Recent Advances in Green Synthesis of Silver Nanopart Future Directions. A Review

BioNanoScience 8, 5-16 DOI: 10.1007/s12668-017-0413-3

Citation Report

#	Article	IF	CITATIONS
1	Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity. Applied Nanoscience (Switzerland), 2017, 7, 851-861.	1.6	42
2	Morphological and Biomolecules Dynamics of Phytopathogenic Fungi Under Stress of Silver Nanoparticles. BioNanoScience, 2018, 8, 566-573.	1.5	18
3	Green synthesis of silver nanoparticles using grape pomace extract prepared by plasma-chemical assisted extraction method. Molecular Crystals and Liquid Crystals, 2018, 674, 142-151.	0.4	33
5	Peptide stabilized gold and silver nanoparticles derived from the mangrove isolate Pseudoalteromonas lipolytica mediate dye decolorization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 180-190.	2.3	21
6	The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics, 2018, 7, 67.	1.5	115
7	Biosynthesis of silver nanoparticles and their role in photocatalytic degradation of methylene blue dye. Research on Chemical Intermediates, 2018, 44, 6907-6915.	1.3	38
8	Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances, 2019, 9, 24539-24559.	1.7	247
9	Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts. PLoS ONE, 2019, 14, e0223781.	1.1	51
10	Biosynthesis of silver nanoparticles from Hyphaene thebaica fruits and their <i>in vitro</i> pharmacognostic potential. Materials Research Express, 2019, 6, 1050c9.	0.8	39
11	Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. Materials, 2019, 12, 3177.	1.3	30
12	Proteinâ€Induced Shape Control of Noble Metal Nanoparticles. Advanced Materials Interfaces, 2019, 6, 1801407.	1.9	36
13	Alcoholic extracts from Paulownia tomentosa leaves for silver nanoparticles synthesis. Results in Physics, 2019, 12, 1670-1679.	2.0	24
14	Endophyte-mediated synthesis of silver nanoparticles and their biological applications. Applied Microbiology and Biotechnology, 2019, 103, 2551-2569.	1.7	61
15	Physiochemical properties and novel biological applications of <scp><i>Callistemon viminalis</i></scp> â€mediated î±â€Cr ₂ O ₃ nanoparticles. Applied Organometallic Chemistry, 2019, 33, e5041.	1.7	45
16	Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 844-851.	1.9	505
17	Assessing the effectiveness of green synthetized silver nanoparticles with Cryptocarya alba extracts for remotion of the organic pollutant methylene blue dye. Environmental Science and Pollution Research, 2019, 26, 15115-15123.	2.7	14
18	Efficient reduction of Toluidine Blue O dye using silver nanoparticles synthesized by low molecular weight chitosans. International Journal of Biological Macromolecules, 2019, 131, 682-690.	3.6	17
19	Size-Controlled Production of Silver Nanoparticles by <i>Aspergillus fumigatus</i> BTCB10: Likely Antibacterial and Cytotoxic Effects. Journal of Nanomaterials. 2019. 2019. 1-14.	1.5	75

#	Article	IF	CITATIONS
20	Tri-Calcium and Zinc Phosphates Solubilization by Aspergillus niger and Its Relation to Organic Acids Production. BioNanoScience, 2019, 9, 238-244.	1.5	16
21	Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Research on Chemical Intermediates, 2019, 45, 2915-2925.	1.3	36
22	Antibacterial silver (Ag) containing titanium oxynitride (TiO x N y) coatings for inhibiting surgical site infections (SSI). Medical Devices & Sensors, 2019, 2, e10052.	2.7	1
23	Toxicity of environmental nanosilver: mechanism and assessment. Environmental Chemistry Letters, 2019, 17, 319-333.	8.3	30
24	Antioxidant, Antitumor, Antimicrobial Activities Evaluation of Musa paradisiaca L. Pseudostem Exudate Cultivated in Saudi Arabia. BioNanoScience, 2019, 9, 172-178.	1.5	20
25	A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences, 2020, 15, 42-59.	4.3	137
26	Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale, 2020, 12, 2268-2291.	2.8	207
27	Castor oil derivatives in the environmentally friendly one-pot synthesis of silver nanoparticles: application in cysteine sensing. Materials Research Bulletin, 2020, 124, 110755.	2.7	13
28	Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants. Research on Chemical Intermediates, 2020, 46, 1975-1990.	1.3	27
29	Antibacterial and antioxidant properties of phytoâ€synthesized silver nanoparticles using <scp><i>Lavandula stoechas</i></scp> extract. Applied Organometallic Chemistry, 2020, 34, e5394.	1.7	24
30	Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures. ACS Omega, 2020, 5, 16246-16254.	1.6	46
31	GC/MS analysis of Juniperus procera extract and its activity with silver nanoparticles against Aspergillus flavus growth and aflatoxins production. Biotechnology Reports (Amsterdam,) Tj ETQq1 1 0.784314	rgBT1/Ove	erlo ck 10 Tf 5
32	Phyto-fabricated Cr ₂ O ₃ nanoparticle for multifunctional biomedical applications. Nanomedicine, 2020, 15, 1653-1669.	1.7	34
33	Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications—a review. Progress in Biomaterials, 2020, 9, 81-95.	1.8	72
34	In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves. Heliyon, 2020, 6, e04594.	1.4	31
35	A New Approach to Synthesis of Highly Dispersed Gold Nanoparticles via Glucose Oxidaseâ€Immobilized Hydrogel and Usage in The Reduction of 4â€Nitrophenol. ChemistrySelect, 2020, 5, 9143-9152.	0.7	11
36	Facile fabrication of size-controlled Ag@PI hybrid nanotubes and its photocatalytic performance. Materials Letters, 2020, 277, 128374.	1.3	3
37	Preparation and characterization of Ag-doped TiO2 and its application in catalytic degradation/densification of water pollutants. Molecular Crystals and Liquid Crystals, 2020, 700, 77-87	0.4	2

