An Efficient Four-Parameter Affine Motion Model for Vi

IEEE Transactions on Circuits and Systems for Video Technologe, 1934-1948

DOI: 10.1109/tcsvt.2017.2699919

Citation Report

#	Article	IF	CITATIONS
1	Inter frame coding in advanced video coding standard H.264 using block based motion compensation technique. , 2017 , , .		1
2	Deformable block-based motion estimation in omnidirectional image sequences. , 2017, , .		15
3	An efficient compression scheme for the multi-camera light field image. , 2017, , .		3
4	Rate-Distortion Theory for Simplified Affine Motion Compensation Used in Video Coding. , 2018, , .		O
5	Generative Adversarial Network-Based Frame Extrapolation for Video Coding. , 2018, , .		14
6	Rate-Distortion Theory for Affine Global Motion Compensation in Video Coding. , 2018, , .		3
7	The Multi-Scale Deep Decoder for the Standard HEVC Bitstreams. , 2018, , .		10
8	Profit Maximization for Video Caching and Processing in Edge Cloud. IEEE Journal on Selected Areas in Communications, 2019, 37, 1632-1641.	14.0	27
9	Design of Efficient Perspective Affine Motion Estimation/Compensation for Versatile Video Coding (VVC) Standard. Electronics (Switzerland), 2019, 8, 993.	3.1	12
10	Intra-Prediction Mode Propagation for Video Coding. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 110-121.	3.6	3
11	Spherical Coordinates Transform-Based Motion Model for Panoramic Video Coding. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 98-109.	3.6	15
12	History-Based Motion Vector Prediction in Versatile Video Coding. , 2019, , .		28
13	Invertibility-Driven Interpolation Filter for Video Coding. IEEE Transactions on Image Processing, 2019, 28, 4912-4925.	9.8	18
14	An Intra-Affine Current Picture Referencing Mode for Screen Content Coding in VVC. , 2019, , .		7
15	Classification Based Inter-Frame Prediction in Video Compression. , 2019, , .		4
16	Adaptive Motion Vector Resolution for Affine-Inter Mode Coding. , 2019, , .		10
17	Fast Affine Motion Estimation for Versatile Video Coding (VVC) Encoding. IEEE Access, 2019, 7, 158075-158084.	4.2	34
18	An Improved Framework of Affine Motion Compensation in Video Coding. IEEE Transactions on Image Processing, 2019, 28, 1456-1469.	9.8	57

#	Article	IF	Citations
19	Advanced Spherical Motion Model and Local Padding for 360° Video Compression. IEEE Transactions on Image Processing, 2019, 28, 2342-2356.	9.8	20
20	Enhanced Bi-Prediction With Convolutional Neural Network for High-Efficiency Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29, 3291-3301.	8.3	49
21	The Joint Exploration Model (JEM) for Video Compression With Capability Beyond HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 1208-1225.	8.3	52
22	Hybrid Video Codec Based on Flexible Block Partitioning With Extensions to the Joint Exploration Model. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 1346-1360.	8.3	4
23	Recent Advances on HEVC Inter-Frame Coding: From Optimization to Implementation and Beyond. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 4321-4339.	8.3	12
24	An Improved Fast Affine Motion Estimation Based on Edge Detection Algorithm for VVC. Symmetry, 2020, 12, 1143.	2.2	9
25	Affine Direct/Skip Mode with Motion Vector Differences in Video Coding. , 2020, , .		2
26	Affine Deformation Model Based Intra Block Copy for Intra Frame Coding. , 2020, , .		2
27	Parameter-Based Affine Intra Prediction of Screen Content in Versatile Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 3590-3602.	8.3	2
28	Analysis of Affine Motion-Compensated Prediction in Video Coding. IEEE Transactions on Image Processing, 2020, 29, 7359-7374.	9.8	13
29	Optical Flow-Based Fast Motion Parameters Estimation for Affine Motion Compensation. Applied Sciences (Switzerland), 2020, 10, 729.	2.5	3
30	The Interpretable Fast Multi-Scale Deep Decoder for the Standard HEVC Bitstreams. IEEE Transactions on Multimedia, 2020, 22, 1680-1691.	7.2	10
31	Interweaved Prediction for Video Coding. IEEE Transactions on Image Processing, 2020, 29, 6422-6437.	9.8	4
32	Novel skip motion estimation for efficient inter coding in HEVC. Multimedia Tools and Applications, 2021, 80, 4493-4505.	3.9	0
33	Intra Coding With Geometric Information for Urban Building Scenes. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 2386-2400.	8.3	0
34	Regression-Based Motion Vector Field for Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 2034-2038.	8.3	3
35	Deep Affine Motion Compensation Network for Inter Prediction in VVC. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 3923-3933.	8.3	12
36	Subblock-Based Motion Derivation and Inter Prediction Refinement in the Versatile Video Coding Standard. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 3862-3877.	8.3	23

