Emerging Two-Dimensional Nanomaterials for Electrod

Chemical Reviews 118, 6337-6408

DOI: 10.1021/acs.chemrev.7b00689

Citation Report

#	Article	IF	CITATIONS
1	Electronic Tuning of Co, Niâ€Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804886.	14.9	87
2	Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H ₂ production. Journal of Materials Chemistry A, 2018, 6, 23278-23282.	10.3	37
3	Novel 2D Nanosheets with Potential Applications in Heavy Metal Purification: A Review. Advanced Materials Interfaces, 2018, 5, 1801094.	3.7	67
4	Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 22235-22242.	7.1	17
5	Graphitic carbon nitride (g-C ₃ N ₄) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22346-22380.	10.3	244
6	Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers. Catalysts, 2018, 8, 657.	3.5	51
7	Polyoxometalateâ€Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater. Advanced Functional Materials, 2019, 29, 1805893.	14.9	69
8	Metal-Cluster-Directed Surface Charge Manipulation of Two-Dimensional Nanomaterials for Efficient Urea Electrocatalytic Conversion. ACS Applied Nano Materials, 2018, 1, 6649-6655.	5.0	11
9	Single-Crystal Nitrogen-Rich Two-Dimensional Mo ₅ N ₆ Nanosheets for Efficient and Stable Seawater Splitting. ACS Nano, 2018, 12, 12761-12769.	14.6	317
10	Mechanisms of Semiconducting 2H to Metallic 1T Phase Transition in Two-dimensional MoS ₂ Nanosheets. Journal of Physical Chemistry C, 2018, 122, 28215-28224.	3.1	65
11	Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis, 2018, 1, 909-921.	34.4	591
12	Template-Free Synthesis of Two-Dimensional Fe/N Codoped Carbon Networks as Efficient Oxygen Reduction Reaction Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 37079-37086.	8.0	20
13	First-Principles Modeling in Heterogeneous Electrocatalysis. Catalysts, 2018, 8, 424.	3.5	27
14	Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy, 2018, 53, 690-697.	16.0	175
15	Porous MXene Frameworks Support Pyrite Nanodots toward High-Rate Pseudocapacitive Li/Na-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 33779-33784.	8.0	61
16	Electrochemical Energy Conversion and Storage with Zeolitic Imidazolate Framework Derived Materials: A Perspective. ChemElectroChem, 2018, 5, 3571-3588.	3.4	46
17	C@TiO ₂ /MoO ₃ Composite Nanofibers with 1Tâ€Phase MoS ₂ Nanograin Dopant and Stabilized Interfaces as Anodes for Li―and Naâ€Ion Batteries. ChemSusChem, 2018, 11, 4060-4070.	6.8	21
18	Bimetallic Hofmann-Type Metal–Organic Framework Nanoparticles for Efficient Electrocatalysis of Oxygen Evolution Reaction. ACS Applied Energy Materials, 0, , .	5.1	22

#	Article	IF	CITATIONS
19	Sulfuration of an Fe–N–C Catalyst Containing Fe <i>_x</i> C/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn–Air Batteries. Advanced Materials, 2018, 30, e1804504.	21.0	269
20	Defect and Interface Engineering for Aqueous Electrocatalytic CO2 Reduction. Joule, 2018, 2, 2551-2582.	24.0	459
21	Simultaneous Manipulation of Oâ€Đoping and Metal Vacancy in Atomically Thin Zn ₁₀ 1n ₁₆ S ₃₄ Nanosheet Arrays toward Improved Photoelectrochemical Performance. Angewandte Chemie - International Edition, 2018, 57, 16882-16887.	13.8	109
22	Simultaneous Manipulation of Oâ€Doping and Metal Vacancy in Atomically Thin Zn ₁₀ In ₁₆ S ₃₄ Nanosheet Arrays toward Improved Photoelectrochemical Performance. Angewandte Chemie, 2018, 130, 17124-17129.	2.0	19
23	Structural Self-Reconstruction of Catalysts in Electrocatalysis. Accounts of Chemical Research, 2018, 51, 2968-2977.	15.6	252
24	A hierarchical CoTe ₂ –MnTe ₂ hybrid nanowire array enables high activity for oxygen evolution reactions. Chemical Communications, 2018, 54, 10993-10996.	4.1	125
25	CeO _{<i>x</i>} -Decorated NiFe-Layered Double Hydroxide for Efficient Alkaline Hydrogen Evolution by Oxygen Vacancy Engineering. ACS Applied Materials & Interfaces, 2018, 10, 35145-35153.	8.0	156
26	Selective Photocatalytic Synthesis of Haloanilines from Halonitrobenzenes over Multifunctional AuPt/Monolayer Titanate Nanosheet. ACS Catalysis, 2018, 8, 9656-9664.	11.2	41
27	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	10.3	103
28	Charge State Manipulation of Cobalt Selenide Catalyst for Overall Seawater Electrolysis. Advanced Energy Materials, 2018, 8, 1801926.	19.5	264
29	Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. Small, 2018, 14, e1802091.	10.0	247
30	Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 2018, 22, 100-131.	11.9	86
31	Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 17874-17881.	10.3	30
32	Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society, 2018, 140, 7748-7759.	13.7	1,157
33	Engineering a stereo-film of FeNi ₃ nanosheet-covered FeOOH arrays for efficient oxygen evolution. Nanoscale, 2018, 10, 10971-10978.	5.6	40
34	Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO ₂ Reduction to CH ₄ . ACS Catalysis, 2018, 8, 7113-7119.	11.2	486
35	Selfâ€Assemble and In Situ Formation of Ni _{1â^'} <i>_x</i> Fe <i>_x</i> PS ₃ Nanomosaicâ€Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1801127.	19.5	204
36	Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Science Bulletin, 2018, 63, 1246-1253.	9.0	225

#	Article	IF	CITATIONS
37	<i>In situ</i> formation of Ni ₃ Se ₄ nanorod arrays as versatile electrocatalysts for electrochemical oxidation reactions in hybrid water electrolysis. Journal of Materials Chemistry A, 2018, 6, 15653-15658.	10.3	84
38	Partially amorphous nickel–iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 16121-16129.	10.3	193
39	Enabling Effective Electrocatalytic N ₂ Conversion to NH ₃ by the TiO ₂ Nanosheets Array under Ambient Conditions. ACS Applied Materials & Interfaces, 2018, 10, 28251-28255.	8.0	222
40	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie, 2018, 130, 13347-13350.	2.0	69
41	High-Performance Electrohydrogenation of N ₂ to NH ₃ Catalyzed by Multishelled Hollow Cr ₂ O ₃ Microspheres under Ambient Conditions. ACS Catalysis, 2018, 8, 8540-8544.	11.2	280
42	Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation. APL Materials, 2018, 6, .	5.1	30
43	Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. Journal of Materials Chemistry A, 2018, 6, 21941-21948.	10.3	161
44	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie - International Edition, 2018, 57, 13163-13166.	13.8	312
45	Ironâ€Incorporated αâ€Ni(OH) ₂ Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation. Chemistry - A European Journal, 2018, 24, 18408-18412.	3.3	114
46	Controllable Synthesis of Few‣ayer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie - International Edition, 2018, 57, 13283-13287.	13.8	141
47	Controllable Synthesis of Few‣ayer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO ₂ Reduction Performance. Angewandte Chemie, 2018, 130, 13467-13471.	2.0	42
48	Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications. Nano-Micro Letters, 2018, 10, 66.	27.0	71
49	Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Science China Materials, 2018, 61, 1527-1535.	6.3	42
50	Preparation of 1T′-Phase ReS _{2<i>x</i>} Se _{2(1-<i>x</i>)} (<i>x</i> = 0–1) Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 8563-8568.	13.7	104
51	Oxygen reduction reaction on gold in alkaline solutions – The inner or outer sphere mechanisms in the light of recent achievements. Current Opinion in Electrochemistry, 2019, 14, 180-185.	4.8	23
52	Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Materials Today, 2019, 23, 45-56.	14.2	64
53	Confinement Catalysis with 2D Materials for Energy Conversion. Advanced Materials, 2019, 31, e1901996.	21.0	257
54	Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536.	10.3	89

