivity. Coordination Chemistry Reviews, 2021, 438, 213799.	18.8	10
272	Configuration Sampling With Fiveâ€Membered Atropisomeric P , N â€Ligands. Angewandte Chemie - International Edition, 2021, 60, 19604-19608.	13.8	9
273	Triethanolamineâ€Mediated Magnetically Separable Fe ₃ O ₄ â^'Pd Nanoparticles Catalyzed Heck Reaction under Ligandâ€Free Conditions. ChemistrySelect, 2021, 6, 7944-7949.	1.5	4

#	Article	IF	CITATIONS
274	Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials. Organic Letters, 2021, 23, 7171-7176.	4.6	34
275	Configuration Sampling With Fiveâ€Membered Atropisomeric P , N â€Ligands. Angewandte Chemie, 2021, 133, 19756-19760.	2.0	1
276	Pd/C-catalyzed aerobic oxidative C–H alkenylation of arenes in γ-valerolactone (GVL). Molecular Catalysis, 2021, 513, 111787.	2.0	4
277	Aerobic iron-catalyzed site-selective C(sp3)–C(sp3) bond cleavage in N-heterocycles. Catalysis Communications, 2021, 157, 106333.	3.3	4
278	Palladiumâ€Aminopyridine Catalyzed Câ^'H Oxygenation: Probing the Nature of Metal Based Oxidant. ChemCatChem, 2021, 13, 5109-5120.	3.7	5
279	Visible-Light-Driven Dehydrogenative Coupling of Primary Alcohols with Phenols Forming Aryl Carboxylates. Organic Letters, 2021, 23, 7683-7687.	4.6	10
280	A further step to sustainable palladium catalyzed oxidation: Allylic oxidation of alkenes in green solvents. Applied Catalysis A: General, 2021, 625, 118349.	4.3	0
281	Rhodium-Catalyzed Oxidative Annulation of 2- or 7-Arylindoles with Alkenes/Alkynes Using Molecular Oxygen as the Sole Oxidant Enabled by Quaternary Ammonium Salt. Molecules, 2021, 26, 5329.	3.8	3
282	A {Ti ₆ W ₄ }-Cluster-Substituted Polyoxotungstate: Synthesis, Structure, and Catalytic Oxidation Properties. Inorganic Chemistry, 2021, 60, 14622-14628.	4.0	9
283	Spektroskopische Charakterisierung eines reaktiven [Cu 2 (μâ€OH) 2] 2+ Intermediates in Cu/TEMPOâ€katalysierten aeroben Alkoholoxidationen. Angewandte Chemie, 2021, 133, 23201.	2.0	0
284	Nonâ€Chelateâ€Assisted Palladiumâ€Catalyzed Aerobic Oxidative Heck Reaction of Fluorobenzenes and Other Arenes: When Does the Câ^'H Activation Need Help?. Advanced Synthesis and Catalysis, 0, , .	4.3	4
285	Spectroscopic Characterization of a Reactive [Cu ₂ (μâ€OH) ₂] ²⁺ Intermediate in Cu/TEMPO Catalyzed Aerobic Alcohol Oxidation Reaction. Angewandte Chemie - International Edition, 2021, 60, 23018-23024.	13.8	16
286	The Ligand Free Palladium(II)-Catalyzed Regioselective 1,2-Addition of Enol Silanes to Quinones to Access 4-Hydroxy-4-(2-oxo-2-arylethyl)cyclohexadien-1-ones and Synthetic Applications. Journal of Organic Chemistry, 2021, 86, 14356-14370.	3.2	6
287	Syntheses of 1 <i>H </i> â€Indoles, Quinolines, and 6â€Membered Aromatic <i>N </i> â€Heterocycleâ€Fused Scaffolds via Palladium(II) atalyzed Aerobic Dehydrogenation under Alkoxideâ€Free Conditions. Chemistry - an Asian Journal, 2021, 16, 3469-3475.	3.3	9
288	Mechanistically guided survey of enantioselective palladium-catalyzed alkene functionalization. Trends in Chemistry, 2021, 3, 863-876.	8.5	13
289	The Three-Component Synthesis of 4-Sulfonyl-1,2,3-triazoles via a Sequential Aerobic Copper-Catalyzed Sulfonylation and Dimroth Cyclization. Molecules, 2021, 26, 581.	3.8	3
290	The dehydrogenative oxidation of aryl methanols using an oxygen bridged [Cu–O–Se] bimetallic catalyst. New Journal of Chemistry, 2021, 45, 5775-5779.	2.8	3
291	Visible light mediated selective oxidation of alcohols and oxidative dehydrogenation of N-heterocycles using scalable and reusable La-doped NiWO ₄ nanoparticles. Green Chemistry, 2021, 23, 5990-6007.	9.0	11

