Radio Resource Management in Machine-to-Machine C

IEEE Communications Surveys and Tutorials 20, 791-828 DOI: 10.1109/comst.2017.2765344

Citation Report

#	Article	IF	CITATIONS
1	Homogeneous Clustering Algorithm based on Average Residual Energy for Energy-Efficient MTC Networks. , 2018, , .		3
2	Frequency Offset Tolerant Synchronization Signal Design in NB-IoT. Sensors, 2018, 18, 4077.	3.8	9
3	Power-Efficient Random Access Design for Machine Type Communication. Electronics (Switzerland), 2018, 7, 286.	3.1	1
4	Spectrum Hand-Off for RF Energy Harvesting in Cognitive Radio Based Machine to Machine Communication Networks. , 2018, , .		3
5	NB-IoT: A Candidate Technology for Massive IoT in the 5G Era. , 2018, , .		22
6	A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE Access, 2018, 6, 78238-78259.	4.2	384
7	Machine-to-Machine Communication: An Overview of Opportunities. Computer Networks, 2018, 145, 255-276.	5.1	47
8	DEMO: Mobile Relay Architecture for Low-Power IoT Devices. , 2018, , .		13
9	Generalized Space-Time Super-Modulation for Headerless Grant-Free Rateless Multiple Access. , 2018, , .		3
10	Space-Air-Ground Integrated Network: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 2714-2741.	39.4	634
11	Multi-Scale Dynamic Allocation of Licensed and Unlicensed Spectrum in Software-Defined HetNets. IEEE Network, 2019, 33, 9-15.	6.9	16
12	Energy-Efficient Resource Allocation With Hybrid TDMA–NOMA for Cellular-Enabled Machine-to-Machine Communications. IEEE Access, 2019, 7, 105800-105815.	4.2	27
13	A Predictive Semi-Persistent Scheduling Scheme for Low-Latency Applications in LTE and NR Networks. , 2019, , .		10
14	Energy-Efficient Sensor Grouping for IEEE 802.11ah Networks With Max-Min Fairness Guarantees. IEEE Access, 2019, 7, 102284-102294.	4.2	24
15	Transmission capacity analysis of relay-assisted D2D cellular networks with M2M coexistence. Computer Networks, 2019, 164, 106887.	5.1	5
16	Channel Access and Power Control for Energy-Efficient Delay-Aware Heterogeneous Cellular Networks for Smart Grid Communications Using Deep Reinforcement Learning. IEEE Access, 2019, 7, 133474-133484.	4.2	19
17	Blind Weighted Least-Squares Frequency Offset Estimation Method for LTE Machine-Type Communications. IEEE Internet of Things Journal, 2019, 6, 9806-9815.	8.7	3
18	Joint Power and Sub-Channel Allocation for Secure Transmission in NOMA-Based mMTC Networks. IEEE Systems Journal, 2019, 13, 2476-2487.	4.6	23

#	Article	IF	CITATIONS
19	Self-Sustainable Dense Cellular M2M System With Hybrid Energy Harvesting and High Sensitivity Rectenna. IEEE Access, 2019, 7, 19447-19460.	4.2	5
20	A Comprehensive Survey of RAN Architectures Toward 5G Mobile Communication System. IEEE Access, 2019, 7, 70371-70421.	4.2	197
21	NOMA Aided Narrowband IoT for Machine Type Communications With User Clustering. IEEE Internet of Things Journal, 2019, 6, 7183-7191.	8.7	70
22	Versatile Access Control for Massive IoT: Throughput, Latency, and Energy Efficiency. IEEE Transactions on Mobile Computing, 2019, , 1-1.	5.8	14
23	Pool resource management based on early collision detection in random access of massive MTC over LTE. Ad Hoc Networks, 2019, 91, 101883.	5.5	5
24	Data Aggregation in Massive Machine Type Communication: Challenges and Solutions. IEEE Access, 2019, 7, 41921-41946.	4.2	41
25	iRAF: A Deep Reinforcement Learning Approach for Collaborative Mobile Edge Computing IoT Networks. IEEE Internet of Things Journal, 2019, 6, 7011-7024.	8.7	162
26	Managing Mobile Relays for Secure E2E Connectivity of Low-Power IoT Devices. , 2019, , .		6
27	Compressive Sensing and Autoencoder Based Compressed Data Aggregation for Green IoT Networks. , 2019, , .		4
28	From Dynamic Spectrum Management to Smart Spectrum Management. , 2019, , .		3
29	Grant-Free Massive Machine-Type Communications with Backward Activity Detection. , 2019, , .		0
30	Energy Efficiency Optimization-Based Joint Resource Allocation and Clustering Algorithm for M2M Communication Systems. IEEE Access, 2019, 7, 168507-168519.	4.2	13
31	An Energy Efficient Uplink Scheduling and Resource Allocation for M2M Communications in SC-FDMA Based LTE-A Networks. Mobile Networks and Applications, 2019, , 1.	3.3	4
32	Heuristic Energy Efficiency Optimization Scheme for Multi-hop mMTC Networks. , 2019, , .		0
33	Joint Access Control and Resource Allocation for mMTC based on Tagged Preamble. , 2019, , .		0
34	Approximations of the Aggregated Interference Statistics for Outage Analysis in Massive MTC. Sensors, 2019, 19, 5448.	3.8	0
35	Enabling End-to-End Secure Connectivity for Low-Power IoT Devices with UAVs. , 2019, , .		8
36	Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs Standards and Supported Mobility. IEEE Communications Surveys and Tutorials, 2019, 21, 1561-1581.	39.4	216

