Diffuse microvascular dysfunction and loss of white ma outcomes in patients with acute ischemic stroke

Journal of Cerebral Blood Flow and Metabolism 38, 75-86 DOI: 10.1177/0271678x17706449

Citation Report

#	Article	IF	CITATIONS
1	Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathologica, 2018, 135, 311-336.	7.7	543
2	Increased blood-brain barrier permeability in contralateral hemisphere predicts worse outcome in acute ischemic stroke after reperfusion therapy. Journal of NeuroInterventional Surgery, 2018, 10, 937-941.	3.3	8
3	Understanding the role of the perivascular space in cerebral small vessel disease. Cardiovascular Research, 2018, 114, 1462-1473.	3.8	211
4	The peripheral immune response after stroke—A double edge sword for bloodâ€brain barrier integrity. CNS Neuroscience and Therapeutics, 2018, 24, 1115-1128.	3.9	59
5	White Matter Integrity and Early Outcomes After Acute Ischemic Stroke. Translational Stroke Research, 2019, 10, 630-638.	4.2	36
6	Neutralization of interleukinâ€9 ameliorates experimental stroke by repairing the blood–brain barrier <i>via</i> downâ€regulation of astrocyteâ€derived vascular endothelial growth factorâ€A. FASEB Journal, 2019, 33, 4376-4387.	0.5	31
7	Distinctive functional deficiencies in axonal conduction associated with two forms of cerebral white matter injury. CNS Neuroscience and Therapeutics, 2019, 25, 1018-1029.	3.9	10
8	Small vessel disease: mechanisms and clinical implications. Lancet Neurology, The, 2019, 18, 684-696.	10.2	853
9	Quantifying bloodâ€brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer's and Dementia, 2019, 15, 840-858.	0.8	134
10	Leukoaraiosis Predicts Short-term Cognitive But not Motor Recovery in Ischemic Stroke Patients During Rehabilitation. Journal of Stroke and Cerebrovascular Diseases, 2019, 28, 1597-1603.	1.6	19
11	Sex-specific differences in white matter microvascular integrity after ischaemic stroke. Stroke and Vascular Neurology, 2019, 4, 198-205.	3.3	9
12	Relationships between <i>DMD</i> mutations and neurodevelopment in dystrophinopathy. Neurology, 2019, 93, e1597-e1604.	1.1	40
13	Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiology of Disease, 2019, 126, 62-75.	4.4	31
14	Emerging insights from the genetics of cerebral smallâ€vessel disease. Annals of the New York Academy of Sciences, 2020, 1471, 5-17.	3.8	15
15	TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 639-655.	4.3	67
16	Normal-Appearing White Matter Integrity Is a Predictor of Outcome After Ischemic Stroke. Stroke, 2020, 51, 449-456.	2.0	24
17	NG2-glia cell proliferation and differentiation by glial growth factor 2 (GGF2), a strategy to promote functional recovery after ischemic stroke. Biochemical Pharmacology, 2020, 171, 113720.	4.4	17
18	Demyelinating processes in aging and stroke in the central nervous system and the prospect of treatment strategy. CNS Neuroscience and Therapeutics, 2020, 26, 1219-1229.	3.9	29