_

#	Article	IF	Citations
38	Noble metallic nanoparticles from waste Nypa fruticans fruit husk: Biosynthesis, characterization, antibacterial activity and recyclable catalysis. Arabian Journal of Chemistry, 2020, 13, 7490-7503.	2.3	23
39	Green Synthesis of Gold and Silver Nanoparticles by Using Amorphophallus paeoniifolius Tuber Extract and Evaluation of Their Antibacterial Activity. Molecules, 2020, 25, 4773.	1.7	43
40	Bioactive metal oxide nanoparticles from some common fruit wastes and <i>Euphorbia condylocarpa</i> plant. Food Science and Nutrition, 2020, 8, 5521-5531.	1.5	8
41	Advances in Nanotechnology and Its Applications. , 2020, , .		3
42	<p>Synergistic Effects of Physicochemical Parameters on Bio-Fabrication of Mint Silver Nanoparticles: Structural Evaluation and Action Against HCT116 Colon Cancer Cells</p> . International Journal of Nanomedicine, 2020, Volume 15, 3621-3637.	3.3	45
43	Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloids and Interface Science Communications, 2020, 37, 100276.	2.0	75
44	Hybrid porous silicon/green synthetized Ag microparticles as potential carries for Ag nanoparticles and drug delivery. Materials Science and Engineering C, 2020, 116, 111183.	3.8	13
46	Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties. Materials Science and Engineering C, 2020, 111, 110834.	3.8	16
47	Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity. Carbohydrate Polymers, 2020, 238, 116169.	5.1	29
48	Structural, Morphological and Biological Features of ZnO Nanoparticles Using Hyphaene thebaica (L.) Mart. Fruits. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3241-3254.	1.9	21
49	Green synthesis of silver nanoparticles from leaf extract of Tetrapleura tetraptera and its antimicrobial activity. IOP Conference Series: Materials Science and Engineering, 2020, 805, 012032.	0.3	3
50	Modulatory effects of Cornus sanguinea L. mediated green synthesized silver nanoparticles on oxidative stress, COX-2/NOS2 and NFkB/pNFkB expressions in experimental inflammation in Wistar rats. Materials Science and Engineering C, 2020, 110, 110709.	3.8	29
51	Nanosensors for food safety. , 2020, , 339-354.		4
52	Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective. Materials, 2020, 13, 784.	1.3	24
53	Pressure and osmotically driven membrane processes: A review of the benefits and production of nano-enhanced membranes for desalination. Desalination, 2020, 479, 114323.	4.0	52
54	Efficacy of Juniperus procera Constituents with Silver Nanoparticles Against Aspergillus fumigatus and Fusarium chlamydosporum. BioNanoScience, 2020, 10, 62-72.	1.5	16
55	Eugenia umbelliflora mediated reduction of silver nanoparticles incorporated into O-carboxymethylchitosan/y-Fe2O3: Synthesis, antimicrobial activity and toxicity. International Journal of Biological Macromolecules, 2020, 155, 614-624.	3.6	12
56	Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microbial Pathogenesis, 2020, 144, 104172.	1.3	60

