MADAM: Effective and Efficient Behavior-based Androi

IEEE Transactions on Dependable and Secure Computing 15, 83-97 DOI: 10.1109/tdsc.2016.2536605

Citation Report

#	Article	IF	CITATIONS
1	l find your behavior disturbing: Static and dynamic app behavioral analysis for detection of Android malware. , 2016, , .		15
2	Android security overview: A systematic survey. , 2016, , .		3
3	Data-Sluice: Fine-grained traffic control for Android application. , 2016, , .		5
4	A Distributed Framework for Collaborative and Dynamic Analysis of Android Malware. , 2017, , .		12
5	Context-Aware, Adaptive, and Scalable Android Malware Detection Through Online Learning. IEEE Transactions on Emerging Topics in Computational Intelligence, 2017, 1, 157-175.	3.4	59
6	Monet: A User-Oriented Behavior-Based Malware Variants Detection System for Android. IEEE Transactions on Information Forensics and Security, 2017, 12, 1103-1112.	4.5	90
7	FgDetector: Fine-Grained Android Malware Detection. , 2017, , .		15
8	CSCdroid: Accurately Detect Android Malware via Contribution-Level-Based System Call Categorization. , 2017, , .		9
9	Detecting and Classifying Android PUAs by Similarity of DNS queries. , 2017, , .		5
10	Detecting Android Malwares by Mining Statically Registered Broadcast Receivers. , 2017, , .		4
11	Towards 3-level hybrid security model for Android Operating Systems. , 2017, , .		0
12	Power profile based runtime anomaly detection. , 2017, , .		3
13	DroidFax: A Toolkit for Systematic Characterization of Android Applications. , 2017, , .		16
14	Intrusion Detection in Contemporary Environments. , 2017, , 109-130.		9
15	RiskLaine: A Probabilistic Approach for Assessing Risk in Certificate-Based Security. IEEE Transactions on Information Forensics and Security, 2018, 13, 1975-1988.	4.5	8
16	SAMADroid: A Novel 3-Level Hybrid Malware Detection Model for Android Operating System. IEEE Access, 2018, 6, 4321-4339.	2.6	133
17	Talos: no more ransomware victims with formal methods. International Journal of Information Security, 2018, 17, 719-738.	2.3	48
18	Malware Threats and Detection for Industrial Mobile-IoT Networks. IEEE Access, 2018, 6, 15941-15957.	2.6	66

			2
#	ARTICLE Behavior-Based Security for Mobile Devices Using Machine Learning Techniques, SSRN Electronic	IF	CITATIONS
19	Journal, O, , .	0.4	0
20	Static and Dynamic Analysis of Third Generation Cerber Ransomware. , 2018, , .		13
21	Countering Intrusiveness Using New Security-Centric Ranking Algorithm Built on Top of Elasticsearch. , 2018, , .		3
22	Malware Detection in Android Operating System. , 2018, , .		7
23	Multilayered Risk analysis of Mobile systems and Apps. , 2018, , .		1
24	Not so Crisp, Malware! Fuzzy Classification of Android Malware Classes. , 2018, , .		0
26	Mass Discovery of Android Malware Behavioral Characteristics for Detection Consideration. Lecture Notes in Computer Science, 2018, , 101-112.	1.0	0
27	Android Malware Detection: A Survey. Communications in Computer and Information Science, 2018, , 255-266.	0.4	42
28	DroidGene: Detecting Android Malware Using Its Malicious Gene. Communications in Computer and Information Science, 2018, , 315-330.	0.4	1
29	Malytics: A Malware Detection Scheme. IEEE Access, 2018, 6, 49418-49431.	2.6	30
30	SWORD: Semantic aWare andrOid malwaRe Detector. Journal of Information Security and Applications, 2018, 42, 46-56.	1.8	27
31	Leveraging ontologies and machine-learning techniques for malware analysis into Android permissions ecosystems. Computers and Security, 2018, 78, 429-453.	4.0	23
32	A Novel Dynamic Android Malware Detection System With Ensemble Learning. IEEE Access, 2018, 6, 30996-31011.	2.6	132
33	LEILA: Formal Tool for Identifying Mobile Malicious Behaviour. IEEE Transactions on Software Engineering, 2019, 45, 1230-1252.	4.3	43
34	SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning. IEEE Access, 2019, 7, 112588-112597.	2.6	28
35	Android Malware Detection Using Genetic Algorithm based Optimized Feature Selection and Machine Learning. , 2019, , .		40
36	Review of Signature-based Techniques in Antivirus Products. , 2019, , .		19
37	Android Application Risk Indicator Based on Feature Analysis Utilizing Machine Learning. , 2019, , .		1

