Catalytic insights into the production of biomass-derive furfural and humins

Catalysis Today 302, 2-15 DOI: 10.1016/j.cattod.2017.03.008

Citation Report

#	Article	IF	CITATIONS
1	Towards the photophysical studies of humin by-products. Chemical Communications, 2017, 53, 7015-7017.	2.2	14
2	Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H ₂ Production Catalyzed by Ultrathin Ni/CdS Nanosheets. Journal of the American Chemical Society, 2017, 139, 15584-15587.	6.6	390
3	MOFs <i>vs.</i> zeolites: carbonyl activation with M(<scp>iv</scp>) catalytic sites. Catalysis Science and Technology, 2017, 7, 5482-5494.	2.1	29
4	Influence of ligand substitution on molybdenum catalysts with tridentate Schiff base ligands for the organic solvent-free oxidation of limonene using aqueous TBHP as oxidant. Molecular Catalysis, 2017, 443, 52-59.	1.0	27
5	Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chemistry, 2017, 19, 4423-4434.	4.6	57
6	Production of Furanic Biofuels with Zeolite and Metal Oxide Bifunctional Catalysts for Energy-and Product-Driven Biorefineries. Biofuels and Biorefineries, 2017, , 239-271.	0.5	1
7	Copper(I)â€Catalyzed Fourâ€Component Coupling Using Renewable Building Blocks of CO ₂ and Biomassâ€Based Aldehydes. European Journal of Organic Chemistry, 2018, 2018, 3105-3113.	1.2	14
8	Conversion of Biomass and Its Derivatives to Levulinic Acid and Levulinate Esters via Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 4749-4766.	1.8	69
9	Multiple cluster CH activations and transformations of furan by triosmium carbonyl complexes. Chemical Communications, 2018, 54, 3464-3467.	2.2	8
10	Catalytic Pyrolysis of Biomass and Polymer Wastes. Catalysts, 2018, 8, 659.	1.6	113
11	Assessment on the double role of the transition metal salts on the acetalization of furfural: Lewis and BrÃ,nsted acid catalysts. Molecular Catalysis, 2018, 461, 40-47.	1.0	21
12	Fast furfural formation from xylose using solid acid catalysts assisted by a microwave reactor. Fuel Processing Technology, 2018, 182, 56-67.	3.7	21
13	Humins from Biorefineries as Thermoreactive Macromolecular Systems. ChemSusChem, 2018, 11, 4246-4255.	3.6	27
14	Insights on Thermal and Fire Hazards of Humins in Support of Their Sustainable Use in Advanced Biorefineries. ACS Sustainable Chemistry and Engineering, 2018, 6, 16692-16701.	3.2	20
15	A novel approach to biphasic strategy for intensification of the hydrothermal process to give levulinic acid: Use of an organic non-solvent. Bioresource Technology, 2018, 264, 180-189.	4.8	19
16	Auto rosslinked Rigid Foams Derived from Biorefinery Byproducts. ChemSusChem, 2018, 11, 2797-2809.	3.6	39
17	Humins valorization: From well-defined properties to potential applications. AIP Conference Proceedings, 2018, , .	0.3	2
18	Synergistic Production of Methyl Lactate from Carbohydrates Using an Ionic Liquid Functionalized Snâ€Containing Catalyst. ChemCatChem, 2018, 10, 4154-4161.	1.8	9