TION RE

#	Article	IF	CITATIONS
57	Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. Materials Science and Engineering C, 2020, 112, 110933.	3.8	27
58	Silver nanoparticles synthesis using <i>Wedelia urticifolia</i> (Blume) DC. flower extract: Characterization and antibacterial activity evaluation. Microscopy Research and Technique, 2020, 83, 1085-1094.	1.2	13
59	Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Reports, 2020, 39, 921-939.	2.8	72
60	Synthesis of silver and copper oxide nanoparticles using Myristica fragrans fruit extract: Antimicrobial and catalytic applications. Sustainable Chemistry and Pharmacy, 2020, 16, 100255.	1.6	51
61	Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract. Materials Today: Proceedings, 2021, 42, 88-93.	0.9	29
62	<i>Populus ciliata</i> mediated synthesis of silver nanoparticles and their antibacterial activity. Microscopy Research and Technique, 2021, 84, 480-488.	1.2	11
63	Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Applied Nanoscience (Switzerland), 2021, 11, 389-398.	1.6	33
64	Green nanotechnology: isolation of bioactive molecules and modified approach of biosynthesis. , 2021, , 101-122.		26
65	Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications. Journal of Genetic Engineering and Biotechnology, 2021, 19, 21.	1.5	80
66	Glycerol: The liquid support for nanocatalysts. , 2021, , 585-612.		0
67	Biosynthesis and Characterization of Silver Nanoparticles using Ziziphus mauritiana Leaf Extract. Biosciences, Biotechnology Research Asia, 2021, 17, 691-699.	0.2	2
68	Overview and Prospectus of Algal Biogenesis of Nanoparticles. , 2021, , 121-134.		8
69	Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. Nanoscale, 2021, 13, 13923-13942.	2.8	23
70	Silver Nanoparticle (AgNps) Image Analysis using Digital Image Processing Techniques. SSRN Electronic Journal, 0, , .	0.4	0
71	Solid-State Green Synthesis of Different Nanoparticles. Advances in Science, Technology and Innovation, 2021, , 289-301.	0.2	0
72	Cd(II) and Pb(II) Adsorption Using a Composite Obtained from Moringa oleifera Lam. Cellulose Nanofibrils Impregnated with Iron Nanoparticles. Water (Switzerland), 2021, 13, 89.	1.2	25
73	Green Silver Nanoparticles: Recent Trends and Technological Developments. Journal of Polymers and the Environment, 2021, 29, 2711-2737.	2.4	20
74	Extremophilic Microbes. , 2021, , 218-229.		1

	CITATION	Report	
#	Article	IF	CITATIONS
75	Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. Journal of King Saud University - Science, 2021, 33, 101296.	1.6	42
76	Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PLoS ONE, 2021, 16, e0241729.	1.1	18
77	Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis. Research on Chemical Intermediates, 2021, 47, 2539.	1.3	20
78	Immune System Modulations in Cancer Treatment: Nanoparticles in Immunotherapy. , 0, , .		0
79	Nanoparticles, Biosurfactants and Microbes in Bioremediation. , 2021, , 162-179.		1
80	Sargassum Influx on the Mexican Coast: A Source for Synthesizing Silver Nanoparticles with Catalytic and Antibacterial Properties. Applied Sciences (Switzerland), 2021, 11, 4638.	1.3	13
81	Microbial cells as biological factory for nanoparticle synthesis. Frontiers of Materials Science, 2021, 15, 177-191.	1.1	10
82	Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Pistacia Atlantica Resin. Materials Today Communications, 2021, 27, 102457.	0.9	14
83	A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles. Applied Biochemistry and Biotechnology, 2021, 193, 2357-2378.	1.4	14
84	The electrochemical immunosensor for detection of prostatic specific antigen using quince seed mucilage-CNPs-SNPs as a green composite. Bioelectrochemistry, 2021, 139, 107744.	2.4	17
85	Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Seminars in Cancer Biology, 2022, 86, 693-705.	4.3	37
86	Biomedical potential of green synthesized silver nanoparticles from root extract of Asparagus officinalis. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 213-218.	0.9	4
87	Biodirected Synthesis of Silver Nanoparticles Using Aqueous Honey Solutions and Evaluation of Their Antifungal Activity against Pathogenic Candida Spp International Journal of Molecular Sciences, 2021, 22, 7715.	1.8	11
88	Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities. Biological Trace Element Research, 2022, 200, 2099-2112.	1.9	76
89	Sustainable Syntheses and Sources of Nanomaterials for Microbial Fuel/Electrolysis Cell Applications: An Overview of Recent Progress. Processes, 2021, 9, 1221.	1.3	14
90	Systematic Review on Biosynthesis of Silver Nanoparticles and Antibacterial Activities: Application and Theoretical Perspectives. Molecules, 2021, 26, 5057.	1.7	35
91	Recent advances in anticancer and antimicrobial activity of silver nanoparticles synthesized using phytochemicals and organic polymers. Nanotechnology, 2021, 32, 462001.	1.3	14
92	Determination of Antioxidant Activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), Electrochemical and Microbiological Analyses of Silver Nanoparticles Using the Aqueous Leaf Extract of Solanum mammosum L. International Journal of Nanomedicine, 2021, Volume 16, 5879-5894.	3.3	13