		CITATION REPORT		
#	Article		IF	CITATIONS
38	StackDroid: Evaluation of a Multi-level Approach for Detecting the Malware on Android Stacked Generalization. Communications in Computer and Information Science, 2019,	Using , 611-623.	0.4	10
39	Machine Learning Based File Entropy Analysis for Ransomware Detection in Backup Sys Access, 2019, 7, 110205-110215.	tems. IEEE	2.6	60
40	Understanding and Detecting Overlay-based Android Malware at Market Scales. , 2019	,,.		17
41	Detecting IoT Malware by Markov Chain Behavioral Models. , 2019, , .			22
42	LAB to SOC: Robust Features for Dynamic Malware Detection. , 2019, , .			7
43	A new malware detection system using a high performance-ELM method. , 2019, , .			15
44	HSIRD: A model for characterizing dynamics of malware diffusion in heterogeneous WS Network and Computer Applications, 2019, 146, 102420.	iNs. Journal of	5.8	29
45	A Survey on the Detection of Android Malicious Apps. Advances in Intelligent Systems a 2019, , 437-446.	and Computing,	0.5	7
46	An Efficient Android Malware Detection System Based on Method-Level Behavioral Sem IEEE Access, 2019, 7, 69246-69256.	iantic Analysis.	2.6	62
47	Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy Directions. IEEE Access, 2019, 7, 67602-67631.	and	2.6	69
48	A Multimodal Malware Detection Technique for Android IoT Devices Using Various Feat Access, 2019, 7, 64411-64430.	ures. IEEE	2.6	101
49	DBank: Predictive Behavioral Analysis of Recent Android Banking Trojans. IEEE Transact Dependable and Secure Computing, 2019, , 1-1.	ions on	3.7	6
50	Efficacy Improvement of Anomaly Detection by Using Intelligence Sharing Scheme. App (Switzerland), 2019, 9, 364.	lied Sciences	1.3	4
51	MalDAE: Detecting and explaining malware based on correlation and fusion of static ar characteristics. Computers and Security, 2019, 83, 208-233.	d dynamic	4.0	86
52	Detection of Social Media Exploitation via SMS and Camera. International Journal of Int Mobile Technologies, 2019, 13, 61.	eractive	0.7	2
53	Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access, 2019,	7, 41525-41550.	2.6	895
54	Reducing Security Risks of Suspicious Data and Codes Through a Novel Dynamic Defen Transactions on Information Forensics and Security, 2019, 14, 2427-2440.	se Model. IEEE	4.5	8
55	Research on Data Mining of Permission-Induced Risk for Android IoT Devices. Applied S (Switzerland), 2019, 9, 277.	ciences	1.3	26

#	Article	IF	Citations
56	Malware Detection Using Machine Learning Algorithms and Reverse Engineering of Android Java Code. SSRN Electronic Journal, 2019, , .	0.4	7
57	Heterogeneous Graph Matching Networks: Application to Unknown Malware Detection. , 2019, , .		16
58	Android Malware Detection Scheme Based on Level of SSL Server Certificate. , 2019, , .		1
59	MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality Analysis. , 2019, , .		25
60	Using XGBoost to Discover Infected Hosts Based on HTTP Traffic. Security and Communication Networks, 2019, 2019, 1-11.	1.0	4
61	KerTSDroid: Detecting Android Malware at Scale through Kernel Task Structures. , 2019, , .		4
62	Droid-NNet: Deep Learning Neural Network for Android Malware Detection. , 2019, , .		16
63	Are We Really Protected? An Investigation into the Play Protect Service. , 2019, , .		10
64	Identifying Malicious Software Using Deep Residual Long-Short Term Memory. IEEE Access, 2019, 7, 163128-163137.	2.6	25
65	Differences in Android Behavior Between Real Device and Emulator: A Malware Detection Perspective. , 2019, , .		5
66	DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling. IEEE Transactions on Information Forensics and Security, 2019, 14, 1455-1470.	4.5	190
67	Opcode sequence analysis of Android malware by a convolutional neural network. Concurrency Computation Practice and Experience, 2020, 32, e5308.	1.4	22
68	Learning to detect Android malware via opcode sequences. Neurocomputing, 2020, 396, 599-608.	3.5	54
69	Evolution of Malware and Its DetectionÂTechniques. Advances in Intelligent Systems and Computing, 2020, , 139-150.	0.5	25
70	SoProtector: Safeguard Privacy for Native SO Files in Evolving Mobile IoT Applications. IEEE Internet of Things Journal, 2020, 7, 2539-2552.	5.5	16
71	<i>PermPair</i> : Android Malware Detection Using Permission Pairs. IEEE Transactions on Information Forensics and Security, 2020, 15, 1968-1982.	4.5	97
72	A Survey on Representation Learning Efforts in Cybersecurity Domain. ACM Computing Surveys, 2020, 52, 1-28.	16.1	18
73	Lightweight versus obfuscation-resilient malware detection in android applications. Journal of Computer Virology and Hacking Techniques, 2020, 16, 125-139.	1.6	3