#	Article	IF	CITATIONS
19	CH activations in aldehydes in reactions with Ru5(μ5-C)(CO)15. Journal of Organometallic Chemistry, 2018, 871, 159-166.	0.8	5
20	Biomass Promises: A Bumpy Road to a Renewable Economy. Current Green Chemistry, 2018, 5, 47-59.	0.7	15
21	Fructose dehydration promoted by acidic catalysts obtained from biodiesel waste. Chemical Engineering Journal, 2018, 348, 860-869.	6.6	27
22	Lowâ€Temperature Continuousâ€Flow Dehydration of Xylose Over Waterâ€Tolerant Niobia–Titania Heterogeneous Catalysts. ChemSusChem, 2018, 11, 3649-3660.	3.6	20
23	Terephthalic acid from waste PET: An efficient and reusable catalyst for xylose conversion into furfural. Catalysis Today, 2019, 324, 27-32.	2.2	21
24	Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renewable and Sustainable Energy Reviews, 2019, 114, 109296.	8.2	107
25	Reconstruction of humins formation mechanism from decomposition products: A GC-MS study based on catalytic continuous flow depolymerizations. Molecular Catalysis, 2019, 479, 110564.	1.0	16
26	Kinetics and Chemorheological Analysis of Cross-Linking Reactions in Humins. Polymers, 2019, 11, 1804.	2.0	24
27	The Dark Side of Biomass Valorization: A Laboratory Experiment To Understand Humin Formation, Catalysis, and Green Chemistry. Journal of Chemical Education, 2019, 96, 3030-3037.	1.1	22
28	Esterification and ketalization of levulinic acid with desilicated zeolite β and pseudoâ€homogeneous model for reaction kinetics. International Journal of Chemical Kinetics, 2019, 51, 299-308.	1.0	10
29	Continuous flow synthesis of amines from the cascade reactions of nitriles and carbonyl-containing compounds promoted by Pt-modified titania catalysts. Green Chemistry, 2019, 21, 300-306.	4.6	21
30	Biorefining via solid-state fermentation of rice and sunflower by-products employing novel monosporic strains from Pleurotus sapidus. Bioresource Technology, 2019, 289, 121692.	4.8	22
31	Identification of More Benign Cathode Materials for the Electrochemical Reduction of Levulinic Acid to Valeric Acid. ChemElectroChem, 2019, 6, 3285-3290.	1.7	25
32	Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chemical Engineering Journal, 2019, 373, 446-457.	6.6	25
33	Reductive Amination/Cyclization of Methyl Levulinate with Aspartic Acid: Towards Renewable Polyesters with a Pendant Lactam Unit. ChemSusChem, 2019, 12, 3370-3376.	3.6	12
34	Condensation of α-Carbonyl Aldehydes Leads to the Formation of Solid Humins during the Hydrothermal Degradation of Carbohydrates. ACS Omega, 2019, 4, 7330-7343.	1.6	61
35	Continuousâ€Flow Oxidation of HMF to FDCA by Resinâ€Supported Platinum Catalysts in Neat Water. ChemSusChem, 2019, 12, 2558-2563.	3.6	56
36	Dehydration of fructose, sucrose and inulin to 5-hydroxymethylfurfural over yeast-derived carbonaceous microspheres at low temperatures. RSC Advances, 2019, 9, 9041-9048.	1.7	29