#	Article	IF	CITATIONS
55	The novel and facile preparation of 2DMoS2@C composites for dye adsorption application. Applied Surface Science, 2019, 495, 143626.	6.1	18
56	Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications. Journal of Materials Chemistry A, 2019, 7, 23577-23603.	10.3	43
57	Au-MoS ₂ Hybrids as Hydrogen Evolution Electrocatalysts. ACS Applied Energy Materials, 2019, 2, 6043-6050.	5.1	43
58	Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation. ACS Applied Materials & Interfaces, 2019, 11, 30880-30886.	8.0	39
59	Plasmonic Nanohybrid with High Photothermal Conversion Efficiency for Simultaneously Effective Antibacterial/Anticancer Photothermal Therapy. ACS Applied Bio Materials, 2019, 2, 3942-3953.	4.6	49
60	Bimetallic NiPd Nanoparticle-Incorporated Ordered Mesoporous Carbon as Highly Efficient Electrocatalysts for Hydrogen Production via Overall Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 15526-15536.	6.7	44
61	Spin–Orbit Coupling-Dominated Catalytic Activity of Two-Dimensional Bismuth toward CO ₂ Electroreduction: Not the Thinner the Better. Journal of Physical Chemistry Letters, 2019, 10, 4663-4667.	4.6	41
62	Unveiling chemical reactivity and oxidation of 1T-phased group VI disulfides. Physical Chemistry Chemical Physics, 2019, 21, 17010-17017.	2.8	7
63	Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. CheM, 2019, 5, 2429-2441.	11.7	150
64	Single Pt atoms stabilized on Mo2TiC2O2 for hydrogen evolution: A first-principles investigation. Journal of Chemical Physics, 2019, 151, 024702.	3.0	22
65	Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing. Materials Research Express, 2019, 6, 095076.	1.6	12
66	SnTe@MnO ₂ â€SP Nanosheet–Based Intelligent Nanoplatform for Second Nearâ€Infrared Light–Mediated Cancer Theranostics. Advanced Functional Materials, 2019, 29, 1903791.	14.9	69
67	Recent progress of nanomaterials for microwave absorption. Journal of Materiomics, 2019, 5, 503-541.	5.7	318
68	Preferential Microstructure Design of Twoâ€Dimensional Electrocatalysts for Boosted Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 4662-4670.	3.7	29
69	Nitrogenâ€Doped NiO Nanosheet Array for Boosted Electrocatalytic N ₂ Reduction. ChemCatChem, 2019, 11, 4529-4536.	3.7	74
70	In Situ Catalytic Etching Strategy Promoted Synthesis of Carbon Nanotube Inlaid with Ultrasmall FeP Nanoparticles as Efficient Electrocatalyst for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 12741-12749.	6.7	28
71	Realization of Oxygen Reduction and Evolution Electrocatalysis by In Situ Stabilization of Co Nanoparticles in a Redoxâ€Active Donorâ€Acceptor Porous Organic Polymer. ChemElectroChem, 2019, 6, 3756-3763.	3.4	19
72	Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides. Chemistry of Materials, 2019, 31, 6798-6807.	6.7	71

		CITATION REPORT	
# 73	ARTICLE Dissolution of silver nanoparticles in colloidal consumer products: effects of particle size and capping agent. Journal of Nanoparticle Research, 2019, 21, 1-155.	IF 1.9	CITATIONS
74	Synchronously Achieving Highly Efficient Hydrogen Evolution and High-Yield Synthesis of Glucaric Acid by MOF Nanorod Arrays. Journal of the Electrochemical Society, 2019, 166, H534-H540.	2.9	17
75	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
76	Boron-doped InSe monolayer as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. Applied Surface Science, 2019, 495, 143463.	6.1	46
77	Emerging Twoâ€Dimensional Nanomaterials for Cancer Therapy. ChemPhysChem, 2019, 20, 2417-2433.	2.1	24
78	Oxygen molecule dissociation on heteroatom doped graphdiyne. Applied Surface Science, 2019, 494, 421-429.	6.1	16
79	Carbon nanotubes-based PdM bimetallic catalysts through N4-system for efficient ethanol oxidation and hydrogen evolution reaction. Scientific Reports, 2019, 9, 11051.	3.3	28
80	p–n tungsten oxide homojunctions for Vis-NIR light-enhanced electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 19573-19580.	10.3	31
81	Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1, 100001.	19.1	438
82	Sensing Performance of a YSZ-Based Electrochemical NO ₂ Sensor Using Nanocomposite Electrodes. Journal of the Electrochemical Society, 2019, 166, B799-B804.	2.9	31
83	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie, 2019, 131, 12142-12145.	2.0	138
84	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie - International Edition, 2019, 58, 12014-12017.	13.8	189
85	Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. Nanoscale, 2019, 11, 15685-15708.	5.6	74
86	Humid atmospheric pressure plasma jets exposed micro-defects on CoMoO ₄ nanosheets with enhanced OER performance. Chemical Communications, 2019, 55, 9432-9435.	4.1	11
87	Molybdenum, Cobalt Sulfide-Modified N-, S-Doped Graphene from Low-Temperature Molecular Pyrolysis: Mutual Activation Effect for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 19442-19452.	6.7	9
88	A Hydrangeaâ€Like Superstructure of Open Carbon Cages with Hierarchical Porosity and Highly Active Metal Sites. Advanced Materials, 2019, 31, e1904689.	21.0	155
89	Exploring the Influence of Halogen Coordination Effect of Stable Bimetallic MOFs on Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 15830-15836.	3.3	27
90	Adjustable Ternary FeCoNi Nanohybrids for Enhanced Oxygen Evolution Reaction. Chemistry - A European Journal, 2019, 25, 15361-15366.	3.3	7

#	Article	IF	CITATIONS
91	Two-dimensional transition-metal dichalcogenides for electrochemical hydrogen evolution reaction. FlatChem, 2019, 18, 100140.	5.6	39
92	Prussian blue/ZIF-67-derived carbon layers-encapsulated FeCo nanoparticles for hydrogen and oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 853, 113557.	3.8	11
93	Atomic Nb Anchoring on Graphdiyne as a New Potential Electrocatalyst for Nitrogen Fixation: A Computational View. Advanced Theory and Simulations, 2019, 2, 1900132.	2.8	38
94	The Complex Velocity Variation Induced by the Precipitation and the 2018 Eruption of the Kilauea Volcano in Hawaii Revealed by Ambient Noise. Seismological Research Letters, 2019, 90, 2154-2164.	1.9	5
95	Graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites as potential metal-free electrocatalysts for oxygen reduction reaction. Journal of Physics Condensed Matter, 2019, 31, 465201.	1.8	9
96	Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Analytica Chimica Acta, 2019, 1088, 72-78.	5.4	13
97	Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. Journal of Materials Chemistry C, 2019, 7, 13367-13383.	5.5	197
98	The zeta potentials of g-C3N4 nanoparticles: Effect of electrolyte, ionic strength, pH, and humic acid. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	37
99	Doping sp-hybridized B atoms in graphyne supported single cobalt atoms for hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2019, 44, 27421-27428.	7.1	23
100	Molybdenum Oxide Nanosheet-Supported Ferrous Ion Artificial Peroxidase for Visual Colorimetric Detection of Triacetone Triperoxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 18985-18991.	6.7	13
102	Saltâ€Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis. Small, 2019, 15, e1903500.	10.0	57
103	Proliferating Oxygen Reduction Reaction by High Volume of Mesopores in Regular Nickel–Nitrogen Codoped Carbon Nanocubes. Advanced Materials Interfaces, 2019, 6, 1901186.	3.7	7
104	Cobalt Phosphide Ultrathin and Freestanding Sheets Prepared through Microwave Chemical Vapor Deposition: A Highly Efficient Oxygen Evolution Reaction Catalyst. ChemElectroChem, 2019, 6, 5469-5478.	3.4	16
105	Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. Journal of Materials Chemistry A, 2019, 7, 24205-24210.	10.3	101
106	Shifts in the skin microbiome associated with diaper dermatitis and emollient treatment amongst infants and toddlers in China. Experimental Dermatology, 2019, 28, 1289-1297.	2.9	15
107	Anderson Localization in 2D Amorphous MoO _{3â€<i>x</i>} Monolayers for Electrochemical Ammonia Synthesis. ChemCatChem, 2019, 11, 5412-5416.	3.7	37
108	Graphene wrapped Fe7C3 nanoparticles supported on N-doped graphene nanosheets for efficient and highly methanol-tolerant oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 556, 352-359.	9.4	48
109	DFT calculations: A powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Computational Materials Science, 2019, 170, 109202.	3.0	59