#	Article	IF	CITATIONS
292	Rhodaelectro-catalyzed chemo-divergent C–H activations with alkylidenecyclopropanes for selective cyclopropylations. Chemical Communications, 2021, 57, 3668-3671.	4.1	17
293	The mechanism of oxidative addition of Pd(0) to Si–H bonds: electronic effects, reaction mechanism, and hydrosilylation. Chemical Science, 2021, 12, 13045-13060.	7.4	9
294	Nâ€Heterocyclic Carbene Catalyzed Ester Synthesis from Organic Halides through Incorporation of Oxygen Atoms from Air. Angewandte Chemie - International Edition, 2021, 60, 2140-2144.	13.8	21
295	Metalâ€Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem, 2020, 12, 2890-2941.	3.7	56
296	Organometallic C–H Oxidation with O2 Mediated by Soluble Group 10 Metal Complexes. Green Chemistry and Sustainable Technology, 2019, , 223-251.	0.7	1
297	Aerobic Acylarylation of \hat{I}_{\pm}, \hat{I}^2 -Unsaturated Amides with Aldehydes. Organic Letters, 2020, 22, 4294-4299.	4.6	16
298	Ligand-Controlled Selectivity in the Pd-Catalyzed C–H/C–H Cross-Coupling of Indoles with Molecular Oxygen. ACS Catalysis, 2021, 11, 2435-2444.	11.2	19
299	Chelation-assisted transition metal-catalysed C–H chalcogenylations. Organic Chemistry Frontiers, 2020, 7, 1022-1060.	4.5	68
300	Organophosphorus chemistry based on elemental phosphorus: advances and horizons. Russian Chemical Reviews, 2020, 89, 225-249.	6.5	31
301	Formal Aerobic Oxidative Cross-Coupling of Benzofuranones with Azo Compounds Using Pd-μ-hydroxo Complex. Chemical and Pharmaceutical Bulletin, 2020, 68, 895-898.	1.3	5
302	Organocatalytic epoxidation and allylic oxidation of alkenes by molecular oxygen. Green Chemistry, 2021, 23, 9172-9178.	9.0	9
303	Sterically controlled C–H alkenylation of pyrroles and thiophenes. Chemical Communications, 2021, 57, 11791-11794.	4.1	10
304	Sterically enhanced 2â€iminopyridylpalladium chlorides as recyclable ppmâ€palladium catalyst for Suzuki–Miyaura coupling in aqueous solution. Applied Organometallic Chemistry, 0, , e6474.	3.5	3
305	Recent Advances in Palladium-Catalyzed Oxidative Cyclizations. Current Organic Chemistry, 2019, 23, 1019-1044.	1.6	6
306	Cleavage via Selective Catalytic Oxidation of Lignin or Lignin Model Compounds into Functional Chemicals. ChemEngineering, 2021, 5, 74.	2.4	1
307	Ni(II)-Catalyzed Intermolecular Selective Heck-Type Arylation of Unactivated Alkenes with Arylboronic Acids. Organic Chemistry Frontiers, 0, , .	4.5	6
308	Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ C ₃) ₂ Pt ₃ (MeCN) ₄] ²⁺ (BF <su Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics, 2021, 40, 3876-3885.</su 	b>4	> ^{–<!--⊧<br-->10}
309	An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angewandte Chemie - International Edition, 2022, 61, e202111492.	13.8	5

		15	2
#	ARTICLE	IF	CITATIONS
310	An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angewandte Chemie, 0, , .	2.0	3
311	Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant. Synthesis, 2022, 54, 2081-2102.	2.3	5
312	Sequential Metal Catalysis towards 7â€Oxostaurosporine and Its Nonâ€Natural Septanose Analogue. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
313	Sequential Metal Catalysis towards 7â€Oxostaurosporine and Its Nonâ€Natural Septanose Analogue. Angewandte Chemie, 0, , .	2.0	0
314	Metal-catalyzed biomimetic aerobic oxidation of organic substrates. Advances in Catalysis, 2021, 69, 1-57.	0.2	1
315	Metal-Catalyzed Aerobic Oxidation Reactions. , 2022, , 75-131.		2
316	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	11.2	77
317	Synthesis and Applications of Asymmetric Catalysis Using Chiral Ligands Containing Quinoline Motifs. SynOpen, 2022, 06, 31-57.	1.7	8