#	Article	IF	CITATIONS
37	Continuous Flow Synthesis of High Valuable N-Heterocycles via Catalytic Conversion of Levulinic Acid. Frontiers in Chemistry, 2019, 7, 103.	1.8	21
38	Activation of Heteroaromatic C–H Bonds in Furan and 2,5-Dimethylfuran. Inorganic Chemistry, 2019, 58, 6008-6015.	1.9	7
39	Sustainable processes for the catalytic synthesis of safer chemical substitutes of N-methyl-2-pyrrolidone. Molecular Catalysis, 2019, 466, 60-69.	1.0	27
40	Recent Advances in the Catalytic Production of Platform Chemicals from Holocellulosic Biomass. ChemCatChem, 2019, 11, 2022-2042.	1.8	92
41	The Empty Palm Oil Fruit Bunch as the Potential Source of Biomass in Furfural Production in Indonesia: Preliminary Process Design and Environmental Perspective. Journal of Physics: Conference Series, 2019, 1363, 012096.	0.3	2
42	Cross-linked polyfuran networks with elastomeric behaviour based on humins biorefinery by-products. Green Chemistry, 2019, 21, 6277-6289.	4.6	23
43	Humins in the environment: early stage insights on ecotoxicological aspects. Biofuels, Bioproducts and Biorefining, 2019, 13, 464-470.	1.9	6
44	A comparative study of water-immiscible organic solvents in the production of furfural from xylose and birch hydrolysate. Journal of Industrial and Engineering Chemistry, 2019, 72, 354-363.	2.9	30
45	Confinement of Ultrasmall Cobalt Oxide Clusters within Silicalite-1 Crystals for Efficient Conversion of Fructose into Methyl Lactate. ACS Catalysis, 2019, 9, 1923-1930.	5.5	39
46	Environmental Catalysis: Present and Future. ChemCatChem, 2019, 11, 18-38.	1.8	87
47	Highly productive xylose dehydration using a sulfonic acid functionalized KIT-6 catalyst. Fuel, 2019, 236, 1156-1163.	3.4	27
48	Formation of humins during degradation of carbohydrates and furfural derivatives in various solvents. Biomass Conversion and Biorefinery, 2020, 10, 277-287.	2.9	62
49	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 501-512.	3.6	46
50	Molecular-Level Proximity of Metal and Acid Sites in Zeolite-Encapsulated Pt Nanoparticles for Selective Multistep Tandem Catalysis. ACS Catalysis, 2020, 10, 3340-3348.	5.5	50
51	Towards zero waste: A valorization route of washing separation and liquid hot water consecutive pretreatment to achieve solid vinasse based biorefinery. Journal of Cleaner Production, 2020, 248, 119253.	4.6	21
52	Enabling Selective Tandem Reactions via Catalyst Architecture Engineering. Trends in Chemistry, 2020, 2, 929-941.	4.4	13
53	Direct conversion of xylose to butyl levulinate over mesoporous zirconium silicates with an integrated dehydration alcoholysis process. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 168-175.	2.7	8
54	Porous organic polymer as an efficient organocatalyst for the synthesis of biofuel ethyl levulinate. Molecular Catalysis, 2020, 494, 111119.	1.0	9

#	Article	IF	CITATIONS
55	Controlling the Reaction Networks for Efficient Conversion of Glucose into 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 4812-4832.	3.6	73
56	Integrated Multiproduct Biorefinery for Furfural Production with Acetic Acid and Lignin Recovery: Design, Scale-Up Evaluation, and Technoeconomic Analysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 17345-17358.	3.2	28
57	Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chemical Society Reviews, 2020, 49, 6329-6363.	18.7	87
58	Catalytic conversion of sugars and biomass to furanic biofuel precursors by boron-doped biochar in ionic liquid. Bioresource Technology Reports, 2020, 11, 100515.	1.5	10
59	Liquid–Liquid Equilibrium Data and Continuous Process Concept for the Electrosynthesis of Valeric Acid from Levulinic Acid. Frontiers in Energy Research, 2020, 8, .	1.2	6
60	Direct Alcoholysis of Carbohydrate Precursors and Real Cellulosic Biomasses to Alkyl Levulinates: A Critical Review. Catalysts, 2020, 10, 1221.	1.6	29
61	Molecular Oxygen-Promoted Synthesis of Methyl Levulinate from 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2020, 8, 14576-14583.	3.2	19
62	Enhancement of levoglucosan production via fast pyrolysis of sugarcane bagasse by pretreatment with Keggin heteropolyacids. Industrial Crops and Products, 2020, 154, 112680.	2.5	11
63	One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel. Catalysts, 2020, 10, 509.	1.6	33
64	Sustainable Catalytic Synthesis for a Bioâ€Based Alternative to the Reachâ€Restricted <i>N</i> â€Methylâ€2â€Pyrrolidone. Advanced Sustainable Systems, 2020, 4, 1900117.	2.7	10
65	Combined Extraction/Purification-Catalytic Microwave-Assisted Conversion of Laurus nobilis L. Pruning Waste Polysaccharides into Methyl Levulinate. ACS Sustainable Chemistry and Engineering, 2020, , .	3.2	1
66	Recovery of pentoses-containing olive stones for their conversion into furfural in the presence of solid acid catalysts. Chemical Engineering Research and Design, 2020, 143, 1-13.	2.7	6
67	Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5â€Hydroxymethylfurfural. ChemSusChem, 2020, 13, 438-438.	3.6	4
68	A facile conversion of furfural to novel tetrahydrofurfuryl hemiacetals. Applied Catalysis A: General, 2020, 594, 117471.	2.2	2
69	Highly Efficient and Atom Economic Route for the Production of Methyl Acrylate and Acetic Acid from a Biorefinery Side Stream. ACS Sustainable Chemistry and Engineering, 2020, 8, 1705-1708.	3.2	8
70	Efficient Catalytic Conversion of Waste Peanut Shells into Liquid Biofuel: An Artificial Intelligence Approach. Energy & Fuels, 2020, 34, 1791-1801.	2.5	18
71	Humin based resin for wood modification and property improvement. Green Chemistry, 2020, 22, 2786-2798.	4.6	51
72	A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism. Bioresource Technology, 2020, 310, 123457	4.8	130