#	Article	IF	Citations
74	DroidDeep: using Deep Belief Network to characterize and detect android malware. Soft Computing, 2020, 24, 6017-6030.	2.1	18
75	Malware detection in mobile environments based on Autoencoders and API-images. Journal of Parallel and Distributed Computing, 2020, 137, 26-33.	2.7	76
76	A Comprehensive Review on Malware Detection Approaches. IEEE Access, 2020, 8, 6249-6271.	2.6	242
77	Scalable and robust unsupervised android malware fingerprinting using community-based network partitioning. Computers and Security, 2020, 97, 101965.	4.0	4
78	A Review of Android Malware Detection Approaches Based on Machine Learning. IEEE Access, 2020, 8, 124579-124607.	2.6	169
79	SOMDROID: android malware detection by artificial neural network trained using unsupervised learning. Evolutionary Intelligence, 2022, 15, 407-437.	2.3	17
80	Malware Analysis Platform Based on Software Gene for Cyberspace Security Practice Teaching. , 2020, ,		3
81	IPDroid: Android Malware Detection using Intents and Permissions. , 2020, , .		35
82	MADFU: An Improved Malicious Application Detection Method Based on Features Uncertainty. Entropy, 2020, 22, 792.	1.1	3
83	DecaDroid Classification and Characterization of Malicious Behaviour in Android Applications. International Journal of Information Security and Privacy, 2020, 14, 57-73.	0.6	2
84	FAMD: A Fast Multifeature Android Malware Detection Framework, Design, and Implementation. IEEE Access, 2020, 8, 194729-194740.	2.6	42
85	One-to-N & N-to-One: Two Advanced Backdoor Attacks Against Deep Learning Models. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 1562-1578.	3.7	29
86	Cluster-head Centered Fast Secure Routing based on Game theory for Device-to-Device Communication. Wireless Personal Communications, 2020, 113, 2079-2106.	1.8	2
87	Scalable and robust unsupervised Android malware fingerprinting using community-based network partitioning. Computers and Security, 2020, 96, 101932.	4.0	5
88	A Systematic Literature Review of Android Malware Detection Using Static Analysis. IEEE Access, 2020, 8, 116363-116379.	2.6	80
89	Representing Fine-Grained Co-Occurrences for Behavior-Based Fraud Detection in Online Payment Services. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 301-315.	3.7	17
90	A survey of security and privacy issues in the Internet of Things from the layered context. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3935.	2.6	55
91	CLAP: Classification of Android PUAs by Similarity of DNS Queries. IEICE Transactions on Information and Systems, 2020, E103.D, 265-275.	0.4	0