318	Base-Assisted Aerobic C–H Oxidation of Alkylarenes with a Murdochite-Type Oxide Mg ₆ MnO ₈ Nanoparticle Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 6528-6537.	8.0	15
319	Electrochemical two-electron oxygen reduction reaction (ORR) induced aerobic oxidation of α-diazoesters. Chemical Communications, 2022, 58, 2168-2171.	4.1	4
320	Bis(2-methoxyethyl)ether promoted intramolecular acceptorless dehydrogenative coupling to construct structurally diverse quinazolinones by molecular oxygen. Green Chemistry, 0, , .	9.0	7
321	Highly stable Pd ²⁺ species anchoring on ethylenediamine-grafted-MIL-101(Cr) as a robust oxidation catalyst. Catalysis Science and Technology, 2022, 12, 1824-1836.	4.1	1
322	Continuous flow technology-a tool for safer oxidation chemistry. Reaction Chemistry and Engineering, 2022, 7, 490-550.	3.7	25
323	A "universal―catalyst for aerobic oxidations to synthesize (hetero)aromatic aldehydes, ketones, esters, acids, nitriles, and amides. CheM, 2022, 8, 508-531.	11.7	37
324	Light-mediated aerobic oxidation of C(sp ³)–H bonds by a Ce(<scp>iv</scp>) hexachloride complex. Organic Chemistry Frontiers, 2022, 9, 2612-2620.	4.5	14
325	Potassium tert-butoxide promoted intramolecular Mizoroki-Heck-type radical cyclization: Photoluminescence properties and application in live cancer cell imaging. Synlett, 0, 0, .	1.8	0
326	Thermodynamic–Kinetic Comparison of Palladium(II)-Mediated Alcohol and Hydroquinone Oxidation. Organometallics, 2022, 41, 3161-3166.	2.3	2
327	Orchestrating a β-Hydride Elimination Pathway in Palladium(II)-Catalyzed Arylation/Alkenylation of Cyclopropanols Using Organoboron Reagents. Journal of Organic Chemistry, 2022, 87, 4508-4523.	3.2	6

	CITATION	CITATION REPORT	
#	Article	IF	Citations
328	Flavin Metallaphotoredox Catalysis: Synergistic Synthesis in Water. ACS Catalysis, 2022, 12, 4175-4181.	11.2	6
329	Acceptorless dehydrogenation of primary alcohols to carboxylic acids by self-supported NHC-Ru single-site catalysts. Journal of Catalysis, 2022, 408, 165-172.	6.2	15
330	Phenazineâ€based supramolecular photosensitizing assemblies: A "smart―selectivity control on catalytic activity of Pd(II) nanoparticles. Aggregate, 2023, 4, .	9.9	4
331	Accelerated Decomposition of Potassium Permanganate in Ferrocenium Ion as Ferrocenium-Doped Manganese(IV) Oxide for Selective Oxidation of Alcohols. Synlett, 0, 0, .	1.8	1
332	Total Synthesis of Dalesconol A by Pd(0)/Norbornene-Catalyzed Three-Fold Domino Reaction and Pd(II)-Catalyzed Trihydroxylation. Journal of the American Chemical Society, 2021, 143, 21270-21274.	13.7	22
333	Transition-Metal-Catalyzed Divergent C–H Functionalization of Five-Membered Heteroarenes. Accounts of Chemical Research, 2021, 54, 4518-4529.	15.6	32
334	Regiodivergent Synthesis of Methylene and Methyl Ring-Fused Isoquinolinones: Base-Promoted Isomerization of <i>N</i> -Allyl Amides. Journal of Organic Chemistry, 2022, 87, 5925-5937.	3.2	1
335	Allylic C(<i>sp</i> ³)â^C(<i>sp</i> ³) Bond Formation Through Pdâ€Catalyzed C(<i>sp</i> ³)â^H Activation of Alkenes and 1,4â€Dienes. Advanced Synthesis and Catalysis, 2022, 364, 2268-2288.	4.3	4
336	Pd-Catalyzed Selective Oxidation of Allyl Alcohols to Access Enones and Enals. SSRN Electronic Journal, 0, , .	0.4	0
337	Expedient cobalt-catalyzed stereospecific cascade C–N and C–O bond formation of styrene oxides with hydrazones. Chemical Communications, 2022, 58, 7090-7093.	4.1	5
338	Diverse catalytic systems for nitrogen-heterocycle formation from O-acyl ketoximes. Chinese Chemical Letters, 2023, 34, 107565.	9.0	12