#	Article	IF	CITATIONS
73	Challenges to Levulinic Acid and Humins Valuation in the Sugarcane Bagasse Biorefinery Concept. Bioenergy Research, 2020, 13, 757-774.	2.2	21
74	Inexpensive and tuneable protic ionic liquids based on sulfuric acid for the biphasic synthesis of alkyl levulinates. Journal of Molecular Liquids, 2020, 308, 113166.	2.3	19
75	One-pot chemo-catalytic conversion of glucose to methyl lactate over In/γ-Al2O3 catalyst. Catalysis Today, 2021, 365, 249-256.	2.2	19
76	One-Pot Cascade Conversion of Renewable Furfural to Levulinic Acid over a Bifunctional H ₃ PW ₁₂ O ₄₀ /SiO ₂ Catalyst in the Absence of External H ₂ . Energy & Fuels, 2021, 35, 539-545.	2.5	18
77	Study of highly furfural-containing refinery wastewater streams using a conventional homogeneous Fenton process. Journal of Environmental Chemical Engineering, 2021, 9, 104894.	3.3	13
78	Biomass valorization: Catalytic approaches using benign-by-design nanomaterials. Advances in Inorganic Chemistry, 2021, 77, 27-58.	0.4	5
79	A biomass-derived metal-free catalyst doped with phosphorus for highly efficient and selective oxidation of furfural into maleic acid. Green Chemistry, 2021, 23, 1370-1381.	4.6	21
80	Evaluation of Xylooligosaccharides Production for a Specific Degree of Polymerization by Liquid Hot Water Treatment of Tropical Hardwood. Foods, 2021, 10, 463.	1.9	13
81	Catalytic wet hydrogen peroxide oxidation of isoeugenol to vanillin using microwave-assisted synthesized metal loaded catalysts. Molecular Catalysis, 2021, 506, 111537.	1.0	5
83	A Humins-Derived Magnetic Biochar for Water Purification by Adsorption and Magnetic Separation. Waste and Biomass Valorization, 2021, 12, 6497-6512.	1.8	10
84	Furan monomers and polymers from renewable plant biomass. Russian Chemical Reviews, 2021, 90, 750-784.	2.5	35
85	Valorization of humins from food waste biorefinery for synthesis of biochar-supported Lewis acid catalysts. Science of the Total Environment, 2021, 775, 145851.	3.9	30
86	Greenness Assessment and Synthesis for the Bio-Based Production of the Solvent 2,2,5,5-Tetramethyloxolane (TMO). Sustainable Chemistry, 2021, 2, 392-406.	2.2	5
87	Modification of novel bio-based adhesive made from citric acid and sucrose by ZnCl2. International Journal of Adhesion and Adhesives, 2021, 108, 102866.	1.4	10
88	Polymerization of sugars/furan model compounds and bio-oil during the acid-catalyzed conversion – A review. Fuel Processing Technology, 2021, 222, 106958.	3.7	12
89	Nanocatalysis for Green Chemistry. , 2018, , 1-28.		1
90	Nanocatalysis for Green Chemistry. , 2019, , 83-109.		0
91	Heterogeneous Catalysis to Drive the Waste-to-Pharma Concept: From Furanics to Active Pharmaceutical Ingredients. Molecules, 2021, 26, 6738.	1.7	3

