Electrogenerated Cationic Reactive Intermediates: The

Chemical Reviews 118, 4702-4730

DOI: 10.1021/acs.chemrev.7b00475

Citation Report

#	Article	IF	CITATIONS
1	Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions. Chemical Reviews, 2018, 118, 4817-4833.	47.7	512
2	Electrochemical Functionalâ€Groupâ€Tolerant Shonoâ€type Oxidation of Cyclic Carbamates Enabled by Aminoxyl Mediators. Angewandte Chemie - International Edition, 2018, 57, 6686-6690.	13.8	103
3	Electrosynthesis of Trisubstituted 2-Oxazolines via Dehydrogenative Cyclization of Î ² -Amino Arylketones. Organic Letters, 2018, 20, 2505-2508.	4.6	66
4	Electrochemical synthesis of methyl sulfoxides from thiophenols/thiols and dimethyl sulfoxide. Green Chemistry, 2018, 20, 1405-1411.	9.0	36
5	Electrochemical Synthesis of Bisindolylmethanes from Indoles and Ethers. Organic Letters, 2018, 20, 2911-2915.	4.6	43
6	Scalable Electrochemical Dehydrogenative Lactonization of C(sp ² /sp ³)–H Bonds. Organic Letters, 2018, 20, 252-255.	4.6	131
7	Development of Electroorganic Reactions Utilizing Stabilized Reactive Species and Its Application to Organic Energy Storage Materials. Electrochemistry, 2018, 86, 298-302.	1.4	1
8	Electrochemical synthesis of tetrazoles <i>via</i> metal- and oxidant-free [3 + 2] cycloaddition of azides with hydrazones. Green Chemistry, 2018, 20, 5271-5275.	9.0	42
9	Electrochemical oxidative [4 + 2] annulation of tertiary anilines and alkenes for the synthesis of tetrahydroquinolines. Green Chemistry, 2018, 20, 4870-4874.	9.0	66
10	Reactivity of Anodically Generated 4-Methoxystilbene Cation Radicals: The Influence of Ortho-Substituted Hydroxymethyl, Aminomethyl, and Carboxylic Acid Groups. Journal of Organic Chemistry, 2018, 83, 15087-15100.	3.2	4
11	Catalystâ€Free Oxytrifluoromethylation of Alkenes through Paired Electrolysis in Organicâ€Aqueous Media. Chemistry - A European Journal, 2018, 24, 17234-17238.	3.3	61
12	Metal―and Oxidantâ€Free Alkenyl Câ^'H/Aromatic Câ^'H Crossâ€Coupling Using Electrochemically Generated Iodosulfonium Ions. Angewandte Chemie, 2018, 130, 13073-13077.	2.0	4
13	Exogenous-oxidant-free electrochemical oxidative C–H sulfonylation of arenes/heteroarenes with hydrogen evolution. Chemical Communications, 2018, 54, 11471-11474.	4.1	81
14	Electrochemical synthesis of 7-membered carbocycles through cascade 5- <i>exo-trig</i> /i>/7- <i>endo-trig</i> radical cyclization. Organic Chemistry Frontiers, 2018, 5, 3129-3132.	4.5	40
15	Electrochemical Oxidative Alkoxysulfonylation of Alkenes Using Sulfonyl Hydrazines and Alcohols with Hydrogen Evolution. ACS Catalysis, 2018, 8, 10871-10875.	11.2	138
16	Electrochemically Enabled Carbohydroxylation of Alkenes with H ₂ 0 and Organotrifluoroborates. Journal of the American Chemical Society, 2018, 140, 16387-16391.	13.7	127
17	Stepwise radical cation Diels–Alder reaction via multiple pathways. Beilstein Journal of Organic Chemistry, 2018, 14, 704-708.	2.2	15
18	Dehydrogenative reagent-free annulation of alkenes with diols for the synthesis of saturated O-heterocycles. Nature Communications, 2018, 9, 3551.	12.8	117

#	Article	IF	CITATIONS
19	Electrochemical Alkynyl/Alkenyl Migration for the Radical Difunctionalization of Alkenes. Chemistry - A European Journal, 2018, 24, 17205-17209.	3.3	48
20	Recent Advances in the Synthesis of Carboxylic Acid Esters. , 0, , .		9
21	Metal―and Oxidantâ€Free Alkenyl Câ^'H/Aromatic Câ´'H Crossâ€Coupling Using Electrochemically Generated Iodosulfonium Ions. Angewandte Chemie - International Edition, 2018, 57, 12891-12895.	13.8	7
22	Synthesis of Oxazolines from N-Allylamides Using an Electrochemically Generated ArS(ArSSAr)+ Pool. Heterocycles, 2018, 96, 1373.	0.7	4
23	A Regio―and Diastereoselective Anodic Aryl–Aryl Coupling in the Biomimetic Total Synthesis of (â^')ã€Thebaine. Angewandte Chemie - International Edition, 2018, 57, 11055-11059.	13.8	70
24	Eine regio―und diastereoselektive anodische Arylâ€Arylâ€Kupplung in der biomimetischen Totalsynthese von (â^)â€Thebain. Angewandte Chemie, 2018, 130, 11221-11225.	2.0	21
25	Electrochemical Arylation Reaction. Chemical Reviews, 2018, 118, 6706-6765.	47.7	616
26	Carbenium ion formation by fragmentation of electrochemically generated oxonium ions. Organic and Biomolecular Chemistry, 2018, 16, 5094-5096.	2.8	6
27	Bromide-catalyzed electrochemical trifluoromethylation/cyclization of <i>N</i> -arylacrylamides with low catalyst loading. Organic Chemistry Frontiers, 2018, 5, 2573-2577.	4.5	88
28	Electrochemical oxidative oxysulfenylation and aminosulfenylation of alkenes with hydrogen evolution. Science Advances, 2018, 4, eaat5312.	10.3	114
29	Investigating radical cation chain processes in the electrocatalytic Diels–Alder reaction. Beilstein Journal of Organic Chemistry, 2018, 14, 642-647.	2.2	23
30	Iodine(III)â€Mediated Electrochemical Trifluoroethoxylactonisation: Rational Reaction Optimisation and Prediction of Mediator Activity. Chemistry - A European Journal, 2018, 24, 15781-15785.	3.3	40
31	Electrochemical Formation of <i>N</i> -Acyloxy Amidyl Radicals and Their Application: Regioselective Intramolecular Amination of sp ² and sp ³ C–H Bonds. Organic Letters, 2018, 20, 3443-3446.	4.6	145
32	Electrochemical Hofmann rearrangement mediated by NaBr: practical access to bioactive carbamates. Organic and Biomolecular Chemistry, 2018, 16, 4615-4618.	2.8	31
33	Electrochemical Câ^'H Cyanation of Electronâ€Rich (Hetero)Arenes. Chemistry - A European Journal, 2018, 24, 11288-11291.	3.3	35
34	Anodic benzylic C(sp ³)–H amination: unified access to pyrrolidines and piperidines. Green Chemistry, 2018, 20, 3191-3196.	9.0	81
35	Electrochemical strategies for C–H functionalization and C–N bond formation. Chemical Society Reviews, 2018, 47, 5786-5865.	38.1	736
36	Redox Denaturation of Proteins: Electrochemical Treatment of Egg Plasma. Electroanalysis, 2019, 31, 2299-2302.	2.9	4

#	Article	IF	CITATIONS
37	Oxoâ€Thiolation of Cationically Polymerizable Alkenes Using Flow Microreactors. Chemistry - A European Journal, 2019, 25, 15239-15243.	3.3	10
38	Organic electrosynthesis: electrochemical alkyne functionalization. Catalysis Science and Technology, 2019, 9, 5868-5881.	4.1	49
39	Understanding photoelectrochemical kinetics in a model CO ₂ fixation reaction. Physical Chemistry Chemical Physics, 2019, 21, 17517-17520.	2.8	6
40	Electrochemical Arylation of Electronâ€Deficient Arenes through Reductive Activation. Angewandte Chemie - International Edition, 2019, 58, 15747-15751.	13.8	54
41	Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis. Accounts of Chemical Research, 2019, 52, 2598-2608.	15.6	131
42	Effects of the Hydrogen Bonding Network on Electrophilic Activation and Electrode Passivation: Electrochemical Chlorination and Bromination of Aromatics. ChemElectroChem, 2019, 6, 3726-3730.	3.4	12
43	Intramolecular electrochemical dehydrogenative N–N bond formation for the synthesis of 1,2,4-triazolo[1,5- <i>a</i>)pyridines. Green Chemistry, 2019, 21, 4035-4039.	9.0	46
44	Electrochemically dehydrogenative C–H/P–H cross-coupling: effective synthesis of phosphonated quinoxalin-2(1 <i>H</i>)-ones and xanthenes. Green Chemistry, 2019, 21, 4412-4421.	9.0	139
45	Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chemical Science, 2019, 10, 7982-7987.	7.4	79
46	Hexafluoroâ€2â€Propanolâ€Promoted Electroâ€Oxidative [3+2] Annulation of 1,3â€Dicarbonyl Compounds and Alkenes. ChemElectroChem, 2019, 6, 3383-3386.	3.4	18
47	Electrochemical Crossâ€Coupling of C(<i>sp</i> ²)â^'H with Aryldiazonium Salts via a Paired Electrolysis: an Alternative to Visible Light Photoredoxâ€Based Approach. Advanced Synthesis and Catalysis, 2019, 361, 5170-5175.	4.3	52
48	Scalable Rhodium(III) atalyzed Aryl Câ^'H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angewandte Chemie, 2019, 131, 16926-16930.	2.0	35
49	Efficient Protocol for Synthesis of βâ€Hydroxy(alkoxy)selenides via Electrochemical Iodideâ€Catalyzed Oxyselenation of Styrene Derivatives with Dialkyl(aryl)diselenides. ChemistryOpen, 2019, 8, 1230-1234.	1.9	12
50	Photokatalyse und Elektrochemie: Ein neues Bündnis in der organischen Synthese. Angewandte Chemie, 2019, 131, 17670-17672.	2.0	28
51	Practical and stereoselective electrocatalytic 1,2-diamination of alkenes. Nature Communications, 2019, 10, 4953.	12.8	100
52	Merging Photocatalysis with Electrochemistry: The Dawn of a new Alliance in Organic Synthesis. Angewandte Chemie - International Edition, 2019, 58, 17508-17510.	13.8	100
53	Decarboxylative C _{sp³} –N Bond Formation by Electrochemical Oxidation of Amino Acids. Organic Letters, 2019, 21, 9262-9267.	4.6	51
54	Scalable Rhodium(III) atalyzed Aryl Câ^'H Phosphorylation Enabled by Anodic Oxidation Induced Reductive Elimination. Angewandte Chemie - International Edition, 2019, 58, 16770-16774.	13.8	111

