Indoor particulate pollution in fitness centres with emp

Environmental Pollution 233, 180-193 DOI: 10.1016/j.envpol.2017.10.050

Citation Report

#	Article	IF	CITATIONS
1	Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust. Environment International, 2018, 114, 252-265.	4.8	45
2	Indoor air quality in health clubs: Impact of occupancy and type of performed activities on exposure levels. Journal of Hazardous Materials, 2018, 359, 56-66.	6.5	23
3	Exposure and risk assessment of BTEX in indoor air of gyms in Tehran, Iran. Microchemical Journal, 2019, 150, 104135.	2.3	46
4	(Ultra) Fine particle concentrations and exposure in different indoor and outdoor microenvironments during physical exercising. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 591-602.	1.1	10
5	Assessment of the air quality in 20 public indoor swimming pools located in the Northern Region of Portugal. Environment International, 2019, 133, 105274.	4.8	21
6	Microbial diversity of bioaerosol inside sports facilities and antibiotic resistance of isolated Staphylococcus spp Aerobiologia, 2019, 35, 731-742.	0.7	14
7	Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments. Environmental Pollution, 2019, 246, 885-895.	3.7	39
8	Comprehensive assessment of the indoor air quality in a chlorinated Olympic-size swimming pool. Environment International, 2020, 136, 105401.	4.8	14
9	Ultrafine particles: Levels in ambient air during outdoor sport activities. Environmental Pollution, 2020, 258, 113648.	3.7	25
10	Canaries at the Climbing Wall: A Comparative Study of Particulate Matter at Two University Climbing Walls. Recreational Sports Journal, 2020, 44, 81-88.	0.2	2
11	A Bimodal Protein Fabric Enabled via In Situ Diffusion for High-Performance Air Filtration. Environmental Science & Technology, 2020, 54, 12042-12050.	4.6	24
12	Human exposure to air contaminants in sports environments. Indoor Air, 2020, 30, 1109-1129.	2.0	37
13	Implementing an emissions-rate model in computational fluid dynamics simulations of contaminant diffusion processes: A case study with xylene in painting workshops. Indoor and Built Environment, 2021, 30, 906-923.	1.5	1
14	Assessment of indoor air exposure at residential homes: Inhalation dose and lung deposition of PM10, PM2.5 and ultrafine particles among newborn children and their mothers. Science of the Total Environment, 2020, 717, 137293.	3.9	65
15	Indoor environmental quality in households of families with infant twins under 1 year of age living in Porto. Environmental Research, 2021, 198, 110477.	3.7	14
16	Measuring Particle Concentration and Compositions in Indoor Air. , 2021, , 1-55.		1
17	Measuring Particle Concentrations and Composition in Indoor Air. , 2021, , 1-51.		0
18	The effect of indoor heating system location on particle deposition and convection heat transfer: DMRT-LBM. Computers and Mathematics With Applications, 2021, 86, 90-105.	1.4	14

#	Article	IF	CITATIONS
19	Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic. Building and Environment, 2021, 193, 107659.	3.0	113
20	Assessment of exposure effects of indoor particles in different microenvironments. Air Quality, Atmosphere and Health, 0, , 1.	1.5	0
21	Indoor Sources of Air Pollutants. Issues in Environmental Science and Technology, 2019, , 1-34.	0.4	11
22	Indoor Air Quality Under Restricted Ventilation andÂOccupancy Scenarios withÂFocus onÂParticulate Matter: AÂCase Study ofÂFitness Centre. Studies in Systems, Decision and Control, 2022, , 345-354.	0.8	1
23	Investigating Ambient Air Quality of a Shooting Range during Official National Competitions. Environmental Research and Technology, 0, , .	0.8	0
24	Modern Solutions for Indoor Air Quality Management in Commercial and Residential Spaces. Internet of Things, 2022, , 73-88.	1.3	1
25	Air Pollution Under Covid-19 Increases Gym Sports Travel Behaviour. SSRN Electronic Journal, 0, , .	0.4	0
26	Distribution and Exposure Levels to Particulate Matter in Gyms Located in Shopping Malls. Studies in Systems, Decision and Control, 2023, , 89-97.	0.8	0
27	Air Pollution Increased the Demand for Gym Sports under COVID-19: Evidence from Beijing, China. International Journal of Environmental Research and Public Health, 2022, 19, 12614.	1.2	0
28	Measuring Particle Concentrations and Composition in Indoor Air. , 2022, , 517-567.		0
30	Indoor Air Quality in Fitness Centers with/without the Restrictions of COVID-19. Studies in Systems, Decision and Control, 2024, , 341-353.	0.8	1

CITATION REPORT