#	Article	IF	Citations
93	Role of Synthetic Plant Extracts on the Production of Silver-Derived Nanoparticles. Plants, 2021, 10, 1671.	1.6	28
94	Investigation of the Oxidative Stress Response of a Green Synthesis Nanoparticle (RP-Ag/ACNPs) in Zebrafish. Biological Trace Element Research, 2021, , 1.	1.9	9
95	Synthesis of Nanocapsules Based on Biosynthesized Nickel Nanoparticles and Potato Starch: Antimicrobial, Antioxidant, and Anticancer Activity. Starch/Staerke, 2022, 74, 2100165.	1.1	47
96	The effect of biosynthesized selenium nanoparticles on the expression of <scp><i>CYP51A</i></scp> and <scp><i>HSP90</i></scp> antifungal resistance genes in <i>Aspergillus fumigatus</i> and <i>Aspergillus <scp>flavus</scp></i> . Biotechnology Progress, 2022, 38, e3206.	1.3	15
97	Sustainable synthesis of silver nanoparticles using various biological sources and waste materials: a review. Emergent Materials, 2022, 5, 1649-1678.	3.2	11
98	Green approaches for nanotechnology. , 2022, , 129-154.		4
99	Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. Journal of Molecular Structure, 2022, 1248, 131538.	1.8	38
100	Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 2022, 204, 111967.	3.7	132
101	Synthesis and characterization of polymer encapsulated silver nanoparticle coatings for antibacterial effect. Materials Today: Proceedings, 2021, 47, 1782-1786.	0.9	2
102	Biogenic Silver Nanoparticles: A Potent Therapeutic Agent. , 2021, , 81-127.		5
103	Nanotechnology and the Sustainability: Toxicological Assessments and Environmental Risks of Nanomaterials Under Climate Change. , 2021, , 3421-3442.		0
104	Phytosynthesis of silver nanoparticles from aqueous leaf extracts of <i>Piper colubrinum</i> : characterisation and catalytic activity. Journal of Experimental Nanoscience, 2021, 16, 294-308.	1.3	11
105	Green Nanoparticles for Biomedical and Bioengineering Applications. , 2020, , 225-262.		4
106	Antimicrobial nanostructured coating. Frontiers of Nanoscience, 2020, 15, 291-311.	0.3	4
107	Inhibition of Fusarium oxysporum by AgNPs biosynthesised using Cinnamomum camphora fruit extract. IET Nanobiotechnology, 2019, 13, 42-45.	1.9	5
109	Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sciences, 2020, 15, 819-839.	0.6	113
110	Comparison of Plant Growth Promoting Rhizobacteria (PGPR) Diversity and Dynamics During Growth of Cilembu Sweet Potato (Ipomoea batatas L var. Rancing) in Cilembu and Jatinangor Site, Indonesia. Journal of Pure and Applied Microbiology, 2017, 11, 837-845.	0.3	6
111	Algae: A potential source for nanoparticle synthesis. Journal of Applied and Natural Science, 2018, 10, 1134-1140.	0.2	22

#	Article	IF	CITATIONS
112	Plasma-chemical-assisted synthesis of silver nanoparticles using grape pomace waste. Voprosy Khimii I Khimicheskoi Tekhnologii, 2020, , 53-60.	0.1	6
113	A importância dos óleos essenciais na sÃntese verde de nanopartÃculas metálicas. Revista Materia, 2021, 26, .	0.1	1
114	Synthesis and characterization of silver nanoparticle-modified TiO ₂ powder: photocatalytic properties and antibacterial activity. Molecular Crystals and Liquid Crystals, 2021, 721, 86-98.	0.4	0
115	Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific Reports, 2021, 11, 21047.	1.6	130
116	Green Synthesis of Silver Nanoparticles Using a Biosurfactant from Bacillus cereus UCP 1615 as Stabilizing Agent and Its Application as an Antifungal Agent. Fermentation, 2021, 7, 233.	1.4	9
117	Surface modification of textiles by green nanotechnology against pathogenic microorganisms. Current Research in Green and Sustainable Chemistry, 2021, 4, 100206.	2.9	7
119	Effect of culture media and silver nitrate concentration on nanoparticle biosynthesis by a filamentous fungus. Mexican Journal of Biotechnology, 2018, 3, 1-14.	0.2	0
120	Green Approaches to Environmental Sustainability. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 81-101.	0.3	Ο
121	The Antioxidant Activity and Cytotoxic Effects of Amaranthus cruentus-Biosynthesized Silver Nanoparticles Toward MCF-7 Breast Cancer Cell Line. International Journal of Basic Science in Medicine, 2019, 4, 17-22.	0.1	1
123	CELLULOSE MATERIALS MODIFIED BY SILVER NANOPARTICLES AND THE STUDY OF THEIR ANTIBACTE-RIAL PROPERTIES. Khimiya Rastitel'nogo Syr'ya, 2020, , 345-355.	0.0	2
124	Synthesis of metal nanoparticles by microbes and biocompatible green reagents. , 2022, , 17-45.		1
125	Synthesis, properties, and uses of silver nanoparticles obtained from leaf extracts. , 2022, , 317-357.		2
126	Experimental Methods for the Phytochemical Production of Nanoparticles. , 2020, , 83-95.		1
127	Nanotechnology and the Sustainability: Toxicological Assessments and Environmental Risks of Nanomaterials Under Climate Change. , 2020, , 1-22.		1
128	Phosphate Solubilization Potentials of Rhizosphere Fungi Isolated from Insecticide Treated Soil. Advanced Research in Life Sciences, 2020, 4, 58-69.	0.4	0
129	Sustainable green synthesized nanoparticles: bioapplications and biosafety. , 2020, , 549-586.		0
130	Exo- and endoglucanase production by Curvularia affinis using bean (Phaseolus vulgaris L.) waste biomass. Bioresources and Bioprocessing, 2020, 7, .	2.0	6
131	Brief review on recent outcomes of applications of green synthesis vs chemical synthesis of silver nanoparticles. IP International Journal of Comprehensive and Advanced Pharmacology, 2020, 5, 9-13.	0.1	0