#	Article	IF	CITATIONS
55	Electrochemical oxidative cyclization of olefinic carbonyls with diselenides. Green Chemistry, 2019, 21, 4976-4980.	9.0	71
56	Synthesis of 1,3-benzothiazines by intramolecular dehydrogenative C–S cross-coupling in a flow electrolysis cell. Science China Chemistry, 2019, 62, 1501-1503.	8.2	16
57	Electrochemical Alkoxysulfonylation Difunctionalization of Styrene Derivatives Using Sodium Sulfinates as Sulfonyl Sources. ACS Omega, 2019, 4, 14353-14359.	3.5	26
58	Synergy of anodic oxidation and cathodic reduction leads to electrochemical deoxygenative C2 arylation of quinoline <i>N</i> -oxides. Chemical Communications, 2019, 55, 11091-11094.	4.1	35
59	Electrochemical Arylation of Electronâ€Đeficient Arenes through Reductive Activation. Angewandte Chemie, 2019, 131, 15894-15898.	2.0	12
60	Heterocycles via Cross Dehydrogenative Coupling. , 2019, , .		9
61	Synthetic Methodology-driven Chemical Protein Modifications. Chemistry Letters, 2019, 48, 1421-1432.	1.3	13
62	Probing Intramolecular Electron Transfer in Redox Tag Processes. Organic Letters, 2019, 21, 8519-8522.	4.6	21
63	Fluorocyclization of <i>N</i> -Propargylamides to Oxazoles by Electrochemically Generated ArlF ₂ . Organic Letters, 2019, 21, 7893-7896.	4.6	69
64	Electrochemical Dehydrogenative Phosphorylation of Thiols. Organic Letters, 2019, 21, 7833-7836.	4.6	39
65	Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2â€Đichloroethane. Angewandte Chemie - International Edition, 2019, 58, 4566-4570.	13.8	108
66	Electrochemical oxidation synergizing with BrĄ̃nsted-acid catalysis leads to [4 + 2] annulation for the synthesis of pyrazines. Green Chemistry, 2019, 21, 765-769.	9.0	32
67	Electrochemical oxidative C–H/S–H cross-coupling between enamines and thiophenols with H ₂ evolution. Chemical Science, 2019, 10, 2791-2795.	7.4	73
68	Efficient Electrocatalysis for the Preparation of (Hetero)aryl Chlorides and Vinyl Chloride with 1,2â€Dichloroethane. Angewandte Chemie, 2019, 131, 4614-4618.	2.0	17
69	Metal―and Oxidantâ€free Electrosynthesis of 1,2,3â€Thiadiazoles from Element Sulfur and Nâ€tosyl Hydrazones. Advanced Synthesis and Catalysis, 2019, 361, 1756-1760.	4.3	52
70	Electrochemical Radical Selenylation/1,2-Carbon Migration and Dowd–Beckwith-Type Ring-Expansion Sequences of Alkenylcyclobutanols. Organic Letters, 2019, 21, 1021-1025.	4.6	81
71	Electrochemical oxidative C–H/N–H cross-coupling for C–N bond formation with hydrogen evolution. Chemical Communications, 2019, 55, 1809-1812.	4.1	103
72	Electrochemical oxidative selenylation of imidazo[1,2–a]pyridines with diselenides. Tetrahedron Letters, 2019, 60, 739-742.	1.4	42

#	Article	IF	CITATIONS
73	Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem, 2019, 6, 4067-4092.	3.4	143
74	Electrochemical Synthesis of Allylamines via a Radical Trapping Sequence. Advanced Synthesis and Catalysis, 2019, 361, 4041-4047.	4.3	12
75	Externalâ€Oxidantâ€Free Electrochemical Oxidative Trifluoromethylation of Arenes Using CF ₃ SO ₂ Na as the CF ₃ Source. Chinese Journal of Chemistry, 2019, 37, 817-820.	4.9	31
76	Electrochemicalâ€∤Photoredox Aspects of Transition Metalâ€Catalyzed Directed Câ^'H Bond Activation. ChemCatChem, 2019, 11, 5160-5187.	3.7	47
77	A New Approach to Stereoselective Electrocatalytic Semihydrogenation of Alkynes to <i>Z</i> -Alkenes using a Proton-Exchange Membrane Reactor. ACS Sustainable Chemistry and Engineering, 2019, 7, 11050-11055.	6.7	45
78	Electrochemical Oxidative Aryl(alkyl)trifluoromethylation of Allyl Alcohols via 1,2-Migration. Organic Letters, 2019, 21, 4619-4622.	4.6	72
79	C–N Coupling of Azoles or Imides with Carbocations Generated by Electrochemical Oxidation. European Journal of Organic Chemistry, 2019, 2019, 4089-4094.	2.4	22
80	Electrochemical Synthesis of 3â€Bromoimidazo[1,2â€a]pyridines Directly from 2â€Aminopyridines and <i>alpha</i> â€Bromoketones. ChemElectroChem, 2019, 6, 2733-2736.	3.4	16
81	Elektrochemischer Durchlaufgenerator für hypervalente Iodreagenzien: Synthetische Anwendungen. Angewandte Chemie, 2019, 131, 9916-9920.	2.0	22
82	Reactions of Anodically Generated Methoxystilbene Cation Radicals: The Influence of Ortho-Substituted Vinyl and Formyl Groups. Journal of Organic Chemistry, 2019, 84, 7279-7290.	3.2	0
83	Concepts and tools for mechanism and selectivity analysis in synthetic organic electrochemistry. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11147-11152.	7.1	61
84	Synthetic applications of light, electricity, mechanical force and flow. Nature Reviews Chemistry, 2019, 3, 290-304.	30.2	51
85	Direct electrosynthesis for <i>N</i> -alkyl-C3-halo-indoles using alkyl halide as both alkylating and halogenating building blocks. Green Chemistry, 2019, 21, 2732-2738.	9.0	35
86	Continuousâ€Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications. Angewandte Chemie - International Edition, 2019, 58, 9811-9815.	13.8	106
87	On the origin of the difference between type A and type B skeletal isomerization of alkenes catalyzed by zeolites: The crucial input of ab initio molecular dynamics. Journal of Catalysis, 2019, 373, 361-373.	6.2	38
88	Radical Cation Dielsâ€Alder Reactions of Nonâ€Conjugated Alkenes as Dienophiles by Electrocatalysis. Chinese Journal of Chemistry, 2019, 37, 561-564.	4.9	9
89	Electrochemical Radical Formyloxylation–Bromination, â^'Chlorination, and â^'Trifluoromethylation of Alkenes. Organic Letters, 2019, 21, 3167-3171.	4.6	70
90	Electrochemical vicinal aminotrifluoromethylation of alkenes: high regioselective acquisition of β-trifluoromethylamines. Organic and Biomolecular Chemistry, 2019, 17, 5014-5020.	2.8	34

#	Article	IF	CITATIONS
91	Synergy of Anodic Oxidation and Cathodic Reduction Leads to Electrochemical C—H Halogenation. Chinese Journal of Chemistry, 2019, 37, 611-615.	4.9	59
92	Recent Advances in Constructing Nitrogenâ€Containing Heterocycles <i>via</i> Electrochemical Dehydrogenation. Chinese Journal of Chemistry, 2019, 37, 513-528.	4.9	65
93	Electrochemical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols: synthesis of β-CF ₃ -substituted ketones. Organic and Biomolecular Chemistry, 2019, 17, 3319-3323.	2.8	42
94	Substitution Pattern‣elective Olefin Crossâ€Couplings. ChemElectroChem, 2019, 6, 4165-4168.	3.4	10
95	Electrochemical Câ^'H/Nâ^'H Oxidative Cross Coupling of Imidazopyridines with Diarylamines to Synthesize Triarylamine Derivatives. ChemElectroChem, 2019, 6, 4173-4176.	3.4	26
96	Electrochemical Crossâ€Dehydrogenative Coupling of <i>N</i> â€Arylâ€tetrahydroisoquinolines with Phosphites and Indole. European Journal of Organic Chemistry, 2019, 2019, 2498-2501.	2.4	22
97	A Novel Thermomorphic System for Electrocatalytic Dielsâ€Alder Reactions. Chinese Journal of Chemistry, 2019, 37, 557-560.	4.9	7
98	An Electrochemical Cinnamyl C—H Amination Reaction Using Carbonyl Sulfamate. Chinese Journal of Chemistry, 2019, 37, 570-574.	4.9	18
99	Electrochemical radical arylsulfonylation/semipinacol rearrangement sequences of alkenylcyclobutanols: Synthesis of β-sulfonated cyclic ketones. Tetrahedron Letters, 2019, 60, 1287-1290.	1.4	41
100	Mechanism of Oxidative Alkoxyamine Cleavage: The Surprising Role of the Solvent and Supporting Electrolyte. Journal of Physical Chemistry C, 2019, 123, 10300-10305.	3.1	17
101	Recent Advances on the Electrochemical Difunctionalization of Alkenes/Alkynes. Chinese Journal of Chemistry, 2019, 37, 292-301.	4.9	122
102	Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution. IScience, 2019, 12, 293-303.	4.1	120
103	Electrochemical Radical Borylation of Aryl lodides. Chinese Journal of Chemistry, 2019, 37, 347-351.	4.9	21
104	Electrochemical Aminoselenation and Oxyselenation of Styrenes with Hydrogen Evolution. Organic Letters, 2019, 21, 1297-1300.	4.6	116
105	Electrochemical dehydrogenation of hydrazines to azo compounds. Green Chemistry, 2019, 21, 1680-1685.	9.0	30
106	Electrochemical Oxidative Crossâ€Coupling Reaction to Access Unsymmetrical Thiosulfonates and Selenosulfonates. Advanced Synthesis and Catalysis, 2019, 361, 2014-2019.	4.3	30
107	Total Synthesis of (â^)-Oxycodone via Anodic Aryl–Aryl Coupling. Organic Letters, 2019, 21, 1828-1831.	4.6	57
108	Stereoselective synthesis of sulfur-containing β-enaminonitrile derivatives through electrochemical Csp3–H bond oxidative functionalization of acetonitrile. Nature Communications, 2019, 10, 833.	12.8	59