#	Article	IF	CITATIONS
110	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	5.6	52
111	Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale, 2019, 11, 18183-18190.	5.6	25
112	Selectivity Control for Electrochemical CO ₂ Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catalysis, 2019, 9, 9411-9417.	11.2	172
113	Antimony Chalcogenide van der Waals Nanostructures for Energy Conversion and Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15790-15798.	6.7	24
114	Two-Dimensional Effects on the Oxygen Reduction Reaction and Irreversible Surface Oxidation of Metallic Ru Nanosheets and Nanoparticles. ACS Applied Nano Materials, 2019, 2, 5743-5751.	5.0	16
115	Single Sb sites for efficient electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 12024-12027.	4.1	65
116	Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 37787-37795.	8.0	38
117	Interface Charge Engineering of Ultrafine Ru/Ni ₂ P Nanoparticles Encapsulated in N,P-Codoped Hollow Carbon Nanospheres for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 17714-17722.	6.7	33
118	Bifunctional Electrocatalytic Activity of Bis(iminothiolato)nickel Monolayer for Overall Water Splitting. Journal of Physical Chemistry C, 2019, 123, 25651-25656.	3.1	17
119	2D metal-organic frameworks-derived preparation of layered CuS@C as an efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 323, 134856.	5.2	21
120	Origin of high hydrogen evolution activity on InSe nanoribbons: A first-principles study. International Journal of Hydrogen Energy, 2019, 44, 24174-24183.	7.1	9
121	Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today, 2019, 28, 100774.	11.9	81
122	Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochimica Acta, 2019, 300, 123-130.	5.2	60
123	One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 1196-1205.	10.3	42
124	Ultrasmall (<2 nm) Au@Pt Nanostructures: Tuning the Surface Electronic States for Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2019, 11, 5661-5667.	8.0	22
125	Efficient electrocatalytic N ₂ reduction on CoO quantum dots. Journal of Materials Chemistry A, 2019, 7, 4389-4394.	10.3	210
126	Lamellarly Stacking Porous N, P Coâ€Doped Mo ₂ C/C Nanosheets as High Performance Anode for Lithiumâ€lon Batteries. Small, 2019, 15, e1805022.	10.0	43
127	Sulfur Redox Reactions at Working Interfaces in Lithium–Sulfur Batteries: A Perspective. Advanced Materials Interfaces, 2019, 6, 1802046.	3.7	128

#	Article	IF	CITATIONS
128	2D/2D Heterojunctions for Catalysis. Advanced Science, 2019, 6, 1801702.	11.2	224
129	2D Early Transition Metal Carbides (MXenes) for Catalysis. Small, 2019, 15, e1804736.	10.0	239
130	Single-Metal Atom Anchored on Boron Monolayer (β ₁₂) as an Electrocatalyst for Nitrogen Reduction into Ammonia at Ambient Conditions: A First-Principles Study. Journal of Physical Chemistry C, 2019, 123, 4274-4281.	3.1	86
131	Single Transition Metal Atom-Doped Graphene Supported on a Nickel Substrate: Enhanced Oxygen Reduction Reactions Modulated by Electron Coupling. Journal of Physical Chemistry C, 2019, 123, 3703-3710.	3.1	27
132	One-dimensional CoS ₂ –MoS ₂ nano-flakes decorated MoO ₂ sub-micro-wires for synergistically enhanced hydrogen evolution. Nanoscale, 2019, 11, 3500-3505.	5.6	31
133	Cross-double dumbbell-like Pt–Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Applied Catalysis B: Environmental, 2019, 246, 277-283.	20.2	145
134	Upraising the O 2p Orbital by Integrating Ni with MoO ₂ for Accelerating Hydrogen Evolution Kinetics. ACS Catalysis, 2019, 9, 2275-2285.	11.2	165
135	One-pot aqueous synthesis of two-dimensional porous bimetallic PtPd alloyed nanosheets as highly active and durable electrocatalyst for boosting oxygen reduction and hydrogen evolution. Journal of Colloid and Interface Science, 2019, 543, 1-8.	9.4	115
136	Single-Boron Catalysts for Nitrogen Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 2884-2888.	13.7	497
137	Graphene–hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction. Physical Chemistry Chemical Physics, 2019, 21, 3942-3953.	2.8	55
138	Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373-394.	25.5	74
139	Constructing Hierarchical Wire-on-Sheet Nanoarrays in Phase-Regulated Cerium-Doped Nickel Hydroxide for Promoted Urea Electro-oxidation. , 2019, 1, 103-110.		100
140	Carbon‣upportâ€Based Heterogeneous Nanocatalysts: Synthesis and Applications in Organic Reactions. Asian Journal of Organic Chemistry, 2019, 8, 1263-1305.	2.7	59
141	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie, 2019, 131, 11922-11926.	2.0	22
142	Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 16793-16802.	10.3	60
143	Effect of carbon nanotubes with varying dimensions and properties on the performance of lead acid batteries operating under high rate partial state of charge conditions. Journal of Energy Storage, 2019, 24, 100806.	8.1	18
144	Atomic Plane-Vacancy Engineering of Transition-Metal Dichalcogenides with Enhanced Hydrogen Evolution Capability. ACS Applied Materials & amp; Interfaces, 2019, 11, 25264-25270.	8.0	51
145	Tunable stable operating potential window for high-voltage aqueous supercapacitors. Nano Energy, 2019, 63, 103848.	16.0	55

#	Article	IF	CITATIONS
146	A Fully Reversible Water Electrolyzer Cell Made Up from FeCoNi (Oxy)hydroxide Atomic Layers. Advanced Energy Materials, 2019, 9, 1901312.	19.5	106
147	Manganese Doping of MoSe ₂ Promotes Active Defect Sites for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 25155-25162.	8.0	70
148	Importance of heteroatom doping site in tuning the electronic structure and magnetic properties of graphdiyne. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113590.	2.7	17
149	WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes. Journal of Membrane Science, 2019, 588, 117219.	8.2	27
150	Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release, 2019, 307, 16-31.	9.9	167
151	Modification of C, O, and N Groups for Oxygen Reduction Reaction on an Electrochemically Stabilized Graphene Nanoribbon Surface. Journal of Physical Chemistry C, 2019, 123, 16308-16316.	3.1	24
152	Wall―and Hybridisationâ€Selective Synthesis of Nitrogenâ€Doped Doubleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2019, 131, 10382-10386.	2.0	2
153	Photoelectrochemical Hydrogen Evolution and CO2 Reduction over MoS2/Si and MoSe2/Si Nanostructures by Combined Photoelectrochemical Deposition and Rapid-Thermal Annealing Process. Catalysts, 2019, 9, 494.	3.5	19
154	Surface Nanodroplets: Formation, Dissolution, and Applications. Langmuir, 2019, 35, 12583-12596.	3.5	33
155	Interface Modulation of Two-Dimensional Superlattices for Efficient Overall Water Splitting. Nano Letters, 2019, 19, 4518-4526.	9.1	191
156	Unravelling the synergy effects of defect-rich 1T-MoS ₂ /carbon nanotubes for the hydrogen evolution reaction by experimental and calculational studies. Sustainable Energy and Fuels, 2019, 3, 2100-2110.	4.9	34
157	A Hybrid Electrocatalyst with a Coordinatively Unsaturated Metal–Organic Framework Shell and Hollow Ni ₃ S ₂ /NiS Core for Oxygen Evolution Reaction Applications. ACS Applied Materials & Interfaces, 2019, 11, 23180-23191.	8.0	42
158	Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 2019, 106, 100574.	32.8	184
159	MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 17995-18006.	7.1	73
160	Nitrogen Vacancies on 2D Layered W ₂ N ₃ : A Stable and Efficient Active Site for Nitrogen Reduction Reaction. Advanced Materials, 2019, 31, e1902709.	21.0	387
161	Tungsten-doped Ni–Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 16859-16866.	10.3	144
162	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie - International Edition, 2019, 58, 11796-11800.	13.8	155
163	Insight into the design of defect electrocatalysts: From electronic structure to adsorption energy. Materials Today, 2019, 31, 47-68.	14.2	311