339	Oxygen reduction reaction by noble metal-based catalysts. , 2022, , 173-203.		0
340	Steric and electronic effects in latent <i>S</i> -chelated olefin metathesis catalysts. Catalysis Science and Technology, 2023, 13, 321-328.	4.1	4
341	Depolymerization of Lignin by Homogeneous Photocatalysis. Springer Handbooks, 2022, , 1537-1562.	0.6	1
342	Transition metal catalysed direct sulfanylation of unreactive C–H bonds: an overview of the last two decades. Organic and Biomolecular Chemistry, 2022, 20, 6072-6177.	2.8	11
343	Aufgabenspezifische Janusâ€Materialien in der heterogenen Katalyse. Angewandte Chemie, 2022, 134, .	2.0	2
344	Taskâ€5pecific Janus Materials in Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	27
345	Palladium-Catalyzed Preparation of <i>N</i> -Substituted Benz[<i>c</i> , <i>d</i>]indol-2-imines and <i>N</i> -Substituted Amino-1-naphthylamides. Journal of Organic Chemistry, 2022, 87, 8515-8524.	3.2	7

#	Article	IF	CITATIONS
346	Scalable Electrochemical Aerobic Oxygenation of Indoles to Isatins without Electron Transfer Mediators by Merging with an Oxygen Reduction Reaction. Organic Letters, 2022, 24, 4229-4233.	4.6	13
347	Ionic liquid-modulated aerobic oxidation of isoeugenol and Î ² -caryophyllene via nanoscale Cu-MOFs under mild conditions. Molecular Catalysis, 2022, 528, 112416.	2.0	1
348	Catalytic performance of nickel(II) complexes bearing 1,10-phenanthroline based ligands in homogeneous ethylene oligomerization. Polyhedron, 2022, 223, 115978.	2.2	5
349	Pd-catalyzed selective oxidation of allyl alcohols to access enones and enals. Tetrahedron Letters, 2022, 103, 153976.	1.4	0
350	Synergic Palladium Catalysis for Aerobic Oxidative Coupling. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
351	Progress towards the Total Syntheses of Amaryllidaceae Alkaloids Î³â€Łycorane. Chemistry and Biodiversity, 0, , .	2.1	2
352	Bioinspired <i>o</i> -Naphthoquinone-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones. Organic Letters, 2022, 24, 4982-4986.	4.6	11
353	Oxidation of Organic Compounds Using Water as the Oxidant with H ₂ Liberation Catalyzed by Molecular Metal Complexes. Accounts of Chemical Research, 2022, 55, 2304-2315.	15.6	18
354	<scp>Palladiumâ€Catalyzed</scp> Intramolecular Dehydrogenative Arylboration of Alkenes. Chinese Journal of Chemistry, 2022, 40, 2437-2444.	4.9	7
355	Pd/Cu ₂ O/CuO as Active Sites on the Cyclometalated Pd(II)/Cu(II) Nanosheet: Active Centre Formation, Synergistic and Catalytic Mechanism. ChemistrySelect, 2022, 7, .	1.5	1
356	Complementary Cooperative Catalytic Systems in the Aerobic Oxidation of a Wide Range of Siâ°'Hâ€Reagents to Siâ°'OHâ€Products: From Monomers to Oligomers and Polymers. European Journal of Organic Chemistry, 2022, 2022, .	2.4	8
357	Catalyst- and Additive-Free C(sp ³)–H Functionalization of (Thio)barbituric Acids <i>via</i> C-5 Dehydrogenative Aza-Coupling Under Ambient Conditions. ACS Omega, 0, , .	3.5	3
358	<scp>Palladiumâ€catalyzed</scp> C  H acetoxylation of arenes using a pyrazolonaphthyridine ligand. Bulletin of the Korean Chemical Society, 2022, 43, 1173-1176.	1.9	7
359	Palladium(<scp>ii</scp>)-catalyzed enantioselective intermolecular oxidative diarylation of internal enamides. Chemical Communications, 2022, 58, 9282-9285.	4.1	6
360	Ligand-controlled regiodivergent direct arylation of indoles <i>via</i> oxidative boron Heck reaction. Organic Chemistry Frontiers, 2022, 9, 5906-5911.	4.5	4
361	Stereoselective synthesis of the isoxazolidine ring <i>via</i> manganese(<scp>iii</scp>)-catalysed aminoperoxidation of unactivated alkenes using molecular oxygen in air under ambient conditions. Green Chemistry, 2022, 24, 7162-7170.	9.0	3