#	Article	IF	CITATIONS
109	Electrochemical fluoromethylation triggered lactonizations of alkenes under semi-aqueous conditions. Chemical Science, 2019, 10, 3181-3185.	7.4	117
110	Effect of Chemical Structure on the Electrochemical Cleavage of Alkoxyamines. Journal of Physical Chemistry C, 2019, 123, 5273-5281.	3.1	31
111	Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. Accounts of Chemical Research, 2019, 52, 3309-3324.	15.6	499
112	Chemistry with Electrochemically Generated N-Centered Radicals. Accounts of Chemical Research, 2019, 52, 3339-3350.	15.6	679
113	Electrochemically Enabled Double C–H Activation of Amides: Chemoselective Synthesis of Polycyclic Isoquinolinones. Organic Letters, 2019, 21, 9841-9845.	4.6	64
114	Electrochemical TEMPO-catalyzed multicomponent C(sp ³)–H α-carbamoylation of free cyclic secondary amines. Green Chemistry, 2019, 21, 6194-6199.	9.0	29
115	Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angewandte Chemie, 2019, 131, 131-135.	2.0	6
116	Electrochemical Hydrogenation with Gaseous Ammonia. Angewandte Chemie, 2019, 131, 1773-1777.	2.0	30
117	Electrochemical Oxidative C(sp ³)â^'H/Nâ^'H Cross oupling for <i>N</i> â€Mannich Bases with Hydrogen Evolution. ChemSusChem, 2019, 12, 3073-3077.	6.8	29
118	Electrochemical Fluorocyclization of <i>N</i> -Allylcarboxamides to 2-Oxazolines by Hypervalent Iodine Mediator. Organic Letters, 2019, 21, 242-245.	4.6	89
119	"Snapshots―of Intramolecular Electron Transfer in Redox Tag-Guided [2 + 2] Cycloadditions. Journal of Organic Chemistry, 2019, 84, 1882-1886.	3.2	17
120	Transition Metal- and Base-Free Electrochemical aza-Michael Addition of Aromatic aza-Heterocycles or Ts-Protected Amines to î±,î²-Unsaturated Alkenes Mediated by Nal. ACS Sustainable Chemistry and Engineering, 2019, 7, 2255-2261.	6.7	23
121	Electrochemical Dehydrogenative Phosphorylation of Alcohols for the Synthesis of Organophosphinates. Journal of Organic Chemistry, 2019, 84, 949-956.	3.2	47
122	Electrochemical Dehydrogenative Imidation of <i>N</i> -Methyl-Substituted Benzylamines with Phthalimides for the Direct Synthesis of Phthalimide-Protected <i>gem</i> -Diamines. Organic Letters, 2019, 21, 156-159.	4.6	25
123	Substrateâ€Dependent Electrochemical Dimethoxylation of Olefins. Advanced Synthesis and Catalysis, 2019, 361, 485-489.	4.3	40
124	Selective N1-Acylation of Indazoles with Acid Anhydrides Using an Electrochemical Approach. Organic Letters, 2019, 21, 457-460.	4.6	17
125	Electrochemical Dehydrogenative Crossâ€Coupling of Quinoxalinâ€2(1 <i>H</i>)â€ones with Amines for the Synthesis of 3â€Aminoquinoxalinones. Advanced Synthesis and Catalysis, 2019, 361, 1033-1041.	4.3	84
126	Electrochemical Oxidative C—H Sulfenylation of Imidazopyridines with Hydrogen Evolution. Chinese Journal of Chemistry, 2019, 37, 49-52.	4.9	65

#	Article	IF	CITATIONS
127	Selective Functionalization of Styrenes with Oxygen Using Different Electrode Materials: Olefin Cleavage and Synthesis of Tetrahydrofuran Derivatives. Angewandte Chemie - International Edition, 2019, 58, 125-129.	13.8	64
128	Mnâ€Catalyzed Electrochemical Synthesis of Quinazolinones from Primary Alcohols/Benzyl Ethers and <i>o</i> â€Aminobenzamides. ChemElectroChem, 2019, 6, 4188-4193.	3.4	35
129	Moâ€Based Oxidizers as Powerful Tools for the Synthesis of Thia―and Selenaheterocycles. Chemistry - A European Journal, 2019, 25, 1936-1940.	3.3	27
130	Electrochemical Hydrogenation with Gaseous Ammonia. Angewandte Chemie - International Edition, 2019, 58, 1759-1763.	13.8	87
131	Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angewandte Chemie - International Edition, 2020, 59, 409-417.	13.8	135
132	Cubane Electrochemistry: Direct Conversion of Cubane Carboxylic Acids to Alkoxy Cubanes Using the Hofer–Moest Reaction under Flow Conditions. Chemistry - A European Journal, 2020, 26, 374-378.	3.3	34
133	Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols. Angewandte Chemie, 2020, 132, 417-425.	2.0	45
134	Practical Synthesis of Phosphinic Amides/Phosphoramidates through Catalytic Oxidative Coupling of Amines and P(O)â^'H Compounds. Chemistry - A European Journal, 2020, 26, 881-887.	3.3	32
135	Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2102-2119.	4.3	75
136	Cobaltaâ€Electrocatalyzed Câr'H Activation in Biomassâ€Derived Glycerol: Powered by Renewable Wind and Solar Energy. ChemSusChem, 2020, 13, 668-671.	6.8	31
137	Electrochemical Chalcogenation of <i>β,γ</i> â€Unsaturated Amides and Oximes to Corresponding Oxazolines and Isoxazolines. Advanced Synthesis and Catalysis, 2020, 362, 1046-1052.	4.3	62
138	Electrochemical Crossâ€Dehydrogenative Coupling between Phenols and βâ€Dicarbonyl Compounds: Facile Construction of Benzofurans. Chemistry - A European Journal, 2020, 26, 4297-4303.	3.3	18
139	Alternating Current Electrolysis for the Electrocatalytic Synthesis of Mixed Disulfide via Sulfur–Sulfur Bond Metathesis towards Dynamic Disulfide Libraries. Chemistry - A European Journal, 2020, 26, 3129-3136.	3.3	40
140	Application of electrochemical oxidative methods in the C(sp2) H functionalization of heterocyclic compounds. Advances in Heterocyclic Chemistry, 2020, , 1-47.	1.7	9
141	Anodic Oxidation for the Stereoselective Synthesis of Heterocycles. Accounts of Chemical Research, 2020, 53, 105-120.	15.6	163
142	Copper-Catalyzed Electrochemical Selective Bromination of 8-Aminoquinoline Amide Using NH ₄ Br as the Brominating Reagent. Journal of Organic Chemistry, 2020, 85, 3497-3507.	3.2	29
143	Recent Advances in Electrochemical Oxidative Crossâ€Coupling of Alkenes with H ₂ Evolution. ChemCatChem, 2020, 12, 27-40.	3.7	55
144	Mechanistic Insights on Concentrated Lithium Salt/Nitroalkane Electrolyte Based on Analogy with Fluorinated Alcohols. European Journal of Organic Chemistry, 2020, 2020, 570-574.	2.4	24

#	Article	IF	CITATIONS
145	Basic Strategies and Types of Applications in Organic Electrochemistry. ChemElectroChem, 2020, 7, 395-405.	3.4	133
146	Powering the Future: How Can Electrochemistry Make a Difference in Organic Synthesis?. CheM, 2020, 6, 2484-2496.	11.7	270
147	Ruthenium-Catalyzed Electrochemical Synthesis of Indolines through Dehydrogenative [3 + 2] Annulation with H ₂ Evolution. Journal of Organic Chemistry, 2020, 85, 13735-13746.	3.2	32
148	Anodic oxidation triggered divergent 1,2- and 1,4-group transfer reactions of β-hydroxycarboxylic acids enabled by electrochemical regulation. Chemical Science, 2020, 11, 12021-12028.	7.4	18
149	Enantiospecific electrochemical rearrangement for the synthesis of hindered triazolopyridinone derivatives. Nature Communications, 2020, 11, 3628.	12.8	26
150	Recent advances in electrochemical meso- and Î ² -functionalization of porphyrins and electrografting of diazonium porphyrins. Current Opinion in Electrochemistry, 2020, 24, 69-78.	4.8	4
151	Electrochemical α-methoxymethylation and aminomethylation of propiophenones using methanol as a green C1 source. Organic Chemistry Frontiers, 2020, 7, 2399-2404.	4.5	13
152	Biomimetic electro-oxidation of alkyl sulfides from exfoliated molybdenum disulfide nanosheets. Journal of Materials Chemistry A, 2020, 8, 25053-25060.	10.3	6
153	Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input. Communications Chemistry, 2020, 3, .	4.5	33
154	Electroreductive Carbofunctionalization of Alkenes with Alkyl Bromides via a Radical-Polar Crossover Mechanism. Journal of the American Chemical Society, 2020, 142, 20661-20670.	13.7	141
155	Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chemical Reviews, 2020, 120, 9790-9833.	47.7	241
156	Electrochemical <i>N</i> -Demethylation of 14-Hydroxy Morphinans: Sustainable Access to Opioid Antagonists. Organic Letters, 2020, 22, 6891-6896.	4.6	17
157	Electrochemical sulfonylation of alkenes with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of (<i>E</i>)-vinyl sulfones in water. RSC Advances, 2020, 10, 33155-33160.	3.6	23
158	A Perspective on Organic Electrochemistry. Journal of Organic Chemistry, 2020, 85, 13375-13390.	3.2	101
159	Direct electrochemical defluorinative carboxylation of α-CF ₃ alkenes with carbon dioxide. Chemical Science, 2020, 11, 10414-10420.	7.4	83
160	Late-stage diversification by rutheniumelectro-catalyzed C–H mono- and di-acyloxylation. Green Synthesis and Catalysis, 2020, 1, 175-179.	6.8	20
161	Electrochemical and direct C–H methylthiolation of electron-rich aromatics. Green Chemistry, 2020, 22, 4906-4911.	9.0	25
162	Electro-organic synthesis – a 21 st century technique. Chemical Science, 2020, 11, 12386-12400.	7.4	379

