Viscous flow of medieval cathedral glass

Journal of the American Ceramic Society 101, 5-11 DOI: 10.1111/jace.15092

Citation Report

#	Article	IF	CITATIONS
1	Modified elastic model for viscosity in glass-forming systems. Physical Review B, 2017, 96, .	3.2	7
2	On the Prony series representation of stretched exponential relaxation. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 75-87.	2.6	41
3	Glass relaxation and hysteresis of the glass transition by molecular dynamics simulations. Physical Review B, 2018, 98, .	3.2	20
4	Comment on "Class Transition, Crystallization of Glass-Forming Melts, and Entropy―Entropy 2018, 20, 103 Entropy, 2018, 20, 703.	2.2	4
5	Predicting glass transition temperatures using neural networks. Acta Materialia, 2018, 159, 249-256.	7.9	120
6	Basis glass states: New insights from the potential energy landscape. Journal of Non-Crystalline Solids: X, 2019, 3, 100031.	1.2	11
7	Phase-change materials: Empowered by an unconventional bonding mechanism. MRS Bulletin, 2019, 44, 699-704.	3.5	15
8	Understanding Glass through Differential Scanning Calorimetry. Chemical Reviews, 2019, 119, 7848-7939.	47.7	258
9	Fundamentals of the glassy state. , 2019, , 19-35.		2
10	The viscosity of glass. , 2019, , 215-251.		0
11	Perspectives on the scientific career and impact of Prabhat K. Gupta. Journal of Non-Crystalline Solids: X, 2019, 1, 100011.	1.2	1
12	The Grande Rose of theÂReims Cathedral: an eight-century perspective on the colour management of medieval stained glass. Scientific Reports, 2019, 9, 3287.	3.3	21
13	Structural evolution of fused silica below the glass-transition temperature revealed by in-situ neutron total scattering. Journal of Non-Crystalline Solids, 2020, 528, 119760.	3.1	15
14	Data-driven predictive models for chemical durability of oxide glass under different chemical conditions. Npj Materials Degradation, 2020, 4, .	5.8	14
15	Maxwell relaxation time for nonexponential αâ€relaxation phenomena in glassy systems. Journal of the American Ceramic Society, 2020, 103, 3590-3599.	3.8	24
16	Why does B ₂ O ₃ suppress nepheline (NaAlSiO ₄) crystallization in sodium aluminosilicate glasses?. Physical Chemistry Chemical Physics, 2020, 22, 8679-8698.	2.8	23
17	Temperature-induced structural change through the glass transition of silicate glass by neutron diffraction. Physical Review B, 2020, 101, .	3.2	10
18	Is the structural relaxation of glasses controlled by equilibrium shear viscosity?. Journal of the American Ceramic Society, 2021, 104, 2066-2076.	3.8	22

ITATION REDO

#	Article	IF	CITATIONS
19	Nonequilibrium Viscosity and the Glass Transition. , 2021, , 295-314.		1
20	Soda-Lime-Silica Glasses. , 2021, , 483-495.		0
21	Fragility and temperature dependence of stretched exponential relaxation in glassâ€forming systems. Journal of the American Ceramic Society, 2021, 104, 4559-4567.	3.8	9
22	Molecular dynamics study on the viscosity of glassâ€forming systems near and below the glass transition temperature. Journal of the American Ceramic Society, 2021, 104, 6227-6241.	3.8	5
23	Glass transition of the phase change material AIST and its impact on crystallization. Materials Science in Semiconductor Processing, 2021, 134, 105990.	4.0	10
24	Vibrational spectroscopy analysis of silica and silicate glass networks. Journal of the American Ceramic Society, 2022, 105, 2355-2384.	3.8	36
25	Future of Optical Glass Education. Optical Materials Express, 0, , .	3.0	2
27	Modeling nonequilibrium thermoviscoelastic material behaviors of glass in nonisothermal glass molding. Journal of the American Ceramic Society, 2022, 105, 6799-6815.	3.8	5
28	Thermomechanical Behaviour During Forming of Silicate Glasses—Modelling and Characterization. Advanced Structured Materials, 2022, , 109-135.	0.5	0
29	Revealing the relationship between liquid fragility and medium-range order in silicate glasses. Nature Communications, 2023, 14, .	12.8	9
30	Structural relaxation dynamics of a silicate glass probed by refractive index and ionic conductivity. Journal of the American Ceramic Society, 2023, 106, 5814-5821.	3.8	3
31	Geological timescales' aging effects of lunar glasses. Science Advances, 2023, 9, .	10.3	0

32 Earth, Wind, Fire, and Water. , 2024, , 172-206.

CITATION REPORT