Simultaneous Multiple-Nanowire Motion Control, Plant Electric Fields in Fluid Suspension

IEEE Transactions on Automation Science and Engineering 15, 80-91

DOI: 10.1109/tase.2016.2595760

Citation Report

#	Article	IF	Citations
1	Automated characterization and assembly of individual nanowires for device fabrication. Lab on A Chip, 2018, 18, 1494-1503.	3.1	17
2	Real-time motion planning of multiple nanowires in fluid suspension under electric-field actuation. International Journal of Intelligent Robotics and Applications, 2018, 2, 383-399.	1.6	11
3	Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly., 2018,,.		4
4	Towards Functional Mobile Microrobotic Systems. Robotics, 2019, 8, 69.	2.1	20
5	Contactless Electrical and Structural Characterization of Semiconductor Nanowires with Axially Modulated Doping Profiles. Small, 2019, 15, 1805140.	5.2	6
6	Robotic Prototyping of Paper-Based Field-Effect Transistors with Rolled-Up Semiconductor Microtubes. IEEE/ASME Transactions on Mechatronics, 2020, , 1-1.	3.7	5
7	Informed Sampling-Based Motion Planning for Manipulating Multiple Micro Agents using Global External Fields. , 2020, , .		4
8	Electrophoresis-Based Adaptive Tube Model Predictive Control of Micro- and Nanoparticles Motion in Fluid Suspension. , 2020, , .		2
9	Electrophoresis-Based Adaptive Manipulation of Nanowires in Fluid Suspension. IEEE/ASME Transactions on Mechatronics, 2020, 25, 638-649.	3.7	11
10	Particle Manipulation with External Field; From Recent Advancement to Perspectives. Analytical Sciences, 2021, 37, 69-78.	0.8	6
11	Adaptive Tube Model Predictive Control of Micro- and Nanoparticles in Fluid Suspensions using Global External Fields., 2021,,.		3
12	3D Pose Identification of Micro- and Nanowires in Fluid Suspensions. , 2021, , .		O
13	Adaptive Tube Model Predictive Control for Manipulating Multiple Nanowires with Coupled Actuation in Fluid Suspension. IFAC-PapersOnLine, 2020, 53, 8613-8618.	0.5	6
14	A feedback-based manoeuvre planner for nonprehensile magnetic micromanipulation of large microscopic biological objects. Robotics and Autonomous Systems, 2022, 148, 103941.	3.0	5
15	Electrophoresis-Based Manipulation of Micro- and Nanoparticles in Fluid Suspensions., 2022,, 133-164.		3
16	Informed Sampling-Based Motion Planning for Manipulating Multiple Micro Agents Using Global External Electric Fields. IEEE Transactions on Automation Science and Engineering, 2022, 19, 1422-1433.	3.4	1
17	Adaptive Tube Model Predictive Control for Manipulating Micro-and Nanoparticles in Fluid Suspensions Under Global External Fields. IEEE Transactions on Automation Science and Engineering, 2022, , 1-13.	3.4	1
18	Position control of charged spherical particles suspended in laminar flow within a channel. Computational Particle Mechanics, 0, , .	1.5	O

#	Article	IF	CITATIONS
19	Trajectory Optimization for Distributed Manipulation by Shaping a Physical Field., 2023,,.		0
20	Ensemble Control for Manipulating Multiple Nanowires in Fluid Suspension Using External Electrical Fields., 2023,,.		0