CITATION REPORT	

#	Article	IF	CITATIONS
163	Nickel atalyzed Electrosynthesis of Aryl and Vinyl Phosphinates. European Journal of Organic Chemistry, 2020, 2020, 3452-3455.	2.4	19
164	Benzo- and Thieno-Annulated Tetracenes: A One-Pot Synthesis via Cross-Dehydrogenative Annulation. Organic Letters, 2020, 22, 4160-4163.	4.6	9
165	Stereoselective Electroâ€⊋â€deoxyglycosylation from Glycals. Angewandte Chemie, 2020, 132, 15316-15320.	2.0	11
166	Chemicalâ€Reductantâ€Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angewandte Chemie - International Edition, 2020, 59, 13962-13967.	13.8	99
167	Stereoselective Electroâ€2â€deoxyglycosylation from Glycals. Angewandte Chemie - International Edition, 2020, 59, 15204-15208.	13.8	39
168	Electrochemical Annulation–Iodosulfonylation of 1,5-Enyne-containing <i>para</i> -Quinone Methides (<i>p</i> -QMs) to Access (<i>E</i>)-Spiroindenes. Organic Letters, 2020, 22, 4471-4477.	4.6	74
169	Site-selective electrooxidation of methylarenes to aromatic acetals. Nature Communications, 2020, 11, 2706.	12.8	61
170	Scalable Photoelectrochemical Dehydrogenative Cross oupling of Heteroarenes with Aliphatic Câ~'H Bonds. Angewandte Chemie - International Edition, 2020, 59, 14275-14280.	13.8	179
171	Making electrochemistry easily accessible to the synthetic chemist. Green Chemistry, 2020, 22, 3358-3375.	9.0	176
172	Mn-Catalyzed Electrochemical Radical Cascade Cyclization toward the Synthesis of Benzo[4,5]imidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-one Derivatives. ACS Catalysis, 2020, 10, 6676-6681.	11.2	115
173	Anodic Oxidation as an Enabling Tool for the Synthesis of Natural Products. Synthesis, 2020, 52, 2781-2794.	2.3	13
174	Scalable Photoelectrochemical Dehydrogenative Crossâ€Coupling of Heteroarenes with Aliphatic Câ^'H Bonds. Angewandte Chemie, 2020, 132, 14381-14386.	2.0	28
175	Chemicalâ€Reductantâ€Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angewandte Chemie, 2020, 132, 14066-14071.	2.0	20
176	Insights into Cobalta(III/IV/II)â€Electrocatalysis: Oxidationâ€Induced Reductive Elimination for Twofold Câ^H Activation. Angewandte Chemie - International Edition, 2020, 59, 10955-10960.	13.8	65
177	Mechanistische Studien zu Cobalta(III/IV/II)â€Elektrokatalyse: Oxidativâ€induzierte reduktive Eliminierung zur zweifachen Câ€Hâ€Aktivierung. Angewandte Chemie, 2020, 132, 11048-11053.	2.0	16
178	Electroâ€Olefination—A Catalyst Free Stereoconvergent Strategy for the Functionalization of Alkenes. Chemistry - A European Journal, 2020, 26, 8382-8387.	3.3	17
179	Electrophotocatalytic Decarboxylative Câ^'H Functionalization of Heteroarenes. Angewandte Chemie - International Edition, 2020, 59, 10626-10632.	13.8	161
180	Electrophotocatalytic Decarboxylative Câ^'H Functionalization of Heteroarenes. Angewandte Chemie, 2020, 132, 10713-10719.	2.0	30

#	Article	IF	CITATIONS
181	Electrophotocatalysis: Cyclic Voltammetry as an Analytical Tool. Journal of Physical Chemistry Letters, 2020, 11, 6097-6104.	4.6	14
182	Organic electrochemistry: Anodic construction of heterocyclic structures. Current Opinion in Electrochemistry, 2020, 24, 31-43.	4.8	19
183	Friedel–Crafts Alkylation with Carbenium Ions Generated by Electrochemical Oxidation of Stannylmethyl Ethers. European Journal of Organic Chemistry, 2020, 2020, 4510-4516.	2.4	4
184	Cobalt catalyzed electrochemical [4 + 2] annulation for the synthesis of sultams. Green Chemistry, 2020, 22, 1548-1552.	9.0	44
185	Electrochemical Synthesis of Biaryls via Oxidative Intramolecular Coupling of Tetra(hetero)arylborates. Journal of the American Chemical Society, 2020, 142, 4341-4348.	13.7	39
186	Electrochemical Synthesis of Thienoacene Derivatives: Transitionâ€Metalâ€Free Dehydrogenative Câ^'S Coupling Promoted by a Halogen Mediator. Angewandte Chemie, 2020, 132, 7877-7881.	2.0	9
187	Electrochemical Synthesis of Thienoacene Derivatives: Transitionâ€Metalâ€Free Dehydrogenative Câ^'S Coupling Promoted by a Halogen Mediator. Angewandte Chemie - International Edition, 2020, 59, 7803-7807.	13.8	50
188	Regioselective/electro-oxidative intermolecular [3 + 2] annulation for the preparation of indolines. Chemical Science, 2020, 11, 2181-2186.	7.4	33
189	The synthesis of sulfonated 4 <i>H</i> -3,1-benzoxazines <i>via</i> an electro-chemical radical cascade cyclization. Chemical Communications, 2020, 56, 2735-2738.	4.1	36
190	Electrochemical oxidative iodination of imidazo[1,2- <i>a</i>]pyridines using Nal as iodine source. Synthetic Communications, 2020, 50, 710-718.	2.1	28
191	Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Organic Letters, 2020, 22, 4016-4020.	4.6	36
192	Radical-Cation Vinylcyclopropane Rearrangements by TiO ₂ Photocatalysis. Journal of Organic Chemistry, 2020, 85, 6551-6566.	3.2	28
193	Electroreductive 4-Pyridylation of Electron-deficient Alkenes with Assistance of Ni(acac) ₂ . Organic Letters, 2020, 22, 3570-3575.	4.6	43
194	Electrochemically Oxidative Coupling of Sâ€H/Sâ€H for Sâ€5 Bond Formation: A Facile Approach to Diacidâ€disulfides. ChemistrySelect, 2020, 5, 4637-4641.	1.5	6
195	Nickel catalysis enables convergent paired electrolysis for direct arylation of benzylic C–H bonds. Chemical Science, 2020, 11, 10786-10791.	7.4	91
196	A Facile Oneâ€Pot Synthesis of 1,2,3,4â€Tetrahydroisoquinolineâ€1â€carbonitriles via the Electrogenerated Cyanide Anions from Acetonitrile. ChemistrySelect, 2020, 5, 4493-4495.	1.5	4
197	Electrochemical Oxidation Induced Selective C–C Bond Cleavage. Chemical Reviews, 2021, 121, 485-505.	47.7	251
198	Benzyl Palladium Intermediates: Unique and Versatile Reactive Intermediates for Aromatic Functionalization. Advanced Synthesis and Catalysis, 2021, 363, 587-601.	4.3	22

#	Article	IF	CITATIONS
199	Selective Electrochemical Hydrolysis of Hydrosilanes to Silanols via Anodically Generated Silyl Cations. Angewandte Chemie, 2021, 133, 1867-1872.	2.0	13
200	Siteâ€Selective Electrochemical Benzylic Câ^'H Amination. Angewandte Chemie - International Edition, 2021, 60, 2943-2947.	13.8	123
201	Synthesis of Diverse Aryliodine(<scp>III</scp>) Reagents by Anodic Oxidation ^{â€} . Chinese Journal of Chemistry, 2021, 39, 627-632.	4.9	27
202	Selective Electrochemical Hydrolysis of Hydrosilanes to Silanols via Anodically Generated Silyl Cations. Angewandte Chemie - International Edition, 2021, 60, 1839-1844.	13.8	60
203	Iodonium Cationâ€Pool Electrolysis for the Threeâ€Component Synthesis of 1,3â€Oxazoles. Chemistry - A European Journal, 2021, 27, 605-608.	3.3	19
204	HOMO–LUMO Energy-Gap Tuning of π-Conjugated Zwitterions Composed of Electron-Donating Anion and Electron-Accepting Cation. Journal of Organic Chemistry, 2021, 86, 770-781.	3.2	31
205	Site‣elective Electrochemical Benzylic Câ^'H Amination. Angewandte Chemie, 2021, 133, 2979-2983.	2.0	81
206	Electrochemical synthesis of 3-azido-indolines from amino-azidation of alkenes. Chinese Chemical Letters, 2021, 32, 1033-1036.	9.0	29
207	Electrochemical <scp>Palladium atalyzed</scp> Intramolecular C—H Amination of <scp>2â€Amidobiaryls</scp> for Synthesis of Carbazoles. Chinese Journal of Chemistry, 2021, 39, 143-148.	4.9	29
208	Ring-contraction of hantzsch esters and their derivatives to pyrroles <i>via</i> electrochemical extrusion of ethyl acetate out of aromatic rings. Green Chemistry, 2021, 23, 3468-3473.	9.0	10
209	Recent advances in electrochemically driven radical fluorination and fluoroalkylation. Organic Chemistry Frontiers, 2021, 8, 2786-2798.	4.5	69
210	Electrochemically driven stereoselective approach to <i>syn</i> -1,2-diol derivatives from vinylarenes and DMF. Chemical Science, 2021, 12, 5892-5897.	7.4	29
211	Metal-free electrochemical C3-sulfonylation of imidazo[1,2- <i>a</i>]pyridines. Organic Chemistry Frontiers, 2021, 8, 3815-3819.	4.5	31
212	Energy-, time-, and labor-saving synthesis of α-ketiminophosphonates: machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation. Green Chemistry, 2021, 23, 5825-5831.	9.0	18
213	Chemoselective electrochemical reduction of nitroarenes with gaseous ammonia. Organic and Biomolecular Chemistry, 2021, 19, 2468-2472.	2.8	14
214	Electrocatalytic hydrogenation of benzoic acids in a proton-exchange membrane reactor. Organic and Biomolecular Chemistry, 2021, 19, 7363-7368.	2.8	18
215	Regioselective intramolecular sp ² C–H amination: direct <i>vs.</i> mediated electrooxidation. Organic Chemistry Frontiers, 2021, 8, 1581-1586.	4.5	18
216	Aryl-Iodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes. Chinese Journal of Organic Chemistry, 2021, 41, 4014.	1.3	6