#	Article	IF	CITATIONS
132	Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications. International Journal of Molecular Sciences, 2021, 22, 11993.	1.8	70
133	Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial. Chemistry and Chemical Technology, 2020, 14, 297-303.	0.2	6
134	Synthesis, Characterization, and Antimicrobial Properties of Sparfloxacin-Mediated Noble Metal Nanoparticles. Journal of Pure and Applied Microbiology, 2020, 14, 1789-1800.	0.3	2
135	SYNTHESIS SILVER NANOPARTICLES AND ITS APPLICATION FOR WASTEWATER TREATMENT: CATALYTIC AND PHOTOCATALYTIC DEGRADATION METHYLENE BLUE. Water and Water Purification Technologies Scientific and Technical News, 2020, 27, 46-58.	0.1	1
136	Plasma-chemical-assisted synthesis of silver nanoparticles using grape pomace waste. Voprosy Khimii I Khimicheskoi Tekhnologii, 2020, , .	0.1	2
137	Effect of UV Irradiation (A and C) on Casuarina equisetifolia-Mediated Biosynthesis and Characterization of Antimicrobial and Anticancer Activity of Biocompatible Zinc Oxide Nanoparticles. Pharmaceutics, 2021, 13, 1977.	2.0	18
138	Biosynthesis of selenium nanoparticles by <i>Aspergillus flavus</i> and <i>Candida albicans</i> for antifungal applications. Micro and Nano Letters, 2021, 16, 656-669.	0.6	18
139	Synthesis of silver nanoparticles in a plasma electrochemical system for degradation of environmental pollutants. Materials Today: Proceedings, 2022, 50, 492-495.	0.9	1
140	Peculiarities of synthesis and bactericidal properties of nanosilver in colloidal solutions, SiO2 films and in the textile structure: a review. Himia, Fizika Ta Tehnologia Poverhni, 2021, 12, 326-343.	0.2	2
141	All-green wound dressing prototype based on Nile tilapia skin impregnated with silver nanoparticles reduced by essential oil. Applied Nanoscience (Switzerland), 2022, 12, 129.	1.6	1
142	Synthesis, characterization and anticancer activities of silver nanoparticles from the leaves of <i>Datura stramonium L.</i> . Nanofabrication, 2021, 6, 25-35.	1.1	2
143	Microwave-assisted synthesis of silver nanoparticles and their inhibitory activity against Rhizoctonia solani on maize. Molecular Crystals and Liquid Crystals, 0, , 1-11.	0.4	Ο
144	Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes. Materials, 2022, 15, 775.	1.3	7
145	High Doses of Silica Nanoparticles Obtained by Microemulsion and Green Routes Compromise Human Alveolar Cells Morphology and Stiffness Differently. Bioinorganic Chemistry and Applications, 2022, 2022, 1-23.	1.8	4
146	<i>Streptomyces chiangmaiensis</i> SSUT88A mediated green synthesis of silver nanoparticles: characterization and evaluation of antibacterial action against clinical drug-resistant strains. RSC Advances, 2022, 12, 4336-4345.	1.7	7
147	Green Synthesis of Nanoparticles: A Solution to Environmental Pollution. , 2022, , 1965-1993.		5
148	Plant Extract-Synthesized Silver Nanoparticles for Application in Dental Therapy. Pharmaceutics, 2022, 14, 380.	2.0	28
149	Antibacterial, Cytotoxic, and Cellular Mechanisms of Green Synthesized Silver Nanoparticles against Some Cariogenic Bacteria (Streptococcus mutans and Actinomyces viscosus). Journal of Nanomaterials, 2022, 2022, 1-8.	1.5	13