362	Non-directed Pd-catalysed electrooxidative olefination of arenes. Chemical Science, 2022, 13, 9432-9439.	7.4	14
363	Oxidation of Methylplatinum(II) Complexes K[(L)Pt ^{II} Me] with O ₂ and C(sp ³)-X (X = O and C) Reductive Elimination Reactivity of Methylplatinum(IV) Products (<i>L</i>)Pt ^{IV} Me(OH): The Effect of Structure of Sulfonated CNN-Pincer Ligands L. Organometallics. 2022, 41, 2764-2783.	2.3	1

#	Article	IF	Citations
364	Peroxide-Selective Reduction of O ₂ at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. Journal of the American Chemical Society, 2022, 144, 17295-17306.	13.7	4
365	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
366	Ni―and Pdâ€based homogeneous catalyst systems for direct oxygenation of C(sp ³)â€H groups. Applied Organometallic Chemistry, 2023, 37, .	3.5	2
367	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie, 2022, 134, .	2.0	0
368	Pd(II)/Lewis Acid Catalyzed Intramolecular Annulation of Indolecarboxamides with Dioxygen through Dual C–H Activation. Journal of Organic Chemistry, 2022, 87, 13919-13934.	3.2	5
370	Synthesis of Dihydropyrazoles via Pdâ€Catalyzed Heterocyclization/Carbonylation Reaction: Development and Parameterization Studies. ChemCatChem, 2022, 14, .	3.7	3
371	Dual Pd2+ and Pd0 sites on CeO2 for benzyl alcohol selective oxidation. Journal of Catalysis, 2022, 414, 385-393.	6.2	20
374	Synthesis, characterization and catalysis of waterâ€soluble trimeric and monomeric palladium complexes of 8â€aminoquinolines. European Journal of Inorganic Chemistry, 0, , .	2.0	0
375	Synthetic Access to α-Oxoketene Aminals by the Nucleophilic Addition of Enol Silane-Derived Palladium(II) Enolates to Carbodiimides. Journal of Organic Chemistry, 2022, 87, 14778-14792.	3.2	2
376	Palladium-catalyzed aza-Wacker cyclization of <i>O</i> -homoallyl benzimidates: expeditious access to heteroatom-rich substituted 1,3-oxazines <i>via</i> alkene trifunctionalization. Organic Chemistry Frontiers, 0, , .	4.5	3
377	Multiple remote C(sp ³)–H functionalizations of aliphatic ketones <i>via</i> bimetallic Cu–Pd catalyzed successive dehydrogenation. Chemical Science, 2022, 13, 13843-13850.	7.4	6
378	Triazole-phosphine Pd(II)-Enabled Dehydrogenation of Alcohols or Amines: A Combination of Experimental and Theoretical Study. Organometallics, 2022, 41, 3504-3513.	2.3	1
379	Visible-Light-Driven Transition-Metal-Free Site-Selective Access to Isonicotinamides. Organic Letters, 2022, 24, 8265-8270.	4.6	12
380	Oxidation by Reduction: Efficient and Selective Oxidation of Alcohols by the Electrocatalytic Reduction of Peroxydisulfate. Journal of the American Chemical Society, 2022, 144, 21103-21115.	13.7	18
381	Exclusive detection of ethylene using metal oxide chemiresistors with a Pd–V ₂ O ₅ –TiO ₂ yolk–shell catalytic overlayer <i>via</i> heterogeneous Wacker oxidation. Journal of Materials Chemistry A, 2023, 11, 666-675.	10.3	8
382	NHCâ€Palladiumâ€Catalyzed Cascade Annulation of Alkynoic Acids with Unactivated Alkenes in Ionic Liquids. European Journal of Organic Chemistry, 0, , .	2.4	0
383	Epoxidation of Electronâ€Đeficient Alkenes Triggered by Visibleâ€Lightâ€Driven Phenol Photooxidation for the Synthesis of Epoxy Dienone Products. Advanced Synthesis and Catalysis, 2023, 365, 194-200.	4.3	1
384	Syntheses of functionalized benzocoumarins by photoredox catalysis. Organic and Biomolecular Chemistry, 2023, 21, 1181-1186.	2.8	1

#	Article	IF	CITATIONS
385	Ligandâ€Promoted [Pd]â€Catalyzed αâ€Alkylation of Ketones through a Borrowingâ€Hydrogen Approach. ChemistryOpen, 2023, 12, .	1.9	1