#	ARTICLE	IF	CITATIONS
37	Neural Network-Based Enhancement to Inter Prediction for Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 826-838.	8.3	6
38	Deep Network-Based Frame Extrapolation With Reference Frame Alignment. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 1178-1192.	8.3	20
39	A Method for Rate-Distortion-Complexity Optimization in Versatile Video Coding Standard. , 2021, , .		1
40	Complexity and Coding Efficiency Assessment of the Versatile Video Coding Standard. , 2021, , .		4
41	Hardware Friendly Interweaved Prediction for Affine Motion Compensation. , 2021, , .		0
42	Decoder-Side Motion Vector Refinement in VVC: Algorithm and Hardware Implementation Considerations. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 3197-3211.	8.3	13
43	Digital Analysis Framework of Artistic Expression From the Perspective of Virtual Reality Technology. , $2021, \dots$		0
44	An efficient field-programmable gate array-based hardware oriented block motion estimation algorithm based on diamond adaptive rood pattern search algorithm for multi-standard video codec. Transactions of the Institute of Measurement and Control, 2021, 43, 3672-3685.	1.7	2
45	Zoom motion estimation for color and depth videos using depth information. Eurasip Journal on Image and Video Processing, 2020, 2020, .	2.6	3
46	Extended support for subblock-based affine motion compensation of VVC. , 2020, , .		0
47	Design of Perspective Affine Motion Compensation for Versatile Video Coding (VVC). Lecture Notes in Computer Science, 2020, , 384-395.	1.3	0
48	Fast elastic motion estimation with improved Levenberg-Marquardt optimization. Information Sciences, 2022, 587, 720-745.	6.9	1
49	WC Fast ME Algorithm Based on Spatial Texture Features and Time Correlation. , 2021, , .		4
50	An efficient six-parameter perspective motion model for VVC. Journal of Visual Communication and Image Representation, 2022, 85, 103514.	2.8	0
51	Projective Transformation Based Virtual Reference Frame Generation Scheme for Video Coding in Moving Camera., 2022,,.		0
52	GPU-Acceleration of Affine Prediction in the Versatile Video Coding. , 2022, , .		0
53	An Enhanced Video Coding Technique Leveraging on Edge Aware Motion Modeling and Frame Super Resolution., 2022,,.		2
54	A Study on Fast and Low-Complexity Algorithms for Versatile Video Coding. Sensors, 2022, 22, 8990.	3.8	4

#	Article	IF	Citations
55	History-parameter-based Affine Model Inheritance. , 2022, , .		2
56	Global Homography Motion Compensation for Versatile Video Coding., 2022,,.		0
57	A Region Adaptive Motion Estimation Strategy Leveraging on the Edge Position Difference Measure. , 2022, , .		1
58	Efficient feature coding based on performance analysis of Versatile Video Coding (VVC) in Video Coding for Machines (VCM). Multimedia Tools and Applications, 0, , .	3.9	0
59	Decoder-side Affine Model Refinement for Video Coding beyond VVC. , 2023, , .		0
60	Hardware Design for the Affine Motion Compensation of the VVC Standard. , 2023, , .		1
61	Learned Video Compression With Efficient Temporal Context Learning. IEEE Transactions on Image Processing, 2023, 32, 3188-3198.	9.8	0
62	A Two-Step Discrete Cosine Basis Oriented Motion Modeling Approach for Enhanced Motion Compensation. IEEE Transactions on Image Processing, 2023, , 1-1.	9.8	0
63	Multi-stage affine motion estimation fast algorithm for versatile video coding using decision tree. Journal of Visual Communication and Image Representation, 2023, 96, 103910.	2.8	1
64	A Fast Gradient Iterative Affine Motion Estimation Algorithm Based on Edge Detection for Versatile Video Coding. Electronics (Switzerland), 2023, 12, 3414.	3.1	0
65	Efficient Hardware Design for the VVC Affine Motion Compensation Exploiting Multiple Constant Multiplication., 2023,,.		0
66	4K UHD@60fps Design For The VVC Affine Motion Estimation Reconstructor. , 2023, , .		0
67	Warped motion prediction beyond AV1., 2023,,.		0
68	Multi-Model Motion Prediction for 360-Degree Video Compression. IEEE Access, 2023, 11, 117004-117017.	4.2	1
69	Decision Tree Based Early Termination Algorithm for Affine Prediction in AVS3., 2023,,.		0
70	A Hardware-efficient Unified Motion Estimation for Video Coding. , 2023, , .		0
71	A power-efficient approximate approach to improve the computational complexity of coding tools in versatile video coding. Multimedia Tools and Applications, 0, , .	3.9	0
72	Occupancy map-based low complexity motion prediction for video-based point cloud compression. Journal of Visual Communication and Image Representation, 2024, 100, 104110.	2.8	0

ARTICLE IF CITATIONS

73 Towards Hybrid-Optimization Video Coding. ACM Computing Surveys, 2024, 56, 1-36. 23.0 0