#	Article	IF	Citations
150	Silver nanodendrites as excellent catalytic activity properties in dye degradation. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	2
151	Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Letters in Applied Microbiology, 2022, 74, 809-819.	1.0	9
152	Eco-friendly synthesis of silver nanoparticles from macroalgae: optimization, characterization and antimicrobial activity. Biomass Conversion and Biorefinery, 0, , 1.	2.9	6
153	Extracellular Synthesis of Silver Nanoparticles Using a Novel Bacterial Strain Kocuria rhizophila BR-1: Process Optimization and Evaluation of Antibacterial Activity. BioNanoScience, 2022, 12, 423-438.	1.5	5
154	Recent advances in nanomaterials based sustainable agriculture: An overview. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100687.	1.7	11
155	Biosynthesis of silver nanoparticles using endophytic <i>Fusarium oxysporum</i> strain <scp>NFW16</scp> and their in vitro antibacterial potential. Microscopy Research and Technique, 2022, 85, 1568-1579.	1.2	13
156	Biosynthesized nanoparticles for diabetes treatment. , 2022, , 143-172.		0
157	Characterization of Green Synthesized Antibacterial Silver Nanoparticles from Amaranthus spinosus L. Extract. BioNanoScience, 2022, 12, 502-511.	1.5	3
158	Recent progression of cyanobacteria and their pharmaceutical utility: an update. Journal of Biomolecular Structure and Dynamics, 2023, 41, 4219-4252.	2.0	4
159	Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology, 2022, 16, 115-144.	1.9	94
160	Multidrug resistance from a one health perspective in Ethiopia: A systematic review and meta-analysis of literature (2015–2020). One Health, 2022, 14, 100390.	1.5	5
161	Biofabrication of Silver Nanoparticles and Current Research of Its Environmental Applications. Journal of Nanomaterials, 2022, 2022, 1-11.	1.5	6
162	Trends in Sustainable Green Synthesis of Silver Nanoparticles Using Agri-Food Waste Extracts and Their Applications in Health. Journal of Nanomaterials, 2022, 2022, 1-37.	1.5	20
163	Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arabian Journal of Chemistry, 2022, 15, 103927.	2.3	68
164	An Overview of Green Synthesis and Potential Pharmaceutical Applications of Nanoparticles as Targeted Drug Delivery System in Biomedicines. Drug Research, 2022, , .	0.7	1
165	Rice straw mediated green synthesis and characterization of iron oxide nanoparticles and its application to improve thermal stability of endoglucanase enzyme. International Journal of Food Microbiology, 2022, 374, 109722.	2.1	8
166	Phytochemically stabilized chitosan encapsulated Cu and Ag nanocomposites to remove cefuroxime axetil and pathogens from the environment. International Journal of Biological Macromolecules, 2022, 212, 451-464.	3.6	18
167	Bio-Fabrication of Silver Nanoparticles Using <i>Catha edulis</i> Extract: Procedure Optimization and Antimicrobial Efficacy Encountering Antibiotic-Resistant Pathogens. Advances in Nanoparticles, 2022, 11, 31-54.	0.3	5