#	ARTICLE	IF	CITATIONS
217	Convergent Paired Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 7275-7282.	13.8	100
218	Electrochemical Thiolation and Borylation of Arylazo Sulfones with Thiols and B ₂ pin ₂ . Advanced Synthesis and Catalysis, 2021, 363, 1904-1911.	4.3	17
219	Transition Metalâ€Free Synthesis of Sulfonyl―and Bromo‣ubstituted Indolo[2,1â€ <i>α</i>]isoquinoline Derivatives through Electrochemical Radical Cascade Cyclization. Advanced Synthesis and Catalysis, 2021, 363, 1944-1954.	4.3	36
220	De Novo and Divergent Synthesis of Highly Functionalized Furans by Cascade Reactions of 2â€Hydroxyâ€1,4â€diones with Nucleophiles. Chemistry - A European Journal, 2021, 27, 5225-5229.	3.3	7
221	Electrochemical Arylation of Aldehydes, Ketones, and Alcohols: from Cathodic Reduction to Convergent Paired Electrolysis. Angewandte Chemie, 2021, 133, 7351-7358.	2.0	17
222	Electrochemical Radical Silylâ€Oxygenation of Activated Alkenes. Angewandte Chemie, 2021, 133, 8826-8831.	2.0	11
223	Electrochemical generation of nitrogen-centered radicals for organic synthesis. Green Synthesis and Catalysis, 2021, 2, 165-178.	6.8	130
224	Electroâ€Oxidative Coupling Reactions Leading to Ï€â€Conjugated Compounds. Chemical Record, 2021, 21, 2269-2276.	5.8	8
225	Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angewandte Chemie - International Edition, 2021, 60, 15686-15704.	13.8	45
226	Electrochemical esterification via oxidative coupling of aldehydes and alcohols. Tetrahedron Letters, 2021, 68, 152898.	1.4	3
227	Electrosynthesis in Laminar Flow Using a Flow Microreactor. Chemical Record, 2021, 21, 2164-2177.	5.8	14
228	Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angewandte Chemie, 2021, 133, 15818-15836.	2.0	8
229	Synthetic Semiconductor Photoelectrochemistry. Chemical Record, 2021, 21, 2223-2238.	5.8	17
230	Electrochemical Radical Silylâ€Oxygenation of Activated Alkenes. Angewandte Chemie - International Edition, 2021, 60, 8744-8749.	13.8	65
231	Shonoâ€Type Oxidation for Functionalization of Nâ€Heterocycles. Chemical Record, 2021, 21, 2239-2253.	5.8	17
232	Chlorination Reaction of Aromatic Compounds and Unsaturated Carbon–Carbon Bonds with Chlorine on Demand. Organic Letters, 2021, 23, 3015-3020.	4.6	32
233	Catalyst―and Reagentâ€Free Formal Azaâ€Wacker Cyclizations Enabled by Continuousâ€Flow Electrochemistry. Angewandte Chemie - International Edition, 2021, 60, 11237-11241.	13.8	47
234	Electrochemical Aziridination of Tetrasubstituted Alkenes with Ammonia. CCS Chemistry, 2022, 4, 693-703.	7.8	16

#	Article	IF	CITATIONS
235	Catalyst―and Reagentâ€Free Formal Azaâ€Wacker Cyclizations Enabled by Continuousâ€Flow Electrochemistry. Angewandte Chemie, 2021, 133, 11337-11341.	2.0	2
236	Reaching the Full Potential of Electroorganic Synthesis by Paired Electrolysis. Chemical Record, 2021, 21, 2574-2584.	5.8	44
237	Palladium atalyzed Aromatic Câ^'H Functionalizations Utilizing Electrochemical Oxidations. Chemical Record, 2021, 21, 2320-2331.	5.8	11
238	Electrochemical Synthesis of Iminoâ€∢i>Câ€Nucleosides by "Reactivity Switching―Methodology for <i>inâ€situ</i> Generated Glycoside Donors. European Journal of Organic Chemistry, 2021, 2021, 2479-2484.	2.4	10
239	Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron, 2021, 88, 132140.	1.9	29
240	An electrochemical multicomponent [3Â+ 1Â+ 1] annulations to synthesize polysubstituted 1,2,4-triazoles. Tetrahedron, 2021, 87, 132111.	1.9	15
241	Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. Chemical Record, 2021, 21, 2453-2471.	5.8	52
242	Electrochemical Oxidation Dearomatization of Anisol Derivatives toward Spiropyrrolidines and Spirolactones. CCS Chemistry, 2022, 4, 1199-1207.	7.8	35
243	Electrochemical Tandem Cyclization of Unsaturated Oximes with Diselenides: A General Approach to Seleno Isoxazolines Derivatives with Quaternary Carbon Center. European Journal of Organic Chemistry, 2021, 2021, 2431-2435.	2.4	17
244	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	5.8	123
245	Electrophotocatalytic Acetoxyhydroxylation of Aryl Olefins. Journal of the American Chemical Society, 2021, 143, 7247-7252.	13.7	77
246	Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4-Acyl-1,4-dihydropyridines. Organic Letters, 2021, 23, 4960-4965.	4.6	20
247	Aziridine synthesis by coupling amines and alkenes via an electrogenerated dication. Nature, 2021, 596, 74-79.	27.8	82
248	Electrochemical Synthesis of Organic Polysulfides from Disulfides by Sulfur Insertion from S ₈ and an Unexpected Solvent Effect on the Product Distribution. Chemistry - A European Journal, 2021, 27, 11141-11149.	3.3	6
249	Electrochemical Assembly for Synthesis of Middle‧ized Organic Molecules. Chemical Record, 2021, 21, 2389-2396.	5.8	11
250	C–H Amination via Electrophotocatalytic Ritter-type Reaction. Journal of the American Chemical Society, 2021, 143, 8597-8602.	13.7	100
251	Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angewandte Chemie - International Edition, 2021, 60, 18494-18498.	13.8	22
252	Copper catalyzed late-stage C(sp3)-H functionalization of nitrogen heterocycles. Nature Communications, 2021, 12, 4342.	12.8	21

#	Article	IF	Citations
253	The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. Chemical Record, 2021, 21, 2472-2487.	5.8	9
254	Dissecting the Flash Chemistry of Electrogenerated Reactive Intermediates by Microdroplet Fusion Mass Spectrometry. Angewandte Chemie, 2021, 133, 18642-18646.	2.0	6
255	Direct Electrochemical Selenylation/Cyclization of Alkenes: Access to Functionalized Benzheterocycles. Journal of Organic Chemistry, 2021, 86, 16045-16058.	3.2	31
256	Electrochemically Catalyzed N–N Coupling and Ring Cleavage Reaction of 1H-Pyrazoles. Synthesis, 2021, 53, 3591-3596.	2.3	3
257	Electrochemical Oxidation Cross Dehydrogenative Coupling of Enamines and Thiophenols for the Synthesis of Vinyl Sulfides. ChemistrySelect, 2021, 6, 6460-6463.	1.5	5
259	Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. Journal of Organic Chemistry, 2021, 86, 16035-16044.	3.2	19
260	Tunable System for Electrochemical Reduction of Ketones and Phthalimides. Chinese Journal of Chemistry, 2021, 39, 3297-3302.	4.9	19
261	Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und Möglichkeiten zur Skalierung. Angewandte Chemie, 2022, 134, .	2.0	3
262	Electrochemical Radical Selenylation of Alkenes and Arenes via Se–Se Bond Activation. Organic Letters, 2021, 23, 7724-7729.	4.6	46
263	Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angewandte Chemie - International Edition, 2022, 61, .	13.8	90
264	Synthesis of Oligosaccharides of Glucosamine by Automated Electrochemical Assembly. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 839-848.	0.1	5
265	Constant Potential and Constant Current Electrolysis: An Introduction and Comparison of Different Techniques for Organic Electrosynthesis. Journal of Organic Chemistry, 2021, 86, 15866-15874.	3.2	30
266	Domino Cross-Scholl Reaction of Tetracene with Molecular Benzene: Synthesis, Structure, and Mechanism. Organic Letters, 2021, 23, 7921-7926.	4.6	4
267	Biphasic electrochemical peptide synthesis. Chemical Science, 2021, 12, 12911-12917.	7.4	27
268	Mangana(<scp>iii</scp> / <scp>iv</scp>)electro-catalyzed C(sp ³)–H azidation. Chemical Science, 2021, 12, 2890-2897.	7.4	69
269	Electrochemical Oxidative Arylsulfonylation and 1, <scp>2â€Alkyl</scp> Shift Sequences of Alkenyl Cyclobutanols for the Synthesis of <scp>βâ€Sulfonated</scp> Cyclopentanones. Bulletin of the Korean Chemical Society, 2021, 42, 510-513.	1.9	16
270	Electrocatalytic asymmetric hydrogenation of α,β-unsaturated acids in a PEM reactor with cinchona-modified palladium catalysts. Electrochemistry Communications, 2020, 115, 106734.	4.7	22
271	Electrochemistry under Flow Conditions. RSC Green Chemistry, 2019, , 153-198.	0.1	4