#	Article	IF	CITATIONS
92	Birds of a <i>Feature:</i> Intrafamily Clustering for Version Identification of Packed Malware. IEEE Systems Journal, 2020, 14, 4545-4556.	2.9	7
93	DroidPortrait: Android Malware Portrait Construction Based on Multidimensional Behavior Analysis. Applied Sciences (Switzerland), 2020, 10, 3978.	1.3	11
94	Android Malware Family Classification and Analysis: Current Status and Future Directions. Electronics (Switzerland), 2020, 9, 942.	1.8	30
95	Evaluation of Advanced Ensemble Learning Techniques for Android Malware Detection. Vietnam Journal of Computer Science, 2020, 07, 145-159.	1.0	12
96	Android Malware Detection via (Somewhat) Robust Irreversible Feature Transformations. IEEE Transactions on Information Forensics and Security, 2020, 15, 3511-3525.	4.5	29
97	Blockchain and Internet of Things: An Overview. , 2020, , 295-322.		2
98	Enhanced Android Malware Detection: An SVM-Based Machine Learning Approach. , 2020, , .		19
99	Android Malware Detection Scheme Based on Level of SSL Server Certificate. IEICE Transactions on Information and Systems, 2020, E103.D, 379-389.	0.4	2
100	An Informative and Comprehensive Behavioral Characteristics Analysis Methodology of Android Application for Data Security in Brain-Machine Interfacing. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-14.	0.7	0
101	A Large-Scale Study of Android Malware Development Phenomenon on Public Malware Submission and Scanning Platform. IEEE Transactions on Big Data, 2021, 7, 255-270.	4.4	10
102	NSDroid: efficient multi-classification of android malware using neighborhood signature in local function call graphs. International Journal of Information Security, 2021, 20, 59-71.	2.3	13
103	Using IRP and local alignment method to detect distributed malware. Computers and Security, 2021, 100, 102109.	4.0	1
104	TriDroid: a triage and classification framework for fast detection of mobile threats in android markets. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 1731-1755.	3.3	9
105	JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers and Security, 2021, 100, 102086.	4.0	53
106	Regression coefficients as triad scale for malware detection. Computers and Electrical Engineering, 2021, 90, 106886.	3.0	4
107	Spectral-Based Directed Graph Network for Malware Detection. IEEE Transactions on Network Science and Engineering, 2021, 8, 957-970.	4.1	11
108	Ask a(n)droid to tell you the odds: probabilistic security-by-contract for mobile devices. Soft Computing, 2021, 25, 2295-2314.	2.1	1
109	Android application behavioural analysis for data leakage. Expert Systems, 2021, 38, .	2.9	11

#	Article	IF	CITATIONS
110	Android Malware Detection Based on Composition Ratio of Permission Pairs. IEEE Access, 2021, 9, 130006-130019.	2.6	5
111	Background and Related Work. Advances in Information Security, 2021, , 7-39.	0.9	0
112	Revisiting the Approaches, Datasets and Evaluation Parameters to Detect Android Malware: A Comparative Study from State-of-Art. Studies in Big Data, 2021, , 125-141.	0.8	1
113	AdMat: A CNN-on-Matrix Approach to Android Malware Detection and Classification. IEEE Access, 2021, 9, 39680-39694.	2.6	36
114	Differential Training: A Generic Framework to Reduce Label Noises for Android Malware Detection. , 2021, , .		10
115	Android Malware Detection Based on Structural Features of the Function Call Graph. Electronics (Switzerland), 2021, 10, 186.	1.8	10
116	A Comprehensive Study on Intrusion and Extrusion Phenomena. International Journal of Advanced Computer Science and Applications, 2021, 12, .	0.5	0
117	FSDroid:- A feature selection technique to detect malware from Android using Machine Learning Techniques. Multimedia Tools and Applications, 2021, 80, 13271-13323.	2.6	43
118	CNN-Based Malware Variants Detection Method for Internet of Things. IEEE Internet of Things Journal, 2021, 8, 16946-16962.	5.5	24
119	A survey on analysis and detection of Android ransomware. Concurrency Computation Practice and Experience, 2021, 33, e6272.	1.4	21
120	A new machine learning-based method for android malware detection on imbalanced dataset. Multimedia Tools and Applications, 2021, 80, 24533.	2.6	13
121	SEDMDroid: An Enhanced Stacking Ensemble Framework for Android Malware Detection. IEEE Transactions on Network Science and Engineering, 2021, 8, 984-994.	4.1	65
122	Deep learning feature exploration for Android malware detection. Applied Soft Computing Journal, 2021, 102, 107069.	4.1	45
123	A Malware Detection Method Based on Machine Learning and Ensemble of Regression Trees. , 2021, , .		1
124	AndroAnalyzer: android malicious software detection based on deep learning. PeerJ Computer Science, 2021, 7, e533.	2.7	14
125	NATICUSdroid: A malware detection framework for Android using native and custom permissions. Journal of Information Security and Applications, 2021, 58, 102696.	1.8	20
126	SF Droid Android Malware Detection using Ranked Static Features. International Journal of Recent Technology and Engineering, 2021, 10, 142-152.	0.2	1
127	Malicious application detection in android — A systematic literature review. Computer Science Review, 2021, 40, 100373.	10.2	31