#	Article	IF	CITATIONS
164	Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications. Environmental Science & Technology, 2019, 53, 7265-7287.	10.0	109
165	Efficient etching of oxygen-incorporated molybdenum disulfide nanosheet arrays for excellent electrocatalytic hydrogen evolution. Applied Surface Science, 2019, 491, 245-255.	6.1	22
166	The evaluation of the long-term stability of α-MnO2 based OER electrocatalyst in neutral medium by using data processing approach. Journal of Molecular Structure, 2019, 1195, 632-640.	3.6	22
167	Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications. Molecular Systems Design and Engineering, 2019, 4, 804-827.	3.4	71
168	Cu-based N-doped/undoped graphene nanocomposites as electrocatalysts for the oxygen reduction. Journal of Applied Electrochemistry, 2019, 49, 693-703.	2.9	3
169	A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Materials, 2019, 20, 55-70.	18.0	349
170	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640.	10.3	24
171	Mesoporous TiO2 nanospheres loaded with highly dispersed Pd nanoparticles for pH-universal hydrogen evolution reaction. Materials Today Nano, 2019, 6, 100038.	4.6	30
172	Wall―and Hybridisation‧elective Synthesis of Nitrogenâ€Doped Doubleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 10276-10280.	13.8	4
173	In situ formation of ultrathin C3N4 layers on metallic WO2 nanorods for efficient hydrogen evolution. Applied Surface Science, 2019, 487, 945-950.	6.1	20
174	The electronic structure underlying electrocatalysis of twoâ€dimensional materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1418.	14.6	17
175	Interface Electronic Coupling in Hierarchical FeLDH(FeCo)/Co(OH) ₂ Arrays for Efficient Electrocatalytic Oxygen Evolution. ChemSusChem, 2019, 12, 3592-3601.	6.8	38
176	Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Chemical Communications, 2019, 55, 6555-6558.	4.1	53
177	Copper-incorporated hierarchical wire-on-sheet α-Ni(OH) ₂ nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. Journal of Materials Chemistry A, 2019, 7, 13577-13584.	10.3	159
178	An Amorphous Nickel–Ironâ€Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1900883.	21.0	243
179	Multi-level carbon co-modified LiVPO4F cathode material for lithium batteries. Journal of Alloys and Compounds, 2019, 788, 1146-1153.	5.5	4
180	Layered photochromic films stacked from spiropyran-modified montmorillonite nanosheets. RSC Advances, 2019, 9, 12325-12330.	3.6	18
181	Nano-hybridization of VS with Ni Fe layered double hydroxides for efficient oxygen evolution in alkaline media. Applied Surface Science, 2019, 484, 1010-1018.	6.1	14

#	Article	IF	CITATIONS
182	Hierarchical MoS ₂ Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano, 2019, 13, 5533-5540.	14.6	187
183	Featherlike NiCoP Holey Nanoarrys for Efficient and Stable Seawater Splitting. ACS Applied Energy Materials, 2019, 2, 3910-3917.	5.1	102
184	A bimetallic Co ₄ Mo ₈ cluster built from Mo ₈ oxothiomolybdate capped by a Co ₄ -thiacalix[4]arene unit: the observation of the Co–Mo synergistic effect for binder-free electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 12893-12899.	10.3	39
185	Efficient Oxygen Evolution Catalysis Triggered by Nickel Phosphide Nanoparticles Compositing with Reduced Graphene Oxide with Controlled Architecture. ACS Sustainable Chemistry and Engineering, 2019, 7, 9566-9573.	6.7	34
186	Understanding the Roadmap for Electrochemical Reduction of CO ₂ to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society, 2019, 141, 7646-7659.	13.7	711
187	Defective Graphene on the Transition-Metal Surface: Formation of Efficient Bifunctional Catalysts for Oxygen Evolution/Reduction Reactions in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 17410-17415.	8.0	34
188	Regulating the allocation of N and P in codoped graphene <i>via</i> supramolecular control to remarkably boost hydrogen evolution. Energy and Environmental Science, 2019, 12, 2697-2705.	30.8	77
189	Synthetic strategies of two-dimensional porous materials towards highly effective catalysts. FlatChem, 2019, 15, 100109.	5.6	21
190	Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27, 69-90.	14.2	289
191	Two-dimensional amorphous nanomaterials: synthesis and applications. 2D Materials, 2019, 6, 032002.	4.4	69
193	Modulating the Electronic Structure of Singleâ€Atom Catalysts on 2D Nanomaterials for Enhanced Electrocatalytic Performance. Small Methods, 2019, 3, 1800438.	8.6	88
194	Recent advances in electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 77-84.	5.9	17
195	Support and Interface Effects in Waterâ€6plitting Electrocatalysts. Advanced Materials, 2019, 31, e1808167.	21.0	531
196	Modified Nanocarbons for Catalysis. ChemCatChem, 2019, 11, 90-133.	3.7	66
197	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	3.4	45
198	pH-regulated synthesis of CuO _x /ERGO nanohybrids with tunable electrocatalytic oxidation activity towards nitrite sensing. New Journal of Chemistry, 2019, 43, 4947-4958.	2.8	17
199	A review of graphene-based 3D van der Waals hybrids and their energy applications. Nano Today, 2019, 25, 27-37.	11.9	59
200	The development of 2D materials for electrochemical energy applications: A mechanistic approach. APL Materials, 2019, 7, .	5.1	28

#	Article	IF	CITATIONS
201	Progress in Electrocatalytic Hydrogen Evolution Based on Monolayer Molybdenum Disulfide. Frontiers in Chemistry, 2019, 7, 131.	3.6	17
202	Cobalt-Ruthenium Nanoalloys Parceled in Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2019, 7, 7014-7023.	6.7	95
203	Engineering 2D Metal–Organic Framework/MoS ₂ Interface for Enhanced Alkaline Hydrogen Evolution. Small, 2019, 15, e1805511.	10.0	169
204	NiO Nanodots on Graphene for Efficient Electrochemical N ₂ Reduction to NH ₃ . ACS Applied Energy Materials, 2019, 2, 2288-2295.	5.1	138
205	Electronic Structure Engineering of LiCoO ₂ toward Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1803482.	19.5	85
206	Bimetallic Metalâ€Organic Frameworkâ€Derived Nanosheetâ€Assembled Nanoflower Electrocatalysts for Efficient Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2019, 14, 1590-1594.	3.3	27
207	Carbonâ€Based Substrates for Highly Dispersed Nanoparticle and Even Singleâ€Atom Electrocatalysts. Small Methods, 2019, 3, 1900050.	8.6	87
208	Highly efficient ethylene glycol electrocatalytic oxidation based on bimetallic PtNi on 2D molybdenum disulfide/reduced graphene oxide nanosheets. Journal of Colloid and Interface Science, 2019, 547, 102-110.	9.4	23
209	A review on the Mo-precursors for catalytic hydroconversion of heavy oil. Journal of Industrial and Engineering Chemistry, 2019, 76, 1-16.	5.8	50
210	The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. Journal of Materials Chemistry A, 2019, 7, 9078-9085.	10.3	151
211	Unveiling the Interfacial Effects for Enhanced Hydrogen Evolution Reaction on MoS ₂ /WTe ₂ Hybrid Structures. Small, 2019, 15, e1900078.	10.0	58
212	Nacre-like composite films with a conductive interconnected network consisting of graphene oxide, polyvinyl alcohol and single-walled carbon nanotubes. Materials and Design, 2019, 175, 107783.	7.0	18
213	One Simple Strategy towards Nitrogen and Oxygen Codoped Carbon Nanotube for Efficient Electrocatalytic Oxygen Reduction and Evolution. Catalysts, 2019, 9, 159.	3.5	9
214	Modification of Layered Graphitic Carbon Nitride by Nitrogen Plasma for Improved Electrocatalytic Hydrogen Evolution. Nanomaterials, 2019, 9, 568.	4.1	14
215	Annealing effects on the electrical and photoelectric performance of SnS2 field-effect transistor. Applied Surface Science, 2019, 484, 39-44.	6.1	11
216	Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy, 2019, 60, 894-902.	16.0	250
217	Unique interfacial thermodynamics of few-layer 2D MoS ₂ for (photo)electrochemical catalysis. Energy and Environmental Science, 2019, 12, 1648-1656.	30.8	25
218	Direct Synthesis of Metalâ€Đoped Phosphorene with Enhanced Electrocatalytic Hydrogen Evolution. Small Methods, 2019, 3, 1900083.	8.6	56