#	Article	IF	CITATIONS
272	Electrocatalytic three-component annulation-halosulfonylation of 1,6-enynes toward 1-indanones using sodium halides as both halogen sources and electrolytes. Green Chemistry, 2020, 22, 4259-4269.	9.0	62
273	Electrochemically enabled synthesis of sulfide imidazopyridines <i>via</i> a radical cyclization cascade. Green Chemistry, 2020, 22, 6334-6339.	9.0	117
274	EC-Backward-E Electrochemistry in Radical Cation Diels-Alder Reactions. Journal of the Electrochemical Society, 2020, 167, 155518.	2.9	11
275	Mechanistic Studies on TiO ₂ Photoelectrochemical Radical Cation [2 + 2] Cycloadditions. Journal of the Electrochemical Society, 2020, 167, 155529.	2.9	9
276	Redox-Neutral Radical-Cation Reactions: Multiple Carbon–Carbon Bond Formations Enabled by Single-Electron Transfer. Electrochemistry, 2020, 88, 497-506.	1.4	12
277	Enantioselective palladaelectro-catalyzed C–H olefinations and allylations for N–C axial chirality. Chemical Science, 2021, 12, 14182-14188.	7.4	52
278	Electrochemical fluorosulfonylation of styrenes. Chemical Communications, 2021, 57, 11481-11484.	4.1	13
279	Anodic substitution reaction of carbamates in a flow microreactor using a stable emulsion solution. Reaction Chemistry and Engineering, 2021, 6, 2024-2028.	3.7	3
280	Electrochemical metal- and oxidant-free synthesis of S-thiocarbamates. Organic and Biomolecular Chemistry, 2021, 19, 9491-9500.	2.8	10
281	Can the Philicity of Radicals Be Influenced by Oriented External Electric Fields?. Organic Letters, 2022, 24, 1-5.	4.6	4
282	Metal-Free Hydropyridylation of Thioester-Activated Alkenes via Electroreductive Radical Coupling. Journal of Organic Chemistry, 2021, 86, 16204-16212.	3.2	20
283	Application of Electrochemical Cross-Dehydrogenative Couplings in the Syntheses of Heterocycles. , 2019, , 445-494.		0
284	Intermolecular Carbon–Carbon Bond Formation Followed by Intramolecular Cyclization of Electrochemically Generated Magnesium Anthracenes and Esters in the Presence of Chlorotrimethylsilane. Electrochemistry, 2020, 88, 314-320.	1.4	0
285	Highly selective electroreductive linear dimerization of electron-deficient vinylarenes. Tetrahedron, 2021, 102, 132535.	1.9	3
286	Peroxovanadic based core-shell bifunctional poly(ionic liquid)s catalyst CuO/SiO2@V-PIL: Its in-situ free radical initiation mechanism for air oxidative desulfurization. Fuel, 2022, 310, 122430.	6.4	12
287	Electrochemical Oxidative Selenolactonization of Alkenoic Acids with Diselenides: Synthesis of Selenated Î³â€Łactones. Asian Journal of Organic Chemistry, 2021, 10, 3271-3274.	2.7	13
288	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218.	47.7	173
289	PhB(OH) ₂ -Promoted Electrochemical Sulfuration–Formyloxylation of Styrenes and Selectfluor-Mediated Oxidation–Olefination. Organic Letters, 2021, 23, 9140-9145.	4.6	15

ARTICLE IF CITATIONS # Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic 290 1.3 8 Oxidation. Chinese Journal of Organic Chemistry, 2021, 41, 4718. Flash Electrochemical Approach to Carbocations. Angewandte Chemie, 2022, 134, . Electrochemical α-thiolation and azidation of 1,3-dicarbonyls. Chemical Communications, 2022, 58, 292 4.1 5 2758-2761. Electrochemical Fluorination of Vinyl Boronates through Donorâ€Stabilized Vinyl Carbocation Intermediates**. Angewandte Chemie - International Edition, 2022, 61, . Flash Electrochemical Approach to Carbocations. Angewandte Chemie - International Edition, 2022, 61, 294 13.8 19 Synthese von C â€Oligosacchariden via vielseitiger C(sp 3)â€Hâ€Glykosylierung von Glykosiden. Angewandte 295 Chemie, 0, , . Electrochemical dehydrogenative C–N coupling of hydrazones for the synthesis of 296 9.0 9 1<i>H</i>-indazoles. Green Chemistry, 2022, 24, 1463-1468. Oxidant-free C-H sulfonylation of enamides: Electrochemical synthesis of Î²-amidovinyl and carbonyl 1.4 sulfones from sulfonyl hydrazide and enamides. Tetrahedron Letters, 2022, 88, 153576. Synthesis of <i>C</i>â[€]Oligosaccharides through Versatile C(sp³)â[^]H Clycosylation of 298 13.8 23 Glycosides. Angewandte Chemie - International Edition, 2022, 61, . Dicarbonyl compounds in the synthesis of heterocycles under green conditions. ChemistrySelect, 299 1.5 2020,. Electrochemical oxidative bromolactonization of unsaturated carboxylic acids with sodium bromide: 300 7 1.4 Synthesis of bromomethylated Î³-lactones. Tetrahedron Letters, 2022, 88, 153567. Generation of Dimethyl Sulfoxide Coordinated Thermally Stable Halogen Cation Pools for Câ⁻H 4.3 Halogenation. Advanced Synthesis and Catalysis, 2022, 364, 1031-1038. Electrochemical Fluorination of Vinyl Boronates through Donorâ 302 2.0 0 Intermediates**. Angewandte Chemie, 0, , e202113972. Electrochemistry Enabled Nickel atalyzed Selective Câ^'S Bond Coupling Reaction. European Journal of 2.4 Organic Chemistry, 2022, 2022, . Forging C-C Bonds through Intramolecular Oxidative Coupling of Organoborates – an Overview. 304 2.33 Synthesis, 0, 0, . Electro-Oxidative sp³ Câ€"H Bond Functionalization and Annulation Cascade: Synthesis of Novel Heterocyclic Substituted Indolizines. Journal of Organic Chemistry, 2022, 87, 2898-2911. Aza-Oxyallyl Cation Driven 3-Amido Oxetane Rearrangement to 2-Oxazolines: Access to Oxazoline 306 3.25 Amide Ethers. Journal of Organic Chemistry, 2022, , . Electrochemical synthesis for α-arylation of ketones using enol acetates and aryl diazonium salts. 4.5 Organic Chemistry Frontiers, 2022, 9, 2215-2219.

#	Article	IF	CITATIONS
308	Electroreductive 4-pyridylation of unsaturated compounds using gaseous ammonia as a hydrogen source. Organic Chemistry Frontiers, 2022, 9, 2634-2639.	4.5	8
309	Electrochemical bromolactonization of alkenoic acids with carbon tetrabromide: Synthesis of bromomethylated Î ³ -lactones. Synthetic Communications, 2022, 52, 402-412.	2.1	4
310	Progress in the Electrochemical Reactions of Sulfonyl Compounds. ChemSusChem, 2022, 15, .	6.8	15
311	Direct Anodic <i>N</i> â€Î± Hydroxylation: Accessing Versatile Intermediates for Azanucleoside Derivatives. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
312	Visibleâ€Lightâ€Induced, Singleâ€Metalâ€Catalyzed, Directed Câ^'H Functionalization: Metalâ€Substrateâ€Bounc Complexes as Lightâ€Harvesting Agents. Angewandte Chemie, 2022, 134, .	[]] 2.0	2
313	A Flow Electrochemical Cell with Split Bipolar Electrode for Anodic Oxidation of Organic Compounds. ChemElectroChem, 2022, 9, .	3.4	7
314	Visibleâ€Lightâ€Induced, Singleâ€Metalâ€Catalyzed, Directed Câ^'H Functionalization: Metalâ€Substrateâ€Bounc Complexes as Lightâ€Harvesting Agents. Angewandte Chemie - International Edition, 2022, 61, .	[]] 13.8	15
315	Electrochemical Oxidative <i>ortho</i> â€Selective Trifluoromethylation of <i>N</i> â€Arylamides. ChemElectroChem, 2022, 9, .	3.4	4
316	Recent Advances in the Functionalization of Terminal and Internal Alkynes. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	23
317	Electrophotocatalytic Câ [~] 'H Hydroxyalkylation of Heteroaromatics with Aldehydes. Advanced Synthesis and Catalysis, 2022, 364, 1732-1737.	4.3	11
318	<scp>Electrooxidationâ€Induced</scp> C(sp ³)–H/C(sp ²)–H <scp>Radicalâ€Radica Crossâ€Coupling</scp> between Xanthanes and <scp>Electronâ€Rich</scp> Arenes. Chinese Journal of Chemistry, 2022, 40, 1422-1428.	 4.9	15
319	Oxidation of benzyl alcohol using linear paired electrolysis. Journal of Environmental Chemical Engineering, 2022, 10, 107490.	6.7	1
320	Electrochemical Synthesis of Allylic Amines from Terminal Alkenes and Secondary Amines. Journal of the American Chemical Society, 2021, 143, 21503-21510.	13.7	60
321	The electrochemically selective C3-thiolation of quinolines. Organic Chemistry Frontiers, 2022, 9, 2986-2993.	4.5	11
322	Flash Synthesis and Continuous Production of C-Arylglycosides in a Flow Electrochemical Reactor. Frontiers in Chemical Engineering, 2022, 4, .	2.7	5
323	Redox-active Polymeric Materials. RSC Green Chemistry, 2022, , 249-273.	0.1	0
324	Electrochemical 5- <i>exo-dig</i> aza-cyclization of 2-alkynylbenzamides toward 3-hydroxyisoindolinone derivatives. Organic and Biomolecular Chemistry, 2022, 20, 4320-4323.	2.8	4
325	Electrochemical Sulfoxidation of Thiols and Alkyl Halides. Journal of Organic Chemistry, 2022, 87, 6942-6950.	3.2	7