#	Article	IF	CITATIONS
128	Multi-view deep learning for zero-day Android malware detection. Journal of Information Security and Applications, 2021, 58, 102718.	1.8	38
129	RansomDroid: Forensic analysis and detection of Android Ransomware using unsupervised machine learning technique. Forensic Science International: Digital Investigation, 2021, 37, 301168.	1.2	14
130	A Client/Server Malware Detection Model Based on Machine Learning for Android Devices. IoT, 2021, 2, 355-374.	2.3	10
131	Detection and robustness evaluation of android malware classifiers. Journal of Computer Virology and Hacking Techniques, 2022, 18, 147-170.	1.6	5
132	MDTA: A New Approach of Supervised Machine Learning for Android Malware Detection and Threat Attribution Using Behavioral Reports. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 147-159.	0.5	3
133	Less is More: A privacy-respecting Android malware classifier using federated learning. Proceedings on Privacy Enhancing Technologies, 2021, 2021, 96-116.	2.3	11
134	RPNDroid: Android Malware Detection using Ranked Permissions and Network Traffic. , 2021, , .		12
135	Hybrid sequenceâ€based Android malware detection using natural language processing. International Journal of Intelligent Systems, 2021, 36, 5770-5784.	3.3	45
136	A graph-based framework for malicious software detection and classification utilizing temporal-graphs. Journal of Computer Security, 2021, 29, 651-688.	0.5	2
137	Learning-Based Detection for Malicious Android Application Using Code Vectorization. Security and Communication Networks, 2021, 2021, 1-11.	1.0	Ο
138	Survey for Detection and Analysis of Android Malware(s) Through Artificial Intelligence Techniques. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 321-337.	0.5	2
139	How Efficient Is Blockchain While Dealing with Android Malware? AÂReview Paper. Advances in Intelligent Systems and Computing, 2022, , 285-301.	0.5	0
140	A Hybrid Deep Network Framework for Android Malware Detection. IEEE Transactions on Knowledge and Data Engineering, 2022, 34, 5558-5570.	4.0	15
141	A survey for user behavior analysis based on machine learning techniques: current models and applications. Applied Intelligence, 2021, 51, 6029-6055.	3.3	21
142	Machine Learning in Wavelet Domain for Electromagnetic Emission Based Malware Analysis. IEEE Transactions on Information Forensics and Security, 2021, 16, 3426-3441.	4.5	12
143	DL-FHMC: Deep Learning-Based Fine-Grained Hierarchical Learning Approach for Robust Malware Classification. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3432-3447.	3.7	15
144	HybriDroid: an empirical analysis on effective malware detection model developed using ensemble methods. Journal of Supercomputing, 2021, 77, 8209-8251.	2.4	14
145	SoProtector: Securing Native C/C++ Libraries for Mobile Applications. Lecture Notes in Computer Science, 2018, , 417-431.	1.0	1

#	Article	IF	CITATIONS
146	CatraDroid: A Call Trace Driven Detection of Malicious Behaiviors in Android Applications. Lecture Notes in Computer Science, 2019, , 63-77.	1.0	3
147	A Large-Scale Investigation to Identify the Pattern of Permissions in Obfuscated Android Malwares. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 85-97.	0.2	2
148	Classification Method for Malware Detection on Android Devices. Advances in Intelligent Systems and Computing, 2021, , 810-829.	0.5	1
149	A Large-Scale Investigation to Identify the Pattern of App Component in Obfuscated Android Malwares. Communications in Computer and Information Science, 2020, , 513-526.	0.4	4
150	Android Ransomware Detection using Machine Learning Techniques: A Comparative Analysis on GPU and CPU. , 2020, , .		9
151	Detecting malicious applications using system services request behavior. , 2019, , .		4
152	Assessing and Improving Malware Detection Sustainability through App Evolution Studies. ACM Transactions on Software Engineering and Methodology, 2020, 29, 1-28.	4.8	72
153	DANdroid. , 2020, , .		36
154	Analysis of Android Malware Detection Techniques: A Systematic Review. International Journal of Cyber-Security and Digital Forensics, 2019, 8, 177-187.	0.4	15
155	Heterogeneous Graph Matching Networks for Unknown Malware Detection. , 2019, , .		37
156	Out-of-sample Node Representation Learning for Heterogeneous Graph in Real-time Android Malware Detection. , 2019, , .		24
157	Improved Transmission of Data and Information in Intrusion Detection Environments Using the CBEDE Methodology. Advances in Information Security, Privacy, and Ethics Book Series, 2020, , 26-46.	0.4	4
158	Open Source Intelligence for Malicious Behavior Discovery and Interpretation. IEEE Transactions on Dependable and Secure Computing, 2021, , 1-1.	3.7	7
159	A Multimodal Deep Network Model for Android Malware Detection Using Permission. , 2021, , .		1
160	S3Feature: A static sensitive subgraph-based feature for android malware detection. Computers and Security, 2022, 112, 102513.	4.0	20
161	Malware Variants Detection Methods. , 2019, , .		0
162	A scalable and accurate feature representation method for identifying malicious mobile applications. , 2019, , .		4
163	Security Vulnerabilities and Issues of Traditional Wireless Sensors Networks in IoT. Intelligent Systems Reference Library, 2020, , 519-549.	1.0	7