386	Mechanism-Guided Design of Robust Palladium Catalysts for Selective Aerobic Oxidation of Polyols. Journal of the American Chemical Society, 2023, 145, 2282-2293.	13.7	3
387	MnBr ₂ â€Catalyzed Aerobic Oxyazidation of Fluoroolefins: Access to Fluoroalkylated βâ€Hydroxy Aliphatic Azides. Advanced Synthesis and Catalysis, 2023, 365, 342-354.	4.3	3
388	Cu-Catalyzed C-C Coupling Reactions. Topics in Organometallic Chemistry, 2023, , .	0.7	1
389	Fe(III)â€Catalyzed Aerobic Oxidation of 1,4â€Diols ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1963-1966.	4.9	2
390	Manganese-Mediated Aerobic Oxidative Denitroalkylation of β-Nitrostyrenes with Alkylboronic Acids. Synlett, 2023, 34, 1597-1602.	1.8	1
391	Hybrid Materials Based on Imidazo[4,5-b]porphyrins for Catalytic Oxidation of Sulfides. Catalysts, 2023, 13, 402.	3.5	2
392	C–H bond activation <i>via</i> concerted metalation–deprotonation at a palladium(<scp>iii</scp>) center. Chemical Science, 2023, 14, 3800-3808.	7.4	2
393	Nondirected Pd-Catalyzed C–H Perdeuteration and <i>meta</i> -Selective Alkenylation of Arenes Enabled by Pyrazolopyridone Ligands. ACS Catalysis, 2023, 13, 4042-4052.	11.2	4
394	Selective preparative â€~oxidase phase' in sesquiterpenoids: the radical approach. Organic Chemistry Frontiers, 2023, 10, 2095-2114.	4.5	1
395	Catalyst Complexity in a Highly Active and Selective Wacker-Type Markovnikov Oxidation of Olefins with a Bioinspired Iron Complex. ACS Catalysis, 2023, 13, 4421-4432.	11.2	5
396	Polystyrene Supported Pyrazole-based Palladium Catalysts/Precatalysts for Acceptorless Dehydrogenative Coupling of Alcohols in Water. Catalysis Letters, 2024, 154, 737-748.	2.6	1
397	The C-3 Functionalization of 1H-Indazole through Suzuki–Miyaura Cross-Coupling Catalyzed by a Ferrocene-Based Divalent Palladium Complex Immobilized over Ionic Liquid, as Well as Theoretical Insights into the Reaction Mechanism. Applied Sciences (Switzerland), 2023, 13, 4095.	2.5	2
398	Copper-catalyzed aerobic oxidation of primary alcohols to carboxylic acids. Chemical Communications, 0, , .	4.1	2
399	Photochemical Selective Oxidation of Benzyl Alcohols to Aldehydes or Ketones. Journal of Organic Chemistry, 2023, 88, 4765-4769.	3.2	6
400	Synergistic effect of hydrogen bonds and π-π interactions of B(C6F5)3·H2O/amides complex: Application in photoredox catalysis. IScience, 2023, 26, 106528.	4.1	2
401	Ring-opening reactions of phosphoramidate heterocycles. Tetrahedron, 2023, 137, 133390.	1.9	1
402	Oxidization enhances type I ROS generation of AIE-active zwitterionic photosensitizers for photodynamic killing of drug-resistant bacteria. Chemical Science, 2023, 14, 4863-4871.	7.4	11

#	Article	IF	Citations
403	Pd(II)/Lewis acid catalyzed oxidative C–H olefination/annulation with dioxygen to construct dihydrophenanthridines and its mechanistic studies. Tetrahedron, 2023, 138, 133419.	1.9	2
404	Controlled Immobilization of a Palladium Complex/Laccase Hybrid into a Macrocellular Siliceous Host. ChemPlusChem, 2023, 88, .	2.8	1
405	Palladium Catalyzed Aerobic Oxidative Amination of Alkenes. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1
406	Oxygen transfer reactivity mediated by nickel perfluoroalkyl complexes using molecular oxygen as a terminal oxidant. Chemical Science, 2023, 14, 7026-7035.	7.4	1
407	Development and pilot scale implementation of safe aerobic Cu/TEMPO oxidation in a batch reactor. Green Chemistry, 2023, 25, 5698-5711.	9.0	3
408	A highly sensitive and selective fluorescent probe for rapid detection and intracellular imaging of Pd(II). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 302, 122967.	3.9	2