#	Article	IF	CITATIONS
326	Electrochemical Method: A Green Approach for the Synthesis of Organic Compounds. Current Organic Chemistry, 2022, 26, 899-919.	1.6	3
327	Electroediting of Soft Polymer Backbones. Journal of the American Chemical Society, 2022, 144, 8885-8891.	13.7	12
328	Development of a multistep, electrochemical flow platform for automated catalyst screening. Catalysis Science and Technology, 2022, 12, 4266-4272.	4.1	3
329	Electrochemical cascade synthesis of α-thio-substituted masked aldehydes. Green Chemistry, 2022, 24, 4783-4788.	9.0	7
330	The "Ex-cell―approach to organic electrosynthesis. Current Opinion in Electrochemistry, 2022, 35, 101069.	4.8	2
331	Electropolymerization without an electric power supply. Communications Chemistry, 2022, 5, .	4.5	8
332	Synthesis of cyclic α-1,4-oligo- <i>N</i> -acetylglucosamine â€~cyclokasaodorin' <i>via</i> a one-pot electrochemical polyglycosylation–isomerization–cyclization process. Chemical Communications, 2022, 58, 7948-7951.	4.1	7
333	Difluoromethylation of heterocycles <i>via</i> a radical process. Organic Chemistry Frontiers, 2022, 9, 4192-4208.	4.5	14
334	Progress in Convergent Paired Electrolysis. Chemistry - A European Journal, 2022, 28, .	3.3	17
335	Electrochemical Synthesis of Azaborininones under Metal atalystâ€Free Mild Conditions. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
336	Rapid access to organic triflates based on flash generation of unstable sulfonium triflates in flow. Chemical Communications, 2022, 58, 8344-8347.	4.1	8
337	Electrosynthesis Governed by Electrolyte: Case Studies that Give Some Hints for the Rational Design of Electrolyte. Electrochemistry, 2022, , .	1.4	2
338	Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. Journal of the American Chemical Society, 2022, 144, 12567-12583.	13.7	101
339	Electrochemical Cyclization of Alkynyl Enaminones: Controllable Synthesis of Indeno[1,2- <i>c</i>]pyrroles or Indanones. Journal of Organic Chemistry, 2022, 87, 11131-11140.	3.2	2
340	Electrochemical Synthesis of Polysubstituted Oxazoles from Ketones and Acetonitrile. Organic Letters, 2022, 24, 5762-5766.	4.6	16
341	Electrochemical vicinal oxyazidation of α-arylvinyl acetates. Beilstein Journal of Organic Chemistry, 0, 18, 1026-1031.	2.2	3
342	Electrochemical Aerobic Oxygenation and Nitrogenation of Cyclic Alkenes via Câ•€ Bond Cleavage or Oxygenation and Azidation of Open-Chain Alkenes. Journal of Organic Chemistry, 2022, 87, 11031-11041.	3.2	7
343	Electrochemical Oxidative C(sp ²)–H Amination of Aldehyde Hydrazones with Azoles. Organic Letters, 2022, 24, 5874-5878.	4.6	8

#	Article	IF	CITATIONS
344	Electrochemical Friedel–Crafts-type amidomethylation of arenes by a novel electrochemical oxidation system using a quasi-divided cell and trialkylammonium tetrafluoroborate. Beilstein Journal of Organic Chemistry, 0, 18, 1040-1046.	2.2	2
345	Site-Selective Synthesis of N-Benzyl 2,4,6-Collidinium Salts by Electrooxidative C–H Functionalization. Organic Letters, 2022, 24, 6060-6065.	4.6	4
346	Recent advances in photo- and electro-enabled radical silylation. Organic Chemistry Frontiers, 2022, 9, 6400-6415.	4.5	43
347	Electricity-driven redox-neutral C(sp ³)–H amidation with <i>N</i> -alkoxyamide as an amidating reagent. Organic Chemistry Frontiers, 2022, 9, 5571-5577.	4.5	2
348	Electrochemical deoxygenative reduction of ketones. Chemical Communications, 2022, 58, 11155-11158.	4.1	9
349	Paired Electrolysis for Decarboxylative Cyanation: 4-CN-Pyridine, a Versatile Nitrile Source. Organic Letters, 2022, 24, 6357-6363.	4.6	14
350	Electricity Promoted Chemoselective Functionalization of Alkenes: Diastereoselective Synthesis of Oxindole Containing Thioethers and Selenoethers. ChemistrySelect, 2022, 7, .	1.5	3
351	Electrochemically Generated Iodine Cations from a Glassy Carbon Electrode for Highly Selective Iodination of Anisole. Transactions of Tianjin University, 0, , .	6.4	2
352	Reductive opening of a cyclopropane ring in the Ni(II) coordination environment: a route to functionalized dehydroalanine and cysteine derivatives. Beilstein Journal of Organic Chemistry, 0, 18, 1166-1176.	2.2	0
353	Divergent Câ [~] 'H Amidations and Imidations by Tuning Electrochemical Reaction Potentials. ChemSusChem, 2022, 15, .	6.8	3
354	Recent Advances in the Electrochemical Functionalization of Isocyanides. Chemical Record, 2023, 23, .	5.8	8
355	Electrochemical Câ^'H Oxidation/Conjugate Addition/Cyclization Sequences of 2â€Alkyl Phenols: Oneâ€Pot Synthesis of 2â€Aminoâ€4 <i>H</i> â€chromenes. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	6
356	Probing Electron Transfer Events in Radical Cation Cycloadditions: Intramolecular vs. Intermolecular. European Journal of Organic Chemistry, 0, , .	2.4	1
357	Design and Short-step Synthesis of ï€-Conjugated Networks toward n-Type Semiconducting Materials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 930-940.	0.1	0
358	Electroreductive cross-coupling between aldehydes and ketones or imines <i>via</i> cathodically generated dianions. Green Chemistry, 2022, 24, 8386-8392.	9.0	7
359	Electrooxidative dehydrogenative coupling of 1,4-naphthoquinones with amines: Facile access to 2-amino-1,4-naphthoquinones. Tetrahedron Letters, 2022, 112, 154208.	1.4	2
360	Transitionâ€Metalâ€Free Methods for the Remote Câ^'H Bond Functionalization of Cyclic Amines. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	6
362	Photochemical Radical Cation Cycloadditions of Aryl Vinyl Ethers. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4

# 363	ARTICLE Electrochemical <i>N</i> entered Radical Addition/Semipinacol Rearrangement Sequence of Alkenyl Cyclobutanols: Synthesis of Î2â€Amino Cyclic Ketones. Asian Journal of Organic Chemistry, 2022, 11, .	IF 2.7	CITATIONS
364	Electrochemical Bromofunctionalization of Alkenes and Alkynes—To Sustainability and Beyond. Sustainable Chemistry, 2022, 3, 430-454.	4.7	10
365	Designing Modular Assembly of Electrochemical Flow Microreactor as an Enabling Technology of Electrosynthesis in Laminar Flow. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
366	Light-driven radical-polar crossover catalysis for cross-coupling with organosilanes. Tetrahedron Letters, 2022, 112, 154231.	1.4	4
367	Electrochemical Reductive Functionalization of Alkenes with Deuterochloroform as a One-Carbon Deuteration Block. Organic Letters, 2022, 24, 8645-8650.	4.6	8
368	Electrochemically enhanced deoxygenative cross-coupling of aryl ketones with heteroarenes through <i>in situ</i> generated benzyl carbocations. Organic and Biomolecular Chemistry, 2022, 21, 80-84.	2.8	3
369	Indirect Electrochemicalâ€Induced Trifluoromethylation of Tryptophan Containing Oligopeptides. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	8
370	Direct Hydroxylarylation of Benzylic Carbons (sp ³ /sp ² /sp) via Radical–Radical Cross-Coupling Powered by Paired Electrolysis. Journal of Organic Chemistry, 2023, 88, 329-340.	3.2	8
371	Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes. Chinese Journal of Organic Chemistry, 2022, 42, 4275.	1.3	4
372	Electrochemically driven [4+2] benzannulation: synthesis of polycyclic (hetero)aromatic compounds. Chemical Communications, 2023, 59, 1681-1684.	4.1	2
373	Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nature Communications, 2023, 14, .	12.8	7
374	Electrochemical-induced cross-coupling for organic and bioorganic synthesis. Chem Catalysis, 2023, 3, 100513.	6.1	2
375	Discovery of Anodic Thiourea Oxidation as a Sustainable Counter Reaction to Boost Electro-Reductive Organic Transformations. ACS Sustainable Chemistry and Engineering, 2023, 11, 2449-2454.	6.7	2
376	Polychlorinated alkylation annulation of <i>N</i> -arylacrylamide under electrochemical conditions. New Journal of Chemistry, 2023, 47, 5780-5785.	2.8	3
377	Electrochemical synthesis of the protected cyclic (1,3;1,6)-β-glucan dodecasaccharide. Faraday Discussions, 0, 247, 59-69.	3.2	0
378	Contemporary photoelectrochemical strategies and reactions in organic synthesis. Chemical Communications, 2023, 59, 3487-3506.	4.1	11
379	Electrochemical Difunctionalization of Alkenes: Simultaneous Construction of C–Se and C–S Bonds. Journal of Organic Chemistry, 2023, 88, 5321-5328.	3.2	10
380	Electroreductive Dicarboxylation of Unactivated Skipped Dienes with CO ₂ . Angewandte Chemie - International Edition, 2023, 62, .	13.8	10