#	Article	IF	CITATIONS
168	In situ green synthesis of Cu-doped ZnO based polymers nanocomposite with studying antimicrobial, antioxidant and anti-inflammatory activities. Applied Biological Chemistry, 2022, 65, .	0.7	16
169	Nanotechnology and green nano-synthesis for nano-bioremediation. , 2022, , 843-856.		0
170	Fabrication of Silver Nanoparticles Using Cordyline fruticosa L. Leave Extract Endowing Silk Fibroin Modified Viscose Fabric with Durable Antibacterial Property. Polymers, 2022, 14, 2409.	2.0	3
171	Millettia pinnata plant pod extract-mediated synthesis of Bi2O3 for degradation of water pollutants. Environmental Science and Pollution Research, 2022, 29, 79253-79271.	2.7	17
172	Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics, 2022, 11, 794.	1.5	7
173	Green Synthesis of Nanoparticles Using Plants as a Bioreactor. International Journal of Scientific Research in Science and Technology, 2022, , 148-156.	0.1	0
174	Surface Functionalization of Graphene Oxide with Silver Nanoparticles Using Phyto Extract and its Antimicrobial Properties Against Biological Contaminants. Arabian Journal for Science and Engineering, 0, , .	1.7	1
175	Lung Models to Evaluate Silver Nanoparticles' Toxicity and Their Impact on Human Health. Nanomaterials, 2022, 12, 2316.	1.9	13
176	Molecular Docking and Efficacy of Aloe vera Gel Based on Chitosan Nanoparticles against Helicobacter pylori and Its Antioxidant and Anti-Inflammatory Activities. Polymers, 2022, 14, 2994.	2.0	31
177	Synthesis and antibacterial potential of <scp><i>Loranthus pulverulentus</i></scp> conjugated silver nanoparticles. Microscopy Research and Technique, 2022, 85, 3530-3540.	1.2	3
178	Inhibition of Multi Drug Resistant Bacterial Species, Scandinavium goeteborgense CCUC 66741 and Aeromonas veronii CRC6 Isolated from a Waste Water Treatment Facility Using Nanocomposites. Journal of Water Chemistry and Technology, 2022, 44, 198-207.	0.2	0
180	Biosynthesis of silver nanoparticles for biomedical applications: A mini review. Inorganic Chemistry Communication, 2022, 145, 109980.	1.8	20
181	Green Synthesis of Plant-Assisted Manganese-Based Nanoparticles and Their Various Applications. , 2022, , 339-354.		3
182	Study the effect of biosynthesized gold nanoparticles on the enzymatic activity of alpha-Amylase. Research Journal of Pharmacy and Technology, 2022, , 3459-3465.	0.2	0
183	Effective gene delivery based on facilely synthesized "core–shell―Ag@PDA@PEI nanoparticles. Journal of Nanoparticle Research, 2022, 24, .	0.8	1
184	Role of Trigonella foenum-graecum leaf extract in tailoring the synthesis and properties of bioactive glass nanoparticles. Sustainable Materials and Technologies, 2022, 33, e00485.	1.7	0
185	Recent trends in green synthesis of silver, gold, and zinc oxide nanoparticles and their application in nanosciences and toxicity: a review. Nanotechnology for Environmental Engineering, 2022, 7, 907-922.	2.0	10
186	Anticancer cytotoxicity and antifungal abilities of green-synthesized cobalt hydroxide (Co(OH)2) nanoparticles using Lantana camara L Beni-Suef University Journal of Basic and Applied Sciences, 2022, 11, .	0.8	3

#	Article	IF	CITATIONS
187	Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity. Molecules, 2022, 27, 6306.	1.7	13
188	Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Conversion and Biorefinery, 2023, 13, 417-430.	2.9	56
189	Silver nano/microparticle toxicity in the shrimp Litopenaeus vannamei (Boone, 1931). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2023, 264, 109493.	1.3	1
190	Nanotechnology $\hat{a} \in A$ new frontier of nano-farming in agricultural and food production and its development. Science of the Total Environment, 2023, 857, 159639.	3.9	50
191	Chapter 5. Phytoplankton Controls on the Transformations of Metal-containing Nanoparticles in an Aquatic Environment. Chemistry in the Environment, 2022, , 113-131.	0.2	2
192	Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of Lagerstroemia speciose and Flowers of Couroupita guianensis. Molecules, 2022, 27, 7792.	1.7	2
193	Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. International Nano Letters, 0, , .	2.3	0
194	Strong anti-viral nano biocide based on Ag/ZnO modified by amodiaquine as an antibacterial and antiviral composite. Scientific Reports, 2022, 12, .	1.6	3
195	Green synthesis of Cicer arietinum waste derived silver nanoparticle for antimicrobial and cytotoxicity properties. Biocatalysis and Agricultural Biotechnology, 2023, 47, 102573.	1.5	4
196	Synthesis of nickel cobalt-codoped tin oxide nanoparticles from Psidium guajava with anticancer properties. Arabian Journal of Chemistry, 2023, 16, 104481.	2.3	4
197	Biological evaluation of extracellular mycosynthesized silver nanoparticles by Trichoderma asperellum. BioMetals, 2023, 36, 97-109.	1.8	5
198	A review of adsorption techniques for removal of phosphates from wastewater. Water Science and Technology, 2022, 86, 3113-3132.	1.2	14
199	Recent progress in algae-mediated silver nanoparticle synthesis. International Nano Letters, 2023, 13, 193-207.	2.3	4
200	Recent Advances in Eco-Friendly and Scaling-Up Bioproduction of Prodigiosin and Its Potential Applications in Agriculture. Agronomy, 2022, 12, 3099.	1.3	9
201	Antimicrobial Effects of Gum Arabic-Silver Nanoparticles against Oral Pathogens. Bioinorganic Chemistry and Applications, 2022, 2022, 1-11.	1.8	4
202	Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. Molecules, 2023, 28, 463.	1.7	32
203	Phytochemical Characterization and Efficacy of Artemisia judaica Extract Loaded Chitosan Nanoparticles as Inhibitors of Cancer Proliferation and Microbial Growth. Polymers, 2023, 15, 391.	2.0	18
204	Green synthesis of silver nanoparticles using Helianthemum lippii extracts (Hl-NPs): Characterization, antioxidant and antibacterial activities, and study of interaction with DNA. Journal of Organometallic Chemistry, 2023, 986, 122619.	0.8	4