#	Article	IF	CITATIONS
164	LAW: Learning Automatic Windows for Online Payment Fraud Detection. IEEE Transactions on Dependable and Secure Computing, 2020, , 1-1.	3.7	8
165	Host-Server-Based Malware Detection System for Android Platforms Using Machine Learning. Advances in Intelligent Systems and Computing, 2021, , 195-205.	0.5	6
166	A Survey of Intelligent Techniques for Android Malware Detection. , 2021, , 121-162.		5
167	A Multi-Strategy Combination Framework for Android Malware Detection Based on Various Features. , 2020, , .		0
168	On benign features in malware detection. , 2020, , .		4
169	Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review. IEEE Access, 2021, 9, 146318-146349.	2.6	9
170	Detecting Android Malware and Classifying Its Families in Large-scale Datasets. ACM Transactions on Management Information Systems, 2022, 13, 1-21.	2.1	2
171	Signature Based Malicious Behavior Detection in Android. Communications in Computer and Information Science, 2020, , 251-262.	0.4	15
172	An Improved Ensemble Based Machine Learning Technique for Efficient Malware Classification. Communications in Computer and Information Science, 2020, , 651-662.	0.4	0
173	DroidAutoML: A Microservice Architecture to Automate the Evaluation of Android Machine Learning Detection Systems. Lecture Notes in Computer Science, 2020, , 148-165.	1.0	1
174	ASAINT. , 2020, , .		7
176	BrainShield: A Hybrid Machine Learning-Based Malware Detection Model for Android Devices. Electronics (Switzerland), 2021, 10, 2948.	1.8	10
177	SAMLDroid: A Static Taint Analysis and Machine Learning Combined High-Accuracy Method for Identifying Android Apps with Location Privacy Leakage Risks. Entropy, 2021, 23, 1489.	1.1	6
179	Al@nti-Malware: An intelligent framework for defending against malware attacks. Journal of Information Security and Applications, 2022, 65, 103092.	1.8	7
180	RanSAP: An open dataset of ransomware storage access patterns for training machine learning models. Forensic Science International: Digital Investigation, 2022, 40, 301314.	1.2	16
181	CallDetect: Detection of Call Log Exploitation Inspired by Apoptosis. International Journal on Advanced Science, Engineering and Information Technology, 2020, 10, 1792-1797.	0.2	1
182	Continuous Authentication of Smartphone Users using Machine Learning. , 2020, , .		2
183	DroidTKM: Detection of Trojan Families using the KNN Classifier Based on Manhattan Distance Metric. , 2020, , .		8