#	Article	IF	CITATIONS
381	Cobalt-catalyzed enantioselective intramolecular reductive cyclization via electrochemistry. Nature Communications, 2023, 14, .	12.8	10
382	Catalyst-Free Electrochemical Sulfonylation of Organoboronic Acids. Journal of Organic Chemistry, 2023, 88, 2296-2305.	3.2	4
383	Electrochemically Enabled Direct C3â€Formylation of Imidazopyridines with Me ₃ N as a Carbonyl Source. Chemistry - an Asian Journal, 2023, 18, .	3.3	3
384	Electrochemical Oxidative Phosphorylations of Glycine Derivatives with R ₂ P(O)â^'Hâ€Containing Compounds via C(<i>sp</i> ³)â^'H Functionalisation. Advanced Synthesis and Catalysis, 2023, 365, 900-905.	4.3	4
385	Radical Cation [2+2] Cycloadditions Enabled by Surface-Assisted Pseudo-Intramolecular Electron Transfers. Synthesis, 0, , .	2.3	1
386	Electricity-Promoted Friedel–Crafts Acylation of Biarylcarboxylic Acids. Journal of Organic Chemistry, 2023, 88, 3794-3801.	3.2	4
387	Electrochemical Syntheses of Polycyclic Aromatic Hydrocarbons (PAHs). Advanced Materials, 2023, 35,	21.0	3
388	Using a nitrogen-centered radical as a selective mediator in electrochemical C(sp3)-H amination. Chem Catalysis, 2023, 3, 100582.	6.1	9
389	Electrochemical electrophilic bromination/spirocyclization of <i>N</i> -benzyl-acrylamides to brominated 2-azaspiro[4.5]decanes. Green Chemistry, 2023, 25, 3543-3548.	9.0	38
390	Electroreductive Dicarboxylation of Unactivated Skipped Dienes with CO2. Angewandte Chemie, 0, , .	2.0	0
391	Electrochemical deoxygenative arylation of aldehydes and ketones. Chemical Communications, 2023, 59, 5587-5590.	4.1	2
392	Electrochemical Allylic Alkylation of Morita-Baylis-Hillman Adducts and <i>N</i> -Hydroxyphthalimide Esters towards C(sp ³)—C(sp ³) Bond Formation. Chinese Journal of Organic Chemistry, 2023, 43, 1574.	1.3	2
393	Challenges in unconventional catalysis. Catalysis Today, 2023, 420, 114180.	4.4	12
394	Insights into reactivity trends for electrochemical C–N bond formations. Organic and Biomolecular Chemistry, 2023, 21, 4290-4296.	2.8	0
395	Deep Electroreductive Chemistry: Harnessing Carbon- and Silicon-Based Reactive Intermediates in Organic Synthesis. ACS Catalysis, 2023, 13, 8038-8048.	11.2	11
396	Recent Advances in the Direct Synthesis of Sulfurâ€Containing Organophosphorus Compounds via Radical Processes. Advanced Synthesis and Catalysis, 2023, 365, 2280-2298.	4.3	5
397	Electrochemically Generated Carbanions Enable Isomerizing Allylation and Allenylation of Aldehydes with Alkenes and Alkynes. Journal of the American Chemical Society, 2023, 145, 14143-14154.	13.7	8
398	Electrochemically Driven Hydrogen Atom Transfer Catalysis: A Tool for C(sp ³)/Si–H Functionalization and Hydrofunctionalization of Alkenes. ACS Catalysis, 2023, 13, 8731-8751.	11.2	16

#	Article	IF	CITATIONS
399	Electrochemical oxidation of allylic C H bond for α, β-unsaturated ketones without peroxide. Journal of Saudi Chemical Society, 2023, 27, 101673.	5.2	0
400	Electro-catalytic multicomponent reaction toward asymmetrical biaryls through heteroarylation of <i>in situ</i> generated fused polycyclic heteroaromatics. Organic Chemistry Frontiers, 2023, 10, 2790-2797.	4.5	2
401	Electrochemical Synthesis of Sultone Derivatives via Dehydrogenative C–O Bond Formation. Organic Letters, 2023, 25, 3476-3481.	4.6	3
402	Metalâ€Free Electrochemical Hydroboration of Olefins. Advanced Synthesis and Catalysis, 2023, 365, 1788-1793.	4.3	2
403	Electro-Oxidative Synthesis of Phenazines. Organic Letters, 2023, 25, 3772-3777.	4.6	3
404	Electrochemical four-component aminochlorination tuned by benzimidazoles. Organic Chemistry Frontiers, 2023, 10, 3353-3360.	4.5	1
405	Electrochemical Organic Synthesis in Aqueous Media. Israel Journal of Chemistry, 2024, 64, .	2.3	2
406	Electrochemical Asymmetric Diacetoxylation of Styrenes Mediated by Chiral Iodoarene Catalyst**. European Journal of Organic Chemistry, 2023, 26, .	2.4	2
407	Electrochemical Dearomatizing Spirolactonization and Spiroetherification of Naphthols and Phenols. Synthesis, 2023, 55, 4173-4180.	2.3	1
408	Pre-electrolysis of LiClO ₄ in Acetonitrile: Electrochemically Induced Protolytic Carbon–Carbon Bond Formation of Benzylic Ethers and Acetals with Allyl Trimethylsilane and Other Carbon Nucleophiles. Journal of Organic Chemistry, 2023, 88, 12526-12530.	3.2	0
409	Electrochemical Late-Stage Functionalization. Chemical Reviews, 2023, 123, 11269-11335.	47.7	15
410	Electrochemical deoxygenative homo-couplings of aromatic aldehydes. Chemical Communications, 2023, 59, 13062-13065.	4.1	1
411	Progress toward Sustainable Methods for Polymer Synthesis and Editing. ACS Symposium Series, 0, , 149-161.	0.5	0
412	Electrocatalytic Desulfurizative Amination of Thioureas to Guanidines. Journal of Organic Chemistry, 2023, 88, 14601-14609.	3.2	1
413	Stereoselective Shono Oxidations: Use of Alkylidene Protective Groups. Electrochemistry, 2023, 91, 112010-112010.	1.4	0
414	Electrochemical Assembly Strategies of Polymer and Hybrid Thin Films for (Bio)sensors, Charge Storage, and Triggered Release. Langmuir, 2023, 39, 11149-11165.	3.5	1
415	Recent Progress in Zweifel Olefination: An Update. Synthesis, 0, , .	2.3	0
416	Direct Electrochemical C(sp3)–H Amidation Enabled by Hexafluoroisopropanol (HFIP). SynOpen, 2023, 07, 491-495.	1.7	0

#	Article	IF	CITATIONS
417	Electrochemical Coupling Reactions Using Nonâ€Transition Metal Mediators: Recent Advances. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
418	Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry - A European Journal, 2024, 30, .	3.3	1
419	Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes. Organic Letters, 2023, 25, 7816-7821.	4.6	2
420	A tutorial on asymmetric electrocatalysis. Chemical Society Reviews, 2023, 52, 8106-8125.	38.1	3
421	Recent advances in paired electrolysis and their application in organic electrosynthesis. Current Opinion in Electrochemistry, 2024, 43, 101425.	4.8	1
422	Direct electrochemical difluorination and azo-fluorination of <i>gem</i> -difluorostyrenes. Organic Chemistry Frontiers, 2023, 11, 142-148.	4.5	2
423	Advanced Electroanalysis for Electrosynthesis. ACS Organic & Inorganic Au, 0, , .	4.0	0
424	Electrochemically Driven Tandem Cyclization Reaction of Unsaturated Sulfoximines with Diselenides. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
425	Electrochemical oxidative dehydrogenative annulation of 1-(2-aminophenyl)pyrroles with cleavage of ethers to synthesize pyrrolo[1,2-a]quinoxaline derivatives. Organic and Biomolecular Chemistry, 0, , .	2.8	0
426	Aromatic C(sp ²)â^H Functionalization by Consecutive Paired Electrolysis: Dibromination of Aryl Amines with Dibromoethane at Room Temperature. Chemistry - A European Journal, 2024, 30, .	3.3	0
427	Peptide coupling using recyclable bicyclic benziodazolone. Chemical Communications, 0, , .	4.1	1
428	Selective electrochemical acceptorless dehydrogenation reactions of tetrahydroisoquinoline derivatives. Organic and Biomolecular Chemistry, 0, , .	2.8	0
429	Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
430	Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis. Angewandte Chemie, 2024, 136, .	2.0	Ο
431	Anodic Oxidation of Methanol to Formaldehyde Synergizing with a Br ^{â€} /Br ₂ Redoxâ€Mediated Chemical Route to Produce Methyl Formate. ChemSusChem, 0, , .	6.8	0
432	CBr ₄ as a Mild Oxidantâ€Enabled Oxidation of a <i>sp</i> ^{<i>3</i>} Câ~'H Bond: A Facile Synthesis of the Persistent Iminium Salts of Tetrahydroisoquinolines. Chemistry - A European Journal, 2024, 30, .	3.3	0
434	Electrochemical generation and utilization of radical intermediates. Current Opinion in Electrochemistry, 2024, 44, 101447.	4.8	0
435	Electrochemical Reductive Cross-Coupling of Vinyl Bromides for the Synthesis of 1,3-Dienes. Organic Letters, 2024, 26, 994-999.	4.6	0

#	Article	IF	CITATIONS
436	Site-Selective Electrochemical Arene C–H Amination. Journal of the American Chemical Society, 2024, 146, 3591-3597.	13.7	1
437	Electrochemical Desulfurizative Amination of Heteroaromatic Thiols by Iodine Catalysis. ChemCatChem, 2024, 16, .	3.7	0
438	Metalâ€Free Regioselective Chlorosulfenylation of Indoles by Dimethylsulfoxide and 1,2â€Dichloroethane. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
439	Electrochemical-Induced C–N Bond Formation: A New Method to Synthesis (<i>Z</i>)-Quinazolinone Oximes Using Primary Amines and Quinazolin-4(3 <i>H</i>)-one. Organic Letters, 2024, 26, 1271-1276.	4.6	0
440	Electrochemical Dearomatizing Methoxylation of Phenols and Naphthols: Synthetic and Computational Studies. Chemistry - A European Journal, 2024, 30, .	3.3	0
441	Electrochemical multicomponent [2+2+1] cascade cyclization of enaminones and primary amines towards the synthesis of 4-acylimidazoles. Chemical Communications, 2024, 60, 2677-2680.	4.1	0
442	A Hydrogen Evolution Catalyst [Co ₂ O ₂] Metallacycle Enables Regioselective Allene C(sp ²)â€H Functionalization. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
443	A Hydrogen Evolution Catalyst [Co ₂ O ₂] Metallacycle Enables Regioselective Allene C(sp ²)â€H Functionalization. Angewandte Chemie, 2024, 136, .	2.0	0
444	A Scalable Solution to Constant-Potential Flow Electrochemistry. Organic Process Research and Development, 0, , .	2.7	0
445	Synthetic electrochemistry for peptides. Current Opinion in Electrochemistry, 2024, 45, 101469.	4.8	0
446	Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines. Acta Chimica Sinica, 2024, 82, 190.	1.4	0
447	Carbocationoids, a concept for controlling highly reactive cationic species. Communications Chemistry, 2024, 7, .	4.5	0
448	Catalyst-free electrochemical SNAr of electron-rich fluoroarenes using carboxylic acids. EScience, 2024, , 100255.	41.6	0
449	Continuous Flow Electroselenocyclization of Allylamides and Unsaturated Oximes to Selenofunctionalized Oxazolines and Isoxazolines, ACS Organic & Inorganic Au. 0	4.0	0