#	Article	IF	CITATIONS
38	NB-IoT optimization for smart meters networks of smart cities: Case study. AEJ - Alexandria Engineering Journal, 2020, 59, 4267-4281.	6.4	16
39	Beamforming and Power Allocation in Dynamic TDD Networks Supporting Machine-Type Communication. , 2020, , .		3
40	UAV-Assisted Data Transmission in Blockchain-Enabled M2M Communications with Mobile Edge Computing. IEEE Network, 2020, 34, 242-249.	6.9	33
41	Joint User Identification, Channel Estimation, and Signal Detection for Grant-Free NOMA. IEEE Transactions on Wireless Communications, 2020, 19, 6960-6976.	9.2	52
42	Resource Optimization for Delay-Tolerant Data in Blockchain-Enabled IoT With Edge Computing: A Deep Reinforcement Learning Approach. IEEE Internet of Things Journal, 2020, 7, 9399-9412.	8.7	74
43	Resource Allocation for mMTC/H2H Coexistence with H2H's Success Probability of Data Transmission. , 2020, , .		2
44	Deep Learning Based Resources Allocation for Internet-of-Things Deployment Underlaying Cellular Networks. Mobile Networks and Applications, 2020, 25, 1833-1841.	3.3	8
45	Beamforming and Power Allocation in Dynamic TDD Based H2H/M2M Networks with Energy Harvesting. , 2020, , .		0
46	Side-Information Aided Compressed Multi-User Detection for Up-Link Grant-Free NOMA. IEEE Transactions on Wireless Communications, 2020, 19, 7720-7731.	9.2	15
47	Detection Techniques for Massive Machine-Type Communications: Challenges and Solutions. IEEE Access, 2020, 8, 180928-180954.	4.2	14
48	Distributive Throughput Optimization for Massive Random Access of M2M Communications in LTE Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 11828-11840.	6.3	11
49	MIMO SWIPT Systems With Power Amplifier Nonlinearities and Memory Effects. IEEE Wireless Communications Letters, 2020, 9, 2187-2191.	5.0	14
50	Uplink Resource Allocation in Energy Harvesting Cellular Network With H2H/M2M Coexistence. IEEE Transactions on Wireless Communications, 2020, 19, 5101-5116.	9.2	7
51	Resource Management in Cloud Radio Access Network: Conventional and New Approaches. Sensors, 2020, 20, 2708.	3.8	32
52	User Scheduling and Energy Management with QoS Provisioning for NOMA-based M2M Communications. , 2020, , .		1
53	Optimal Control-Aware Transmission for Mission-Critical M2M Communications Under Bandwidth Cost Constraints. IEEE Transactions on Communications, 2020, 68, 5924-5937.	7.8	3
54	NOMA-Assisted Machine-Type Communications in UDN: State-of-the-Art and Challenges. IEEE Communications Surveys and Tutorials, 2020, 22, 1276-1304.	39.4	85
55	Spectrum Knowledge and Real-Time Observing Enabled Smart Spectrum Management. IEEE Access, 2020, 8, 44153-44162.	4.2	12