#	Article	IF	CITATIONS
219	Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foamâ€Like Trimetal–Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. Advanced Materials, 2019, 31, e1901139.	21.0	374
220	Superior liquid fuel oxidation electrocatalysis enabled by novel bimetallic PtNi nanorods. Journal of Power Sources, 2019, 425, 179-185.	7.8	26
221	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	47.7	1,519
222	Metal–organic layer derived metal hydroxide nanosheets for highly efficient oxygen evolution. Chemical Communications, 2019, 55, 5467-5470.	4.1	33
223	Defect engineering in earth-abundant electrocatalysts for CO ₂ and N ₂ reduction. Energy and Environmental Science, 2019, 12, 1730-1750.	30.8	439
224	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	4.1	34
225	Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction. Advanced Science, 2019, 6, 1900119.	11.2	90
226	Environmentallyâ€Friendly Exfoliate and Active Site Selfâ€Assembly: Thin 2D/2D Heterostructure Amorphous Nickel–Iron Alloy on 2D Materials for Efficient Oxygen Evolution Reaction. Small, 2019, 15, e1805435.	10.0	64
227	P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 547, 291-298.	9.4	33
228	Fullerene as an efficient hybridization matrix for exploring high-performance layered-double-hydroxide-based electrodes. Journal of Materials Chemistry A, 2019, 7, 10971-10979.	10.3	31
229	Phosphate Doped Ultrathin FeP Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction in Acid Media. ChemCatChem, 2019, 11, 2484-2489.	3.7	17
230	Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction. Journal of Materials Chemistry A, 2019, 7, 11444-11451.	10.3	49
231	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie, 2019, 131, 5486-5491.	2.0	30
232	Design and preparation of organic nanomaterials using selfâ€assembled peptoids. Biopolymers, 2019, 110, e23265.	2.4	18
233	Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. ACS Nano, 2019, 13, 2544-2557.	14.6	89
234	Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis. Materials Today Energy, 2019, 12, 250-268.	4.7	48
235	Phase Control in Inorganic Nanocrystals through Finely Tuned Growth at an Ultrathin Scale. Accounts of Chemical Research, 2019, 52, 780-790.	15.6	27
236	Can Atomic Buckling Control a Chemical Reaction? The Case of Dehydrogenation of Phthalocyanine Molecules on GdAu ₂ /Au(111). Journal of Physical Chemistry C, 2019, 123, 6496-6501.	3.1	3

#	Article	IF	CITATIONS
237	Cobalt Complex of a Tetraamido Macrocyclic Ligand as a Precursor for Electrocatalytic Hydrogen Evolution. Organometallics, 2019, 38, 1397-1406.	2.3	11
238	"Bulk―1T/2H-MoS ₂ with Tunable Phases and Residual S, N Co-Doped Carbon as a Highly Active and Durable Catalyst for Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 2022-2033.	5.1	20
239	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 805-810.	17.4	323
240	Shape-controlled synthesis of Co ₃ O ₄ for enhanced electrocatalysis of the oxygen evolution reaction. Chemical Communications, 2019, 55, 3626-3629.	4.1	75
241	<i>In situ</i> synthesis of edge-enriched MoS ₂ hierarchical nanorods with 1T/2H hybrid phases for highly efficient electrocatalytic hydrogen evolution. CrystEngComm, 2019, 21, 1984-1991.	2.6	29
242	Fabrication of Superior Singleâ€Atom Catalysts toward Diverse Electrochemical Reactions. Small Methods, 2019, 3, 1800497.	8.6	99
243	Solution-phase synthesis of two-dimensional silica nanosheets using soft templates and their applications in CO ₂ capture. Nanoscale, 2019, 11, 5365-5376.	5.6	23
244	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie - International Edition, 2019, 58, 5376-5381.	13.8	230
245	Fully Conjugated Twoâ€Dimensional sp ² â€Carbon Covalent Organic Frameworks as Artificial Photosystemâ€I with High Efficiency. Angewandte Chemie, 2019, 131, 5430-5435.	2.0	59
246	Defect chemistry in 2D materials for electrocatalysis. Materials Today Energy, 2019, 12, 215-238.	4.7	110
247	Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angewandte Chemie - International Edition, 2019, 58, 5432-5437.	13.8	194
248	Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Science Advances, 2019, 5, eaav6009.	10.3	508
249	Single nanoparticle photoelectrochemistry: What is next?. Journal of Chemical Physics, 2019, 151, 180901.	3.0	10
250	Silicon-doped graphene edges: an efficient metal-free catalyst for the reduction of CO ₂ into methanol and ethanol. Catalysis Science and Technology, 2019, 9, 6800-6807.	4.1	51
251	Coupled nanocomposite Co _{5.47} N–Co ₃ Fe ₇ inlaid in a tremella-like carbon framework as a highly efficient multifunctional electrocatalyst for oxygen transformation and overall water splitting. Sustainable Energy and Fuels, 2019, 3, 3538-3549.	4.9	12
252	Synergistic catalysis of CuO/In ₂ O ₃ composites for highly selective electrochemical CO ₂ reduction to CO. Chemical Communications, 2019, 55, 12380-12383.	4.1	32
253	Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy and Environmental Science, 2019, 12, 3348-3355.	30.8	234
254	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11, 21622-21678.	5.6	201

#	Article	IF	CITATIONS
255	2D Atomically Thin Electrocatalysts: From Graphene to Metallene. Matter, 2019, 1, 1454-1455.	10.0	17
256	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	9.0	75
257	Seeded Heteroepitaxial Growth of Crystallizable Collagen Triple Helices: Engineering Multifunctional Two-Dimensional Core–Shell Nanostructures. Journal of the American Chemical Society, 2019, 141, 20107-20117.	13.7	42
258	The Role of Functionalization in the Applications of Carbon Materials: An Overview. Journal of Carbon Research, 2019, 5, 84.	2.7	51
259	A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chemical Communications, 2019, 55, 14805-14808.	4.1	39
260	Preparation of an Fe ₂ Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction. RSC Advances, 2019, 9, 33558-33562.	3.6	40
261	Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation. Journal of Materials Chemistry A, 2019, 7, 24437-24444.	10.3	80
262	Fabrication of highly fluorescent multiple Fe3O4 nanoparticles core-silica shell nanoparticles. Journal of Nanoparticle Research, 2019, 21, .	1.9	48
263	Defect-Rich 2D Material Networks for Advanced Oxygen Evolution Catalysts. ACS Energy Letters, 2019, 4, 328-336.	17.4	148
264	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	47.7	521
265	Hydrophilic Poly(vinylidene Fluoride) Film with Enhanced Inner Channels for Both Water- and Ionic Liquid-Driven Ion-Exchange Polymer Metal Composite Actuators. ACS Applied Materials & Interfaces, 2019, 11, 2386-2397.	8.0	58
266	Dual Tuning of Ultrathin α-Co(OH) ₂ Nanosheets by Solvent Engineering and Coordination Competition for Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 3527-3535.	6.7	56
267	Probing C3N/Graphene heterostructures as anode materials for Li-ion batteries. Journal of Power Sources, 2019, 413, 117-124.	7.8	68
268	Manipulating the assembled structure of atomically thin CoSe2 nanomaterials for enhanced water oxidation catalysis. Nano Energy, 2019, 57, 371-378.	16.0	23
269	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	47.7	745
270	Pseudomorphic Transformation of Interpenetrated Prussian Blue Analogs into Defective Nickel Iron Selenides for Enhanced Electrochemical and Photoâ€Electrochemical Water Splitting. Advanced Energy Materials, 2019, 9, 1802983.	19.5	150
271	Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Materials Today Energy, 2019, 11, 1-23.	4.7	189
272	Exfoliated Layered Manganese Trichalcogenide Phosphite (MnP <i>X</i> ₃ , <i>X</i> = S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution. Advanced Functional Materials, 2019, 29, 1805975.	14.9	85