409	Oxidation und Reduktion. , 2023, , 333-479.		0
410	Oxidation coupling of terminal alkynes over CuPd bimetallic alloy enhanced by optimized charge transfer and alloy structure. Chemical Engineering Journal, 2023, 470, 144193.	12.7	0
411	Ni-catalyzed mild hydrogenolysis and oxidations of C–O bonds via carbonate redox tags. Nature Communications, 2023, 14, .	12.8	0
412	Palladium mono- <i>N</i> -protected amino acid complexes: experimental validation of the ligand cooperation model in C–H activation. Chemical Science, 2023, 14, 6688-6694.	7.4	0
413	Ultrasound-assisted acid/enzymatic hydrolysis preparation of loquat kernel porous starch: A carrier with efficient palladium loading capacity. International Journal of Biological Macromolecules, 2023, 247, 125676.	7.5	3
414	Discovery of Oxygen Induced Chemoselectivity in Pd-Catalyzed C–H Functionalization: Cross-Dehydrogenative Coupling vs C–H Amination. Journal of Organic Chemistry, 2023, 88, 9877-9892.	3.2	2
416	Eco-friendly iron-catalyzed oxidation of unstrained tertiary aromatic alcohols to ketones. Chinese Chemical Letters, 2024, 35, 108835.	9.0	0
417	Optimizing the Synthetic Potential of O ₂ : Implications of Overpotential in Homogeneous Aerobic Oxidation Catalysis. Journal of the American Chemical Society, 2023, 145, 17515-17526.	13.7	2
418	Palladium and Iron Cocatalyzed Aerobic Alkene Aminoboration. Journal of the American Chemical Society, 2023, 145, 18939-18947.	13.7	3
419	Pd(II)/Lewis Acid Catalyzed Intramolecular Oxidative Câ [~] 'H Amination to Construct Carbazoles with Dioxygen. European Journal of Organic Chemistry, 2023, 26, .	2.4	1
420	How Ligand Geometry Affects the Reactivity of Co(II) Cyclam Complexes. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	0
421	A facile approach to phenothiazinones <i>via</i> catalytic aerobic oxidation: discovery of an antiproliferative agent. Organic and Biomolecular Chemistry, 2023, 21, 8197-8200.	2.8	1

#	Article	IF	CITATIONS
422	Organocatalytic Atroposelective Construction of Axially Chiral Compounds Containing Benzimidazole and Quinoline Rings. Organic Letters, 2023, 25, 5481-5485.	4.6	0
423	Palladium-Catalyzed Stereo-Controlled Synthesis of Aryl-C-Glycosides from Arylboronic Acids and Glycal Enones Through 1,4-Conjugate Addition Reactions. Synthesis, 0, , .	2.3	0
424	Construction of Functionalized α-Imino Ketones via Pd-Catalyzed C–H Addition to Nitriles/Aerobic Oxidation Sequences. Journal of Organic Chemistry, 2023, 88, 16018-16023.	3.2	1
425	Defect Engineering of High-Entropy Oxides for Superior Catalytic Oxidation Performance. ACS Applied Materials & Interfaces, 0, , .	8.0	2
426	Charge transfer complex formation between organic interlayers drives light-soaking in large area perovskite solar cells. Energy and Environmental Science, 2023, 16, 5891-5903.	30.8	0
427	Pyrazolopyridine Ligands in Transition-Metal-Catalyzed C–C and C–Heteroatom Bond-Forming Reactions. Synthesis, 0, , .	2.3	0
428	High stereoselectivity synthesis of <i>Z</i> -3-methyleneisoindolin-1-ones on a Cu/ETS-10 catalyst <i>via</i> domino coupling–cyclization without the use of protective groups and ligands. New Journal of Chemistry, 2023, 48, 359-366.	2.8	1
429	Two distinct protocols for the synthesis of unsymmetrical 3,4-disubstituted maleimides based on transition-metal catalysts. Organic and Biomolecular Chemistry, 2024, 22, 380-387.	2.8	1
430	Pd(II)-Catalyzed Tandem Selective Dehydrogenative [4 + 2] Annulation of 2-Methyl-1,3-cycloalkanediones with olefins. Chemical Communications, 0, , .	4.1	0