	CITATION R	EPORT	
#	Article	IF	Citations
56	Ergodic Spectrum Management. IEEE Transactions on Communications, 2020, 68, 1794-1821.	7.8	4
57	Generative neural network based spectrum sharing using linear sum assignment problems. China Communications, 2020, 17, 14-29.	3.2	15
58	Survey of Radio Resource Management in 5G Heterogeneous Networks. IEEE Access, 2020, 8, 131202-131223.	4.2	51
59	Energy Efficient Joint Resource Allocation and Clustering Algorithm for M2M Communication Systems. , 2020, , .		1
60	Non-Orthogonal Random Access and Data Transmission Scheme for Machine-to-Machine Communications in Cellular Networks. IEEE Access, 2020, 8, 27687-27704.	4.2	9
61	Improved Resource Allocation in 5G MTC Networks. IEEE Access, 2020, 8, 49187-49197.	4.2	17
62	An Efficient Resource Allocation for Massive MTC in NOMA-OFDMA Based Cellular Networks. Electronics (Switzerland), 2020, 9, 705.	3.1	1
63	D2D communication mode selection and resource allocation in 5G wireless networks. Computer Communications, 2020, 155, 244-251.	5.1	24
64	Improving Spectrum Efficiency of Cell-Edge Devices by Incentive Architecture Applications With Dynamic Charging. IEEE Transactions on Industrial Informatics, 2021, 17, 795-808.	11.3	10
65	A Survey on Beyond 5G Network With the Advent of 6G: Architecture and Emerging Technologies. IEEE Access, 2021, 9, 67512-67547.	4.2	221
66	NBâ€IoT optimisation: Holistic view for smart cities applications with smart meters networks case study. IET Communications, 2021, 15, 112-125.	2.2	3
67	Online Control of Preamble Groups With Priority in Massive IoT Networks. IEEE Journal on Selected Areas in Communications, 2021, 39, 700-713.	14.0	15
68	Multiple Access Control in a Centralized Full-Duplex Cognitive Machine Type Network with RF Energy Harvesting. Wireless Personal Communications, 2021, 118, 949-960.	2.7	0
69	Joint Beamforming and Power Allocation for M2M/H2H Co-Existence in Green Dynamic TDD Networks: Low-Complexity Optimal Designs. IEEE Internet of Things Journal, 2022, 9, 4799-4815.	8.7	3
70	Short and Long Multi-frames Based Multiple Access Control for Cognitive Machine Type Communication with Full-Duplex Gateway. Wireless Personal Communications, 2021, 118, 2749-2764.	2.7	0
71	Wireless energy transfer policies for cognitive radio based MAC in energy-constrained IoT networks. Telecommunication Systems, 2021, 77, 435-449.	2.5	2
73	Resource Allocation for Full-Duplex M2M Networks with Imperfect CSI. , 2021, , .		0
74	Analysis of Downlink Connectivity in NB-IoT Networks Employing NOMA with Imperfect SIC. , 2021, , .		2

#	Article	IF	CITATIONS
75	QoS-Guaranteed Resource Allocation for Full-Duplex Networks With M2M/H2H Co-Existence Under Imperfect CSI. IEEE Transactions on Communications, 2021, 69, 4536-4544.	7.8	4
76	Dynamic Slot Allocations for M2M in IEEE 802.11ah Networks. , 2020, , .		1
77	Simulink based Modeling and Performance Analysis of NB-IoT Uplink Scheduler. , 2020, , .		4
78	Architecture, Security Vulnerabilities, and the Proposed Countermeasures in Agriculture-Internet-of-Things (AloT) Systems. Studies in Big Data, 2022, , 329-353.	1.1	5
79	Space-Air-Ground Integrated Network Development and Applications in High-Speed Railways: A Survey. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10066-10085.	8.0	12
80	Sum-Rate Optimization-based Access Mode Selection and Resource Allocation for IoT Devices in 5G. , 2020, , .		2
81	Contention-based nonorthogonal massive access with massive MIMO. China Communications, 2020, 17, 79-90.	3.2	1
82	A Multi-band 5G-NR Fiber-wireless System for Next-generation Networks. , 2021, , .		2
83	Wireless Electromagnetic Radiation Assessment Based on the Specific Absorption Rate (SAR): A Review Case Study. Electronics (Switzerland), 2022, 11, 511.	3.1	14
84	The Frontiers of Deep Reinforcement Learning for Resource Management in Future Wireless HetNets: Techniques, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 2022, 3, 322-365.	6.9	19
85	Energy-Efficient Interference-Aware Cognitive Machine-to-Machine Communications Underlaying Cellular Networks. IEEE Access, 2022, 10, 33932-33942.	4.2	1
86	PPO-Based PDACB Traffic Control Scheme for Massive IoV Communications. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 1116-1125.	8.0	4
87	Machine Learning for Physical Layer in 5G and beyond Wireless Networks: A Survey. Electronics (Switzerland), 2022, 11, 121.	3.1	18
88	An Optimization-Based Orchestrator for Resource Access and Operation Management in Sliced 5G Core Networks. Sensors, 2022, 22, 100.	3.8	0
89	When Aloha and CSMA Coexist: Modeling, Fairness, and Throughput Optimization. IEEE Transactions on Wireless Communications, 2022, 21, 8163-8178.	9.2	0
90	Cache-Based Green Distributed Cell Dormancy Technique for Dense Heterogeneous Networks. Computer Communications, 2022, 191, 69-77.	5.1	3
91	Double QoS Guarantee for NOMA-Enabled Massive MTC Networks. IEEE Internet of Things Journal, 2022, 9, 22657-22668.	8.7	2
92	Bayesian Receiver Design for Asynchronous Massive Connectivity. IEEE Transactions on Wireless Communications, 2023, 22, 301-316.	9.2	2