#	Article	IF	CITATIONS
184	A Review of Hybrid Malware Detection Techniques in Android. , 2020, , .		2
185	MOBDroid: An Intelligent Malware Detection System for Improved Data Security in Mobile Cloud Computing Environments. , 2020, , .		1
186	Android-based Cryptocurrency Wallets: Attacks and Countermeasures. , 2020, , .		7
187	Gradient Conventional Recursive Neural Classifier Algorithm to Analyze the Malicious Software Detection Using Machine Learning. , 2021, , .		0
188	Behavior-Based Malware Detection System Approach For Mobile Security Using Machine Learning. , 2021, , .		6
189	Network Traffic Oriented Malware Detection in IoT (Internet-of-Things). , 2021, , .		1
190	Crystal Ball: From Innovative Attacks to Attack Effectiveness Classifier. IEEE Access, 2022, 10, 1317-1333.	2.6	1
192	Android Malware Detection Using API Calls: A Comparison of Feature Selection and Machine Learning Models. Lecture Notes in Networks and Systems, 2022, , 3-12.	0.5	4
193	MAPAS: a practical deep learning-based android malware detection system. International Journal of Information Security, 2022, 21, 725-738.	2.3	35
194	Creation of a Dataset Modeling the Behavior of Malware Affecting the Confidentiality of Data Managed by IoT Devices. Studies in Computational Intelligence, 2022, , 193-225.	0.7	1
195	Malware Forensics: Legacy Solutions, Recent Advances, andÂFuture Challenges. Lecture Notes in Networks and Systems, 2022, , 685-710.	0.5	1
196	Performance Evaluation of Open-Source Endpoint Detection and Response Combining Google Rapid Response and Osquery for Threat Detection. IEEE Access, 2022, 10, 20259-20269.	2.6	8
197	Eavesdropping user credentials via GPU side channels on smartphones. , 2022, , .		4
198	A Deep Learning Method for Android Application Classification Using Semantic Features. Security and Communication Networks, 2022, 2022, 1-16.	1.0	4
199	Android Malware Detection Technology Based on Lightweight Convolutional Neural Networks. Security and Communication Networks, 2022, 2022, 1-12.	1.0	5
200	Robust deep learning early alarm prediction model based on the behavioural smell for android malware. Computers and Security, 2022, 116, 102670.	4.0	27
201	A Systematic Evaluation of Android Anti-Malware Tools for Detection of Contemporary Malware. , 2021, , .		5
202	Explainable APT Attribution for Malware Using NLP Techniques. , 2021, , .		5

#	Article	IF	CITATIONS
203	DeepDetect: A Practical On-device Android Malware Detector. , 2021, , .		3
204	Hybrid Classification and Clustering Algorithm on Recent Android Malware Detection. , 2021, , .		1
205	Android Malware Family Classification: What Works – API Calls, Permissions or API Packages?. , 2021, , .		1
206	A Systematic Overview of Android Malware Detection. Applied Artificial Intelligence, 2022, 36, .	2.0	13
207	MemDroid - LSTM Based Malware Detection Framework for Android Devices. , 2021, , .		1
208	Efficacy of Android security mechanisms on ransomware analysis and detection. AIP Conference Proceedings, 2022, , .	0.3	2
210	Concept drift and cross-device behavior: Challenges and implications for effective android malware detection. Computers and Security, 2022, 120, 102757.	4.0	11
211	Debiasing Android Malware Datasets: How Can I Trust Your Results If Your Dataset Is Biased?. IEEE Transactions on Information Forensics and Security, 2022, 17, 2182-2197.	4.5	4
212	A Survey of Binary Code Fingerprinting Approaches: Taxonomy, Methodologies, and Features. ACM Computing Surveys, 2023, 55, 1-41.	16.1	12
213	MOBDroid2: An Improved Feature Selection Method for Detecting Malicious Applications in a Mobile Cloud Computing Environment. , 2021, , .		0
214	MalRadar. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2022, 6, 1-27.	1.4	5
215	Cross-device behavioral consistency: Benchmarking and implications for effective android malware detection. Machine Learning With Applications, 2022, 9, 100357.	3.0	3
216	HearMeOut. , 2022, , .		0
217	Rotten apples spoil the bunch. , 2022, , .		2
218	An in-depth review of machine learning based Android malware detection. Computers and Security, 2022, 121, 102833.	4.0	25
219	On the relativity of time: Implications and challenges of data drift on long-term effective android malware detection. Computers and Security, 2022, 122, 102835.	4.0	6
220	Optimal Unification of Static and Dynamic Features for Smartphone Security Analysis. Intelligent Automation and Soft Computing, 2023, 35, 1035-1051.	1.6	3
221	DeepCatra: Learning flow―and graphâ€based behaviours for Android malware detection. IET Information Security, 2023, 17, 118-130	1.1	7