#	Article	IF	CITATIONS
205	Biotoxicity of Azadirachta indica-synthesized silver nanoparticles against larvae of Culex quinquefasciatus. South African Journal of Botany, 2023, 153, 308-314.	1.2	2
206	Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using Leclercia adecarboxylata THHM and its antimicrobial activity. Microbial Cell Factories, 2022, 21, .	1.9	9
207	Isolation and Classification of Green Alga Stigeoclonium attenuatum and Evaluation of its Ability to Prepare Zinc Oxide Nanoflakes for Methylene Blue Photodegradation by Sunlight. Baghdad Science Journal, 0, , .	0.4	0
208	Investigation of mycosynthesized silver nanoparticles by the mushroom Pleurotus eryngii in biomedical applications. International Journal of Environmental Science and Technology, 2023, 20, 4861-4872.	1.8	3
209	Microbial-Mediated Synthesis of Nanoparticles and Their Role in Bioethanol Production. Clean Energy Production Technologies, 2023, , 169-210.	0.3	0
210	Plant extracts and <i>Trichoderma</i> spp: possibilities for implementation in agriculture as biopesticides. Biotechnology and Biotechnological Equipment, 2023, 37, 159-166.	0.5	7
211	Biosynthesis of Silver nanoparticles using Trichosporon asahii and study their antibacterial and synergism effects. , 2022, 14, 70-77.		0
212	Bioenvironmental applications of myco-created bioactive zinc oxide nanoparticle-doped selenium oxide nanoparticles. Biomass Conversion and Biorefinery, 0, , .	2.9	6
213	Thermomyces lanuginosus: A prospective thermophilic fungus for green synthesis and stabilization of BioAgNPs through glucoamylase. Materials Chemistry and Physics, 2023, 297, 127442.	2.0	2
214	Biogenic silver NPs alleviate LPS-induced neuroinflammation in a human fetal brain-derived cell line: Molecular switch to the M2 phenotype, modulation of TLR4/MyD88 and Nrf2/HO-1 signaling pathways, and molecular docking analysis. , 2023, 148, 213363.		3
215	Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 2023, 11, 369.	1.6	55
216	Environmentally Benign Nanoparticles for the Photocatalytic Degradation of Pharmaceutical Drugs. Catalysts, 2023, 13, 511.	1.6	4
217	Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review. Polymers, 2023, 15, 1392.	2.0	9
218	Passive inactivation of Candida parapsilosis in model indoor bioaerosol study using the visible photocatalytic activity of synthesized nanocomposite. Chemical Papers, 2023, 77, 3571-3587.	1.0	1
219	Impact of nanotechnology on differentiation and augmentation of stem cells for liver therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2023, , .	1.2	0
220	Biogenic Synthesis of Multifunctional Silver Oxide Nanoparticles (Ag2ONPs) Using Parieteria alsinaefolia Delile Aqueous Extract and Assessment of Their Diverse Biological Applications. Microorganisms, 2023, 11, 1069.	1.6	7
226	Nanosilver in the food sector: Prospects and challenges. , 2023, , 191-219.		0
227	Green Silver Nanoparticles for Nanoremediation. , 2023, , 253-274.		1

#	Article	IF	CITATIONS
228	Management of Macrophomina phaseolina using nanoparticles. , 2023, , 323-332.		0
235	Role of biosynthesized silver nanoparticles in environmental remediation: a review. Nanotechnology for Environmental Engineering, 2023, 8, 829-843.	2.0	3
240	Methods of Screening and Applications of Biosurfactants Produced by Cyanobacteria. , 2023, , 73-86.		0
245	Application of Nanoparticles in Environmental Monitoring. , 2023, , 108-128.		0
246	Development of Nanomaterials from Natural Resources for Biosensing and Biomedical Technology. , 2023, , 239-269.		0
247	Green Synthesized Nanoparticles for Development of Latent Fingerprints. Materials Horizons, 2023, , 129-141.	0.3	0
257	Biogenic Silver Nanoparticle and Their Applications. Environmental Science and Engineering, 2024, , 497-508.	0.1	0
259	Biological Agents for the Synthesis of Silver Nanoparticles and Their Applications. , 0, , .		0
260	Silver nanoparticles against multidrug-resistant bacteria and bacterial biofilm. , 2024, , 157-164.		0
261	Advantages of Nanomedicine Over Conventional Therapeutics. Learning Materials in Biosciences, 2023, , 45-85.	0.2	0
266	Green synthesis of nanomaterials and their applications in sustainable agriculture. , 2024, , 185-208.		0
267	Synthesis of bionanoparticles and their significance in soil nutrition and plant development. , 2024, , 93-108.		0