#	Article	IF	CITATIONS
92	Valorization of Biomass to Furfural by Chestnut Shell-based Solid Acid in Methyl Isobutyl Ketone–Water–Sodium Chloride System. Applied Biochemistry and Biotechnology, 2022, 194, 2021-2035.	1.4	17
93	Study on the removal of lignin from pre-hydrolysis liquor by laccase-induced polymerization and the conversion of xylose to furfural. Green Chemistry, 2022, 24, 1603-1614.	4.6	12
94	Conversion of Biomass-Derived Methyl Levulinate to Methyl Vinyl Ketone. ACS Sustainable Chemistry and Engineering, 2022, 10, 766-775.	3.2	8
95	The Road to Bring FDCA and PEF to the Market. Polymers, 2022, 14, 943.	2.0	57
96	Technoeconomic and Life-Cycle Assessment for Electrocatalytic Production of Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 4206-4217.	3.2	13
97	Furanic Humins from Biorefinery as Biobased Binder for Bitumen. Polymers, 2022, 14, 1019.	2.0	3
98	Almond hull biomass: Preliminary characterization and development of two alternative valorization routes by applying innovative and sustainable technologies. Industrial Crops and Products, 2022, 179, 114697.	2.5	24
99	Valorization of Waste Lignocellulose to Furfural by Sulfonated Biobased Heterogeneous Catalyst Using Ultrasonic-Treated Chestnut Shell Waste as Carrier. Processes, 2021, 9, 2269.	1.3	10
100	Sustainable production of furan-based oxygenated fuel additives from pentose-rich biomass residues. Energy Conversion and Management: X, 2022, 14, 100222.	0.9	6
101	Photocatalytic materials for sustainable chemistry via cooperative photoredox catalysis. Catalysis Today, 2023, 410, 85-101.	2.2	36
102	Catalytic Conversion of High Fructose Corn Syrup to Methyl Lactate with CoO@silicalite-1. Catalysts, 2022, 12, 442.	1.6	1
105	Humins as Bio-Based Template for the Synthesis of Alumina Foams. SSRN Electronic Journal, 0, , .	0.4	0
106	Review on development of ionic liquids in lignocellulosic biomass refining. Journal of Molecular Liquids, 2022, 359, 119326.	2.3	20
107	Humins as bio-based template for the synthesis of alumina foams. Molecular Catalysis, 2022, 526, 112363.	1.0	0
108	Near quantitative conversion of xylose into bisfuran. Green Chemistry, 2022, 24, 5052-5057.	4.6	4
109	Solvent Effects Enabledâ€Efficient Tandem Conversion of Cellulose and Its Monosaccharides Towards 5â€Hydroxymethylfurfural. ChemSusChem, 0, , .	3.6	3
110	Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals. Industrial Crops and Products, 2022, 189, 115766.	2.5	5
111	Valorisation of humins to high value-added products: Integrating biorefinery process towards a more sustainable future. Current Opinion in Green and Sustainable Chemistry, 2023, 39, 100717.	3.2	0

IF ARTICLE CITATIONS # Insight into the α-MnO2 boosts concentrated furfural or xylose conversion to furoic acid over 112 2.9 1 1,4-dioxane-H2O mixed solvent. Biomass and Bioenergy, 2022, 167, 106642. Recent advances in sustainable catalytic production of 5-methyl-2-pyrrolidones from bio-derived levulinate. Fuel, 2023, 334, 126629. 3.4 Ru atalyzed Direct Asymmetric Reductive Amination of Bioâ€Based Levulinic Acid and Ester for the 114 3.6 5 Synthesis of Chiral Pyrrolidinone. ChemSusChem, 2023, 16, . Molecular Views on Mechanisms of BrÄnsted Acid-Catalyzed Reactions in Zeolites. Chemical Reviews, 2023, 123, 6107-6196. Aproveitamento da Biomassa LignocelulÃ³sica para Produção de Metil levulinato: mapeamento 116 0.0 0 tecnolÃ³gico de patentes. Cadernos De Prospecção, 2023, 16, 726-744. Humins Valorization., 2023, , 131-147. Perovskite Catalysts for Biomass Valorization. ACS Catalysis, 2023, 13, 7879-7916. 118 5.5 5

CITATION REPORT