#	Article	IF	CITATIONS
93	Al-aided Traffic Control Scheme for M2M Communications in the Internet of Vehicles. , 2022, , .		4
94	Collision-Aware Random Access Control with Preamble Reuse for Industrial IoT. , 2022, , .		0
95	Demystifying Resource Allocation Policies in Operational 5G mmWave Networks. , 2022, , .		3
96	QoS-Guarantee Access Management for Massive MTC Networks. , 2022, , .		0
97	Intelligent authentication of 5G healthcare devices: A survey. Internet of Things (Netherlands), 2022, 20, 100610.	7.7	26
98	Grant-Free Non-Orthogonal Multiple Access in Single-Carrier Frequency-Selective Fading Channels. IEEE Transactions on Vehicular Technology, 2022, 71, 12943-12957.	6.3	0
99	Equilibrated and Fast Resources Allocation for Massive and Diversified MTC Services Using Multiagent Deep Reinforcement Learning. IEEE Internet of Things Journal, 2023, 10, 664-681.	8.7	1
100	DewCityGame: Dew Computing-based 5G IoT for Smart City Using Coalition Formation Game. IETE Journal of Research, 2023, 69, 5784-5793.	2.6	4
102	Modelling UAV-based IoT Clustered Networks For Reduced Capability UEs. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	1
103	Ridge Gap Waveguide Beamforming Components and Antennas for Millimeter-Wave Applications. , 0, , .		1
104	Statistical Learning-based Adaptive Network Access for the Industrial Internet-of-Things. IEEE Internet of Things Journal, 2023, , 1-1.	8.7	1
105	Energy efficiency and delay determinacy tradeoff in energy harvesting-powered zero-touch deterministic industrial M2M communications. Engineering Applications of Artificial Intelligence, 2023, 121, 105997.	8.1	2
106	Machine Learning-Based Digital Pre-Distortion Scheme for RoF Systems and Experimental 5G mm-waves Fiber-Wireless Implementation. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2023, 22, 172-183.	0.7	2
107	MVNOCoreSim: A Digital Twin for Virtualized IoT-Centric Mobile Core Networks. IEEE Internet of Things Journal, 2023, 10, 13974-13987.	8.7	0
108	Hypergraph-Based Joint Channel and Power Resource Allocation for Cross-Cell M2M Communication in IIoT. IEEE Internet of Things Journal, 2023, 10, 15350-15361.	8.7	0
109	A Study of FR2 Radio Propagation with Focus on Mobility Management in an Industrial Scenario. , 2023, , .		0
110	Performance evaluation and downstream system planning based energy management in LTE systems. Multimedia Tools and Applications, 2024, 83, 1787-1840.	3.9	1
111	The Effect of Sand and Dust Storms (SDSs) and Rain on the Performance of Cellular Networks in the Millimeter Wave Band. IEEE Access, 2023, 11, 69252-69262.	4.2	1

#	Article	IF	CITATIONS
112	Al/ML for beyond 5G systems: Concepts, technology enablers & solutions. Computer Networks, 2023, 237, 110044.	5.1	0
113	Delay-Aware Device Grouping in IEEE 802.11ah-Based Networks. , 2023, , .		0
114	Evaluating radiofrequency electromagnetic field exposure in confined spaces: a systematic review of recent studies and future directions. Radiation Protection Dosimetry, 2024, 200, 598-616.	0.8	0