431	Unified Synthesis of 2â€lsocyanoallopupukeanane and 9â€lsocyanopupukeanane through a "Contraâ€biosynthetic†Rearrangement. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
432	Unified Synthesis of 2â€lsocyanoallopupukeanane and 9â€lsocyanopupukeanane through a "Contraâ€biosynthetic†Rearrangement. Angewandte Chemie, 2024, 136, .	2.0	0
433	Pd-catalyzed oxidative functionalization of alkenes, arenes, and 1,3-dienes using molecular oxygen as the terminal oxidant. Synlett, 0, , .	1.8	0
434	Recent Developments in the Earth-Abundant Metal-Catalyzed $\hat{I}\pm,\hat{I}^2$ -Dehydrogenation of Carbonyl Compounds. Synthesis, 0, , .	2.3	0
435	Photo-electrochemical ep-oxidation using environmentally friendly oxidants: Overview of recent advances in efficiently designed photo-electrode. Coordination Chemistry Reviews, 2024, 503, 215641.	18.8	0
436	Organoplatinum Chemistry Related to Alkane Oxidation: The Effect of a Nitro Substituent in Ligands Having an Appended Phenol Group. Inorganics, 2024, 12, 32.	2.7	0
437	{Ru(C ₆ H ₆)}â€Decorating Heteropolymolybdate for Highly Activity Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde. Chemistry - A European Journal, 2024, 30,	3.3	1
438	Fun With Unusual Functional Groups: Sulfamates, Phosphoramidates, and Diâ€ŧertâ€butyl Silanols. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
439	Metal–organic framework-catalyzed selective oxidation of alcohols and oxidative cross-coupling for C–C and C–N bond-forming reactions. New Journal of Chemistry, 2024, 48, 3513-3524.	2.8	О

#	Article	IF	CITATIONS
440	Highly efficient transfer dehydrogenative oxidation of secondary alcohols to ketones catalyzed by NN-manganese complexes. Journal of Catalysis, 2024, 430, 115337.	6.2	0
441	Semipinacol Rearrangement of Iododifluorohomoallyl Alcohols and Its Application in the Allylic C–H Esterification Reactions. Journal of Organic Chemistry, 2024, 89, 3111-3122.	3.2	0
442	Bispidineâ€Based <i>S</i> , <i>N</i> â€Chiral Ligands for Palladiumâ€Catalyzed Asymmetric Arylation of Cyclic <i>N</i> â€Sulfonyl Ketimines. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
443	Transitionâ€Metalâ€Catalyzed <i>α</i> , <i>β</i> â€Dehydrogenation of Carbonyl Compounds. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
444	Synthesis of 2,3-Benzotropones via Palladium(II)-Catalyzed Aerobic Dehydrogenation from 1-Benzosuberones and Sequential Diels–Alder Reaction to Yield Benzobicyclo[3.2.2]nonenones. Journal of Organic Chemistry, 2024, 89, 3102-3110.	3.2	0
445	Tandem catalysis enables chlorine-containing waste as chlorination reagents. Nature Chemistry, 0, , .	13.6	0
447	Electrochemical hydrogenation and oxidation of organic species involving water. Nature Reviews Chemistry, 2024, 8, 277-293.	30.2	0
448	Copper-catalyzed intramolecular dearomative aza-Wacker reaction of indole. Chemical Communications, 2024, 60, 3858-3861.	4.1	0
449	Catalyst-free aerobic photooxidation of sensitive benzylic alcohols with chemoselectivity controlled using DMSO as the solvent. Green Chemistry, 2024, 26, 4880-4887.	9.0	0
450	Aerobic oxidation of aliphatic alcohol in cotton surface using epigallocatechin-3-gallate-iron (II, III) oxide (EGCG-Fe ₃ O ₄) nanocatalyst from green tea extract. International Journal of Environmental Analytical Chemistry, 0, , 1-18.	3.3	0
451	Highly enantioselective allylic amination reaction through aerobic oxidative organo–organo dual catalytic system. New Journal of Chemistry, 2024, 48, 6076-6080.	2.8	0
452	Selective oxidation of alkenes catalyzed by palladium-based bimetallic heterogeneous catalysts under atmospheric pressure. New Journal of Chemistry, 2024, 48, 6911-6918.	2.8	0