#	Article	IF	CITATIONS
19	Different Perivascular Space Burdens in Idiopathic Rapid Eye Movement Sleep Behavior Disorder and Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 580853.	3.4	20
20	Effects of White Matter Hyperintensities on 90-Day Functional Outcome after Large Vessel and Non-Large Vessel Stroke. Cerebrovascular Diseases, 2020, 49, 419-426.	1.7	7
21	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	3.6	54
22	Cystatin C is a potential predictor of unfavorable outcomes for cerebral ischemia with intravenous tissue plasminogen activator treatment: A multicenter prospective nested case–control study. European Journal of Neurology, 2021, 28, 1265-1274.	3.3	9
23	Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Molecular Therapy, 2021, 29, 1439-1458.	8.2	55
24	Biphasic roles of pentraxin 3 in cerebrovascular function after white matter stroke. CNS Neuroscience and Therapeutics, 2021, 27, 60-70.	3.9	8
25	White Matter Acute Infarct Volume After Thrombectomy for Anterior Circulation Large Vessel Occlusion Stroke is Associated with Long Term Outcomes. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105567.	1.6	28
26	Two-step machine learning method for the rapid analysis of microvascular flow in intravital video microscopy. Scientific Reports, 2021, 11, 10047.	3.3	6
27	Management tactics in patients with chronic cerebral ischemia during COVID-19 pandemic. Nevrologiya, Neiropsikhiatriya, Psikhosomatika, 2021, 13, 4-11.	1.2	3
28	Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature. Applied Microscopy, 2021, 51, 12.	1.4	3
29	A Novel Cerebroprotein Hydrolysate, CH1, Ameliorates Chronic Focal Cerebral Ischemia Injury by Promoting White Matter Integrity via the Shh/Ptch-1/Gli-1 Signaling Pathway. Neuropsychiatric Disease and Treatment, 2020, Volume 16, 3209-3224.	2.2	4
30	Global white matter structural integrity mediates the effect of age on ischemic stroke outcomes. International Journal of Stroke, 2021, , 174749302110559.	5.9	1
31	Transdiagnostic InÂVivo Magnetic Resonance Imaging Markers of Neuroinflammation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 638-658.	1.5	9
32	Intravital microscopic observation of the microvasculature during hemodialysis in healthy rats. Scientific Reports, 2022, 12, 191.	3.3	1
33	Leukoaraiosis Mediates the Association of Total White Blood Cell Count With Post-Stroke Cognitive Impairment. Frontiers in Neurology, 2021, 12, 793435.	2.4	2
34	Normal-Appearing White Matter Deteriorates over the Year After an Ischemic Stroke and Is Associated with Global Cognition. Translational Stroke Research, 2022, 13, 716-724.	4.2	3
35	A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage. CNS Neuroscience and Therapeutics, 2022, 28, 842-850.	3.9	7
36	White Matter Hyperintensities and Functional Outcomes in Patients With Cerebral Hemorrhage: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 2022, 13, 820012.	2.4	0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nature Communications, 2022, 13, 1134.	12.8	52
38	Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke, 2022, 53, 1473-1486.	2.0	165
39	Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. Journal of Neuroinflammation, 2022, 19, 112.	7.2	22
40	Global changes in diffusion tensor imaging during acute ischemic stroke and post-stroke cognitive performance. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1854-1866.	4.3	5
41	The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. Neurobiology of Disease, 2023, 180, 106076.	4.4	4
42	Impaired intracranial venous outflow profiles are associated with poor outcome in stroke after reperfusion therapy: A hypoperfusion-matched intracranial venous scale. European Journal of Radiology, 2023, 161, 110745.	2.6	2
43	Placental growth factor as a sensitive biomarker for vascular cognitive impairment. Alzheimer's and Dementia, 2023, 19, 3519-3527.	0.8	11
44	Blood-Brain Barrier Permeability and Kinetics of Inflammatory Markers in Acute Stroke Patients Treated With Thrombectomy. Neurology, 2023, 101, .	1.1	2
45	Implications of MMP-12 in the pathophysiology of ischaemic stroke. Stroke and Vascular Neurology, 0, , svn-2023-002363.	3.3	1
46	Predictive role of pre-thrombolytic hs-CRP on the safety and efficacy of intravenous thrombolysis in acute ischemic stroke. BMC Neurology, 2023, 23, .	1.8	0
47	White Matter Hyperintensity Trajectories in Patients With Progressive and Stable Mild Cognitive Impairment. Neurology, 2023, 101, .	1.1	3
48	Modern understanding of the pathogenetic mechanisms of small vessel disease. International Neurological Journal, 2023, 19, 266-272.	0.2	0
49	Update on Hemodialysis-Induced Multiorgan Ischemia. Journal of the American Society of Nephrology: JASN, 2024, 35, 653-664.	6.1	0
50	Crosstalk Among Glial Cells in the Blood–Brain Barrier Injury After Ischemic Stroke. Molecular Neurobiology, 0, ,	4.0	0
51	Subtle white matter intensity changes on fluid-attenuated inversion recovery imaging in patients with ischaemic stroke. Brain Communications, 2024, 6, .	3.3	0