#	Article	IF	CITATIONS
222	Ensemble Framework Combining Family Information for Android Malware Detection. Computer Journal, 0, , .	1.5	0
223	Empirical feature learning in application-based samples: A case study. Journal of Computational Science, 2022, 64, 101839.	1.5	1
224	On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities. Cybersecurity, 2022, 5, .	3.1	6
225	Behaviour analysis of inter-app communication using a lightweight monitoring app for malware detection. Expert Systems With Applications, 2022, 210, 118404.	4.4	2
226	A Formal Method for Description and Decision of Android Apps Behavior Based on Process Algebra. IEEE Access, 2022, 10, 108668-108683.	2.6	1
227	Review on Android Malware Detection System. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 75-93.	0.5	0
228	DockerWatch: a two-phase hybrid detection of malware using various static features in container cloud. Soft Computing, 2023, 27, 1015-1031.	2.1	2
230	AndroOBFS. , 2022, , .		2
231	Secure Android Location Tracking Application with Privacy Enhanced Technique. , 2022, , .		18
232	CNN―and GANâ€based classification of malicious code families: A code visualization approach. International Journal of Intelligent Systems, 2022, 37, 12472-12489.	3.3	7
233	Statistical Analysis of Big Data Models in Android Malware Detection. , 2022, , .		0
234	Malicious Applications Detection in Android Using Machine Learning. International Journal of Artificial Intelligence and Machine Learning, 2022, 2, 21-34.	0.1	0
235	Android Malware Detection Using Deep Learning. , 2023, , 209-246.		0
236	DNNdroid: Android Malware Detection Framework Based onÂFederated Learning andÂEdge Computing. Communications in Computer and Information Science, 2022, , 96-107.	0.4	2
237	RansomShield: A Visualization Approach to Defending Mobile Systems Against Ransomware. ACM Transactions on Privacy and Security, 2023, 26, 1-30.	2.2	4
238	Pragmatic Evidence on Android Malware Analysis Techniques: A Systematic Literature Review. International Journal of Innovations in Science and Technology, 2023, , 1-19.	0.1	0
239	Machine learning approach for detecting and combating bring your own device (BYOD) security threats and attacks: a systematic mapping review. Artificial Intelligence Review, 2023, 56, 8815-8858.	9.7	2
240	An Effectual Analytics and Approach for Avoidance of Malware in Android Using Deep Neural Networks. Advances in Intelligent Systems and Computing, 2023, , 767-777.	0.5	0

C		-	D -		
U.I.I	AII	ON	⊢ K ⊦	·PO	RT

#	Article	IF	CITATIONS
241	A hierarchical based ensemble classifier for behavioral malware detection using machine learning. , 2022, , .		1
242	Detecting Malware in Android Applications by Using Androguard Tool and XGBoost Algorithm. , 2022, , \cdot		0
243	Circumventing Google Play vetting policies: a stealthy cyberattack that uses incremental updates to breach privacy. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 4785-4794.	3.3	6
244	A Novel Machine Learning Approach for Android Malware Detection Based on the Co-Existence of Features. IEEE Access, 2023, 11, 15471-15484.	2.6	8
245	Suspicious Permissions Detection of Covid-19 Themed Malicious Android Applications. , 2023, , .		1
246	Machine learning-based malware detection using stacking of opcodes and bytecode sequences. , 2022, , \cdot		Ο
247	A Critical Survey on Machine Learning Paradigms to Forecast Software Defects by Using Testing Parameters. Advanced Technologies and Societal Change, 2023, , 95-103.	0.8	1
248	Research on Risk Warning Technology of Electric Power Backbone Communication Network Based on Knowledge Graph. , 2023, , .		Ο
249	Mitigating Malware Attacks using Machine Learning: A Review. , 2023, , .		0
250	Anti-Ant Framework for Android Malware Detection and Prevention Using Supervised Learning. , 2023,		2
253	Success and failure rate prediction of Android Application using Machine Learning. , 2023, , .		1
257	A Comprehensive Investigation of Blockchain Technology's Role in Cyber Security. , 2023, , .		Ο
259	API2Vec: Learning Representations of API Sequences for Malware Detection. , 2023, , .		2
260	Permission-Based Android Malware Identification. , 2023, , .		Ο
261	Graph-Based Android Malware Detection and Categorization through BERT Transformer. , 2023, , .		0
263	Three-Layered Hybrid Analysis Technique for Android Malware Detection. Lecture Notes in Electrical Engineering, 2023, , 303-312.	0.3	1
267	A Data-driven Approach for Risk Exposure Analysis in Enterprise Security. , 2023, , .		1
269	Horizontal Association Modeling: DeepÂRelation Modeling. , 2023, , 43-85.		О

#	Article	IF	CITATIONS
270	Vertical Association Modeling: Latent Interaction Modeling. , 2023, , 11-41.		0
274	DeMAndApp: Detecting Malicious Android App. Lecture Notes in Networks and Systems, 2023, , 199-219.	0.5	0
276	Android Malware: Comprehensive Study and a Cross-Feature Light Weight Proposed Solution. , 2023, , .		0
279	Android Malware Detection Using Genetic Algorithm Based Optimized Feature Selection and Machine Learning. Lecture Notes in Electrical Engineering, 2024, , 207-215.	0.3	Ο