#	Article	IF	CITATIONS
273	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56, 411-419.	16.0	421
274	Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance. Journal of Alloys and Compounds, 2019, 777, 514-523.	5.5	47
275	Cobalt hydroxide-black phosphorus nanosheets: A superior electrocatalyst for electrochemical oxygen evolution. Electrochimica Acta, 2019, 297, 40-45.	5.2	27
276	Effective Fabrication and Electrochemical Oxygen Evolution Reaction Activity of Gold Multipod Nanoparticle Core–Cobalt Sulfide Shell Nanohybrids. ACS Applied Nano Materials, 2019, 2, 678-688.	5.0	16
277	Tracking Structural Selfâ€Reconstruction and Identifying True Active Sites toward Cobalt Oxychloride Precatalyst of Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1805127.	21.0	211
278	Facile fabrication of stable PdCu clusters uniformly decorated on graphene as an efficient electrocatalyst for formic acid oxidation. International Journal of Hydrogen Energy, 2019, 44, 2731-2740.	7.1	64
279	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie, 2019, 131, 1498-1502.	^{lr} 2.0	63
280	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie - International Edition, 2019, 58, 1484-1488.	^{Ir} 13.8	165
281	Bimetallic Covalent Organic Frameworks for Constructing Multifunctional Electrocatalyst. Chemistry - A European Journal, 2019, 25, 3105-3111.	3.3	69
282	Homologous CoP/NiCoP Heterostructure on Nâ€Doped Carbon for Highly Efficient and pHâ€Universal Hydrogen Evolution Electrocatalysis. Advanced Functional Materials, 2019, 29, 1807976.	14.9	278
283	A General Twoâ€Step Strategy–Based Highâ€Throughput Screening of Single Atom Catalysts for Nitrogen Fixation. Small Methods, 2019, 3, 1800376.	8.6	303
284	Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites. Journal of the American Chemical Society, 2019, 141, 693-705.	13.7	176
285	Computational Screening of Efficient Singleâ€Atom Catalysts Based on Graphitic Carbon Nitride (g ₃ N ₄) for Nitrogen Electroreduction. Small Methods, 2019, 3, 1800368.	8.6	347
286	Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 2019, 9, 336-344.	11.2	278
287	Enhancement of Photoelectrochemical Hydrogen Evolution of P-Type Silicon Nanowires Array by Loading MoS2. Silicon, 2019, 11, 1963-1970.	3.3	6
288	Facile synthesis of NiSe2 particles with highly efficient electrocatalytic oxygen evolution reaction. Materials Letters, 2019, 235, 53-56.	2.6	12
289	Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305.	10.4	44
290	Forming Atom–Vacancy Interface on the MoS 2 Catalyst for Efficient Hydrodeoxygenation Reactions. Small Methods, 2019, 3, 1800315.	8.6	23

#	Article	IF	CITATIONS
291	Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. CheM, 2019, 5, 18-50.	11.7	579
292	Metal Phosphorous Trichalcogenides (MPCh ₃): From Synthesis to Contemporary Energy Challenges. Angewandte Chemie - International Edition, 2019, 58, 9326-9337.	13.8	73
293	Metallâ€Phosphorâ€Trichalkogenide (MPCh 3): von der Synthese zu aktuellen Energieanwendungen. Angewandte Chemie, 2019, 131, 9426-9438.	2.0	5
294	Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622.	47.7	849
295	Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.	12.2	291
296	A modulated electronic state strategy designed to integrate active HER and OER components as hybrid heterostructures for efficient overall water splitting. Applied Catalysis B: Environmental, 2020, 260, 118197.	20.2	155
297	A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 2020, 120, 1250-1349.	47.7	436
298	Intrinsic properties of nitrogen-rich carbon nitride for oxygen reduction reaction. Applied Surface Science, 2020, 500, 144020.	6.1	21
299	First principle study of feasibility of dinitrogen reduction to ammonia on two-dimensional transition metal phthalocyanine monolayer. Applied Surface Science, 2020, 500, 144032.	6.1	34
300	Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Progress in Solid State Chemistry, 2020, 58, 100254.	7.2	87
301	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	21.0	76
302	Recent Advanced Materials for Electrochemical and Photoelectrochemical Synthesis of Ammonia from Dinitrogen: One Step Closer to a Sustainable Energy Future. Advanced Energy Materials, 2020, 10, 1902020.	19.5	113
303	2D Superlattices for Efficient Energy Storage and Conversion. Advanced Materials, 2020, 32, e1902654.	21.0	117
304	Two-dimensional conjugated polymers synthesized via on-surface chemistry. Science China Materials, 2020, 63, 172-176.	6.3	9
305	MXeneâ€Supported FeCo‣DHs as Highly Efficient Catalysts for Enhanced Electrocatalytic Oxygen Evolution Reaction. ChemNanoMat, 2020, 6, 154-159.	2.8	57
306	Atomic layer–deposited nanostructures and their applications in energy storage and sensing. Journal of Materials Research, 2020, 35, 701-719.	2.6	26
307	N-heterocyclic carbene as a promising metal-free electrocatalyst with high efficiency for nitrogen reduction to ammonia. Journal of Energy Chemistry, 2020, 46, 78-86.	12.9	33
308	Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application. Advanced Energy Materials, 2020, 10, 1902107.	19.5	76

#	Article	IF	CITATIONS
309	Synthesis of unsupported two-dimensional molybdenum carbide nanosheets for hydrogen evolution. Materials Letters, 2020, 261, 126987.	2.6	22
310	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	47.7	1,767
312	Photoelectrochemical Conversion of Carbon Dioxide (CO ₂) into Fuels and Value-Added Products. ACS Energy Letters, 2020, 5, 486-519.	17.4	361
313	Vacancy-engineered catalysts for water electrolysis. CrystEngComm, 2020, 22, 1500-1513.	2.6	36
314	Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 10-23.	2.6	41
315	Controlling Defects in Continuous 2D GaS Films for Highâ€Performance Wavelengthâ€Tunable UVâ€Discriminating Photodetectors. Advanced Materials, 2020, 32, e1906958.	21.0	53
316	Structure Engineering of MoS ₂ via Simultaneous Oxygen and Phosphorus Incorporation for Improved Hydrogen Evolution. Small, 2020, 16, e1905738.	10.0	112
317	Molecular insights into the microstructure of ethanol/water binary mixtures confined within typical 2D nanoslits: The role of the adsorbed layers induced by different solid surfaces. Fluid Phase Equilibria, 2020, 509, 112452.	2.5	10
318	Light and complex 3D MoS ₂ /graphene heterostructures as efficient catalysts for the hydrogen evolution reaction. Nanoscale, 2020, 12, 2715-2725.	5.6	35
319	Scalable and energy-efficient synthesis of Co _x P for overall water splitting in alkaline media by high energy ball milling. Sustainable Energy and Fuels, 2020, 4, 1723-1729.	4.9	16
320	Fluorescent COFs with a highly conjugated structure for visual drug loading and responsive release. Chemical Communications, 2020, 56, 519-522.	4.1	55
321	Advances of 2D bismuth in energy sciences. Chemical Society Reviews, 2020, 49, 263-285.	38.1	138
322	The combined effect of light irradiation and chloride on the physicochemical properties of silver nanoparticles. RSC Advances, 2020, 10, 228-235.	3.6	7
323	Near infrared-light responsive WS ₂ microengines with high-performance electro- and photo-catalytic activities. Chemical Science, 2020, 11, 132-140.	7.4	18
324	Photo-induced charge kinetic acceleration in ultrathin layered double hydroxide nanosheets boosts the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 1105-1112.	10.3	32
325	Review—Recent Advances in Nanostructured Graphitic Carbon Nitride as a Sensing Material for Heavy Metal Ions. Journal of the Electrochemical Society, 2020, 167, 037519.	2.9	57
326	Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today, 2020, 31, 100833.	11.9	52
327	Charge-compensated co-doping of graphdiyne with boron and nitrogen to form metal-free electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 1493-1501.	2.8	32

#	Article	IF	Citations
328	Substituent group-tunable hydrogen evolution activity observed in isostructural Cu(<scp>ii</scp>)-based coordination polymer photocatalysts. Dalton Transactions, 2020, 49, 1674-1680.	3.3	4
329	Tuning the surface charge density of exfoliated thin molybdenum disulfide sheets <i>via</i> non-covalent functionalization for promoting hydrogen evolution reaction. Journal of Materials Chemistry C, 2020, 8, 510-517.	5.5	17
330	In2O3 nanoparticle-reduced graphene oxide hybrid for electrocatalytic nitrogen fixation: Computational and experimental studies. Journal of Materials Science, 2020, 55, 4624-4632.	3.7	41
331	Two-Dimensional Transition Metal Porphyrin Sheets as a Promising Single-Atom-Catalyst for Dinitrogen Electrochemical Reduction to Ammonia: A Theoretical Study. Journal of Physical Chemistry C, 2020, 124, 1492-1499.	3.1	30
332	Molybdenum Carbideâ€Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2020, 132, 3572-3576.	2.0	27
333	Molybdenum Carbideâ€Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 3544-3548.	13.8	145
334	Bimodal Heterogeneous Functionality in Redoxâ€Active Conjugated Microporous Polymer toward Electrocatalytic Oxygen Reduction and Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 3810-3817.	3.3	11
335	Two-dimensional cobalt prussian blue nanosheets: Template-directed synthesis and electrocatalytic oxygen evolution property. Electrochimica Acta, 2020, 333, 135544.	5.2	12
336	Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2020, 264, 118525.	20.2	211
337	Green synthesis of chemical converted graphene sheets derived from pulping black liquor. Carbon, 2020, 158, 690-697.	10.3	45
338	Morphology/phase-dependent MoS2 nanostructures for high-efficiency electrochemical activity. Journal of Alloys and Compounds, 2020, 818, 152909.	5.5	20
339	Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. Journal of CO2 Utilization, 2020, 36, 116-123.	6.8	59
340	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	30.8	115
341	Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy, 2020, 69, 104453.	16.0	138
342	Electron Hopping by Interfacing Semiconducting Graphdiyne Nanosheets and Redox Molecules for Selective Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 2074-2082.	13.7	63
343	Gold nanodots-decorated nickel hydroxide nanoflowers for enhanced electrochemical oxygen evolution activity. Journal of Industrial and Engineering Chemistry, 2020, 82, 359-366.	5.8	9
344	Self-supported GaN nanowires with cation-defects, lattice distortion, and abundant active sites for high-rate lithium-ion storage. Nano Energy, 2020, 68, 104376.	16.0	33
345	Chlorineâ€Promoted Nitrogen and Sulfur Coâ€Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction. ChemElectroChem, 2020, 7, 320-327.	3.4	20

#	Article	IF	CITATIONS
346	Twoâ€Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy and Environmental Materials, 2020, 3, 29-55.	12.8	319
347	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	10.0	120
348	Photocatalytic H2 production activity of TiO2 modified by inexpensive Cu(OH)2 cocatalyst. Journal of Alloys and Compounds, 2020, 821, 153239.	5.5	29
349	High-efficiency carrier separation heterostructure improve the photocatalytic hydrogen production of sulfide. Journal of Alloys and Compounds, 2020, 817, 153242.	5.5	13
350	Spinel-type oxygen-incorporated Ni3+ self-doped Ni3S4 ultrathin nanosheets for highly efficient and stable oxygen evolution electrocatalysis. Journal of Colloid and Interface Science, 2020, 564, 418-427.	9.4	43
351	Surface construction of loose Co(OH)2 shell derived from ZIF-67 nanocube for efficient oxygen evolution. Journal of Colloid and Interface Science, 2020, 562, 279-286.	9.4	53
352	Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. Advanced Science, 2020, 7, 1902359.	11.2	76
353	Ionic Polyimide Derived Porous Carbon Nanosheets as Highâ€Efficiency Oxygen Reduction Catalysts for Zn–Air Batteries. Chemistry - A European Journal, 2020, 26, 6525-6534.	3.3	11
354	Assembling Ni–Fe Layered Double Hydroxide 2D Thin Films for Oxygen Evolution Electrodes. ACS Applied Energy Materials, 2020, 3, 1017-1026.	5.1	19
355	Self-supported nickel nitride nanosheets as highly efficient electrocatalysts for hydrogen evolution. Applied Surface Science, 2020, 503, 144143.	6.1	13
356	O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction. Molecular Catalysis, 2020, 483, 110705.	2.0	44
357	Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. Journal of Colloid and Interface Science, 2020, 562, 400-408.	9.4	29
358	Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability. Materials, 2020, 13, 4069.	2.9	10
359	Defect Engineering of van der Waals Solids for Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2020, 15, 3682-3695.	3.3	4
360	Boron-doped molybdenum carbide as a pH-independent electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 30659-30665.	7.1	17
361	Elucidating the origin of the surface functionalization - dependent bacterial toxicity of graphene nanomaterials: Oxidative damage, physical disruption, and cell autolysis. Science of the Total Environment, 2020, 747, 141546.	8.0	26
362	Synergistic effect between poly(diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell. Electrochimica Acta, 2020, 359, 136949.	5.2	29
363	Electrocatalytic Hydrogen Evolution of Ultrathin Coâ€Mo ₅ N ₆ Heterojunction with Interfacial Electron Redistribution. Advanced Energy Materials, 2020, 10, 2002176.	19.5	138

#	Article	IF	CITATIONS
364	Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction. Journal of Catalysis, 2020, 391, 91-97.	6.2	52
365	Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114705.	3.5	14
366	Quantitative Electro-Reduction of CO ₂ to Liquid Fuel over Electro-Synthesized Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 17384-17392.	13.7	73
367	Controlled Growth of Edgeâ€Enriched ReS ₂ Nanoflowers on Carbon Cloth Using Chemical Vapor Deposition for Hydrogen Evolution. Advanced Materials Interfaces, 2020, 7, 2001196.	3.7	13
368	Vacancyâ€Induced Oxygen Reduction Activity in Janus Transition Metal Dichalcogenides. ChemElectroChem, 2020, 7, 4233-4238.	3.4	6
369	Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 22938-22946.	10.3	56
370	Waste leather-derived (Cr, N)-co-doped carbon cloth coupling with Mo2C nanoparticles as a self-supported electrode for highly active hydrogen evolution reaction performances. Journal of Power Sources, 2020, 476, 228706.	7.8	19
371	A novel electrolyte of ternary deep eutectic solvent for wide temperature region supercapacitor with superior performance. Journal of Energy Storage, 2020, 32, 101904.	8.1	33
372	Can Single Metal Atoms Trapped in Defective h-BN/Cu(111) Improve Electrocatalysis of the H ₂ Evolution Reaction?. Journal of Physical Chemistry C, 2020, 124, 23690-23698.	3.1	6
373	Rational design of Co-S-P nanosheet arrays as bifunctional electrocatalysts for both ethanol oxidation reaction and hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4498-4506.	6.0	20
374	Recent Developments on the Single Atom Supported at 2D Materials Beyond Graphene as Catalysts. ACS Catalysis, 2020, 10, 9634-9648.	11.2	102
375	Trimetal atoms confined in openly accessible nitrogen-doped carbon constructs for an efficient ORR. Journal of Materials Chemistry A, 2020, 8, 17266-17275.	10.3	32
376	Tuning Cu Overvoltage for a Copper–Telluride System in Electrocatalytic Water Reduction and Feasible Feedstock Conversion: A New Approach. Inorganic Chemistry, 2020, 59, 11129-11141.	4.0	20
377	Bimetallic organic framework-derived rich pyridinic N-doped carbon nanotubes as oxygen catalysts for rechargeable Zn-air batteries. Journal of Power Sources, 2020, 472, 228470.	7.8	31
378	Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: <i>d</i> -Band Center-Based Descriptor. Journal of Physical Chemistry Letters, 2020, 11, 6320-6329.	4.6	82
379	Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 662-679.	2.6	27
380	Graphene-supported organic-inorganic layered double hydroxides and their environmental applications: A review. Journal of Cleaner Production, 2020, 273, 122980.	9.3	47
381	Two-dimensional Noble Metal Nanomaterials for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 597-610.	2.6	11

		CITATION REPORT		
#	ARTICLE	243-255.	IF	CITATIONS
562		213233.		5
383	RuN ₂ Monolayer: A Highly Efficient Electrocatalyst for Oxygen Reduction Applied Materials & amp; Interfaces, 2020, 12, 54517-54523.	Reaction. ACS	8.0	22
384	Two-dimensional bimetallic CoFe selenite <i>via</i> metal-ion assisted self-assembly fo oxygen evolution reaction. New Journal of Chemistry, 2020, 44, 20148-20154.	r enhanced	2.8	7
385	Nanostructured Gels for Energy and Environmental Applications. Molecules, 2020, 25,	5620.	3.8	7
386	Ni ₁₇ W ₃ –W Interconnected Hybrid Prepared by Atmosphe Thermalâ€Induced Phase Separation for Efficient Electrocatalysis of Alkaline Hydrogen Small, 2020, 16, e2005184.	rre―and Evolution.	10.0	31
387	2H-MoS ₂ on Mo ₂ CT _{<i>x</i>} MXene Nanohybri Durable Electrocatalytic Hydrogen Evolution. ACS Nano, 2020, 14, 16140-16155.	d for Efficient and	14.6	180
388	Rational Design of Niâ€Based Electrocatalysts by Modulation of Iron Ions and Carbon № Enhanced Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 20002	Vanotubes for 27.	5.3	4
389	Synergistic engineering of MoS2 via dual-metal doping strategy towards hydrogen evo Applied Surface Science, 2020, 529, 147117.	lution reaction.	6.1	22
390	Facet-Dependent Long-Term Stability of Gold Aerogels toward Ethylene Glycol Oxidatic ACS Applied Materials & Interfaces, 2020, 12, 39033-39042.	on Reaction.	8.0	15
391	Recent Progress on 2D Transition Metal Compounds-based Electrocatalysts for Efficien Reduction. Chemical Research in Chinese Universities, 2020, 36, 648-661.	t Nitrogen	2.6	7
392	A computational evaluation of MoS ₂ -based materials for the electrocataly reduction reaction. New Journal of Chemistry, 2020, 44, 14189-14197.	rtic oxygen	2.8	14
393	Transition metal-tetracyanoquinodimethane monolayers as single-atom catalysts for th electrocatalytic nitrogen reduction reaction. Materials Advances, 2020, 1, 1285-1292.	e	5.4	20
394	Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxyg oxygen evolution, and hydrogen evolution reactions. Catalysis Science and Technology 6420-6448.	en reduction, v, 2020, 10,	4.1	33
395	2D Reâ€Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunitie Science, 2020, 7, 2002320.	es. Advanced	11.2	62
396	Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosens	ors, 2020, 8, 96.	3.6	33
397	High-Performance and Stable Hydrogen Evolution Reaction Achieved by Pt Trimer Decc Ultralow-Metal Loading Bimetallic PtPd Nanocatalysts. ACS Applied Energy Materials, 2 11142-11152.	ration on 020, 3,	5.1	18
398	Molten-Salt-Protected Pyrolysis for Fabricating Perovskite Nanocrystals with Promoted Oxidation Behavior. ACS Sustainable Chemistry and Engineering, 2020, 8, 16711-1671	Water 9.	6.7	17
399	Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox elect Nature Communications, 2020, 11, 5437.	rocatalysis.	12.8	288

#	Article	IF	CITATIONS
400	Review of recent research work on CeO2-based electrocatalysts in liquid-phase electrolytes. Journal of Power Sources, 2020, 480, 229091.	7.8	49
401	Facile Preparation of <i>In-Situ</i> S-Doped Flake Carbon Materials from Metal-Organic Frameworks and Its Application in Electrochemical Detection of Hg (II). Nano, 2020, 15, 2050133.	1.0	0
402	Two-dimensional nonlayered materials for electrocatalysis. Energy and Environmental Science, 2020, 13, 3993-4016.	30.8	76
403	Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction. Materials Today Physics, 2020, 15, 100279.	6.0	70
404	An electrochemically reversible lattice with redox active A-sites of double perovskite oxide nanosheets to reinforce oxygen electrocatalysis. Chemical Science, 2020, 11, 10180-10189.	7.4	14
405	Constructing Conductive Channels between Platinum Nanoparticles and Graphitic Carbon Nitride by Gamma Irradiation for an Enhanced Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 46095-46106.	8.0	24
406	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	27.0	57
407	Dopamine Sensing Based on Ultrathin Fluorescent Metal–Organic Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 44499-44507.	8.0	35
408	Strong Catalyst–Support Interactions in Electrochemical Oxygen Evolution on Ni–Fe Layered Double Hydroxide. ACS Energy Letters, 2020, 5, 3185-3194.	17.4	44
409	Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 44689-44699.	8.0	37
410	In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Catalysts, 2020, 10, 977.	3.5	8
411	Polyoxometalate-based metal–organic framework-derived bimetallic hybrid materials for upgraded electrochemical reduction of nitrogen. Green Chemistry, 2020, 22, 6157-6169.	9.0	132
412	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	21.0	206
413	Cobalt oxide nanoparticle-decorated reduced graphene oxide (Co ₃ O ₄ –rGO): active and sustainable nanoelectrodes for water oxidation reaction. New Journal of Chemistry, 2020, 44, 15776-15784.	2.8	51
414	Catalytic Performance of Two-Dimensional Bismuth Tuned by Defect Engineering for Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 19563-19570.	3.1	8
415	The Applications of 2D Nanomaterials in Energy-Related Process. ACS Symposium Series, 2020, , 219-251.	0.5	1
416	Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. Advanced Materials, 2020, 32, e2003191.	21.0	78
417	Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2020, 56, 11910-11930.	4.1	56

#	Article	IF	CITATIONS
418	Tunable Cobalt-Polypyridyl Catalysts Supported on Metal–Organic Layers for Electrochemical CO ₂ Reduction at Low Overpotentials. Journal of the American Chemical Society, 2020, 142, 21493-21501.	13.7	61
419	Two-dimensional metallic tantalum ditelluride with an intrinsic basal-plane activity for oxygen reduction: A microkinetic modeling study. Green Energy and Environment, 2022, 7, 525-532.	8.7	5
420	Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 12596-12606.	5.1	21
421	Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications. Journal of Materials Chemistry A, 2020, 8, 23142-23161.	10.3	46
422	Low-dimensional catalysts for oxygen reduction reaction. Progress in Natural Science: Materials International, 2020, 30, 787-795.	4.4	35
423	Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridiumâ€Free Oxygen Evolution Electrocatalysts. ChemNanoMat, 2020, 6, 930-936.	2.8	3
424	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	38.1	617
425	Graphene-Modified Composites and Electrodes and Their Potential Applications in the Electro-Fenton Process. Materials, 2020, 13, 2254.	2.9	28
426	Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction. Molecules, 2020, 25, 2304.	3.8	24
427	Intercalation and exfoliation chemistries of transition metal dichalcogenides. Journal of Materials Chemistry A, 2020, 8, 15417-15444.	10.3	154
428	A MnV ₂ O ₆ /graphene nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction. Nanoscale, 2020, 12, 16028-16033.	5.6	16
429	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	10.3	67
430	Interfacial engineering of noble metals for electrocatalytic methanol and ethanol oxidation. Journal of Materials Chemistry A, 2020, 8, 15445-15457.	10.3	103
431	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie, 2020, 132, 14641-14648.	2.0	17
432	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 14533-14540.	13.8	152
433	Two-dimensional carbon-coated CoS2 nanoplatelets issued from a novel Co(OH)(OCH3) precursor as anode materials for lithium ion batteries. Applied Surface Science, 2020, 516, 146133.	6.1	26
434	Ni–Zn nanosheet anchored on rGO as bifunctional electrocatalyst for efficient alkaline water-to-hydrogen conversion via hydrazine electrolysis. International Journal of Hydrogen Energy, 2020, 45, 19335-19343.	7.1	34
435	Edge Enrichment of Ultrathin 2D PdPtCu Trimetallic Nanostructures Effectuates Top-Ranked Ethanol Electrooxidation. Nano Letters, 2020, 20, 5458-5464.	9.1	90

#	Article	IF	CITATIONS
436	Promoting Active Sites for Hydrogen Evolution in MoSe ₂ via Transition-Metal Doping. Journal of Physical Chemistry C, 2020, 124, 12324-12336.	3.1	38
437	Efficient and scalable preparation of MoS2 nanosheet/carbon nanotube composites for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 16489-16499.	7.1	24
438	Near infrared-driven photoelectrochemical water splitting: Review and future prospects. Arabian Journal of Chemistry, 2020, 13, 8372-8387.	4.9	51
439	Defects engineering of bimetallic Ni-based catalysts for electrochemical energy conversion. Coordination Chemistry Reviews, 2020, 418, 213372.	18.8	41
440	Recent Advances and Challenges of Electrocatalytic N ₂ Reduction to Ammonia. Chemical Reviews, 2020, 120, 5437-5516.	47.7	718
441	CoP Microscale Prism-like Superstructure Arrays on Ni Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Inorganic Chemistry, 2020, 59, 8522-8531.	4.0	38
442	Just add water to split water: ultrahigh-performance bifunctional electrocatalysts fabricated using eco-friendly heterointerfacing of NiCo diselenides. Journal of Materials Chemistry A, 2020, 8, 12035-12044.	10.3	38
443	Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catalysis, 2020, 10, 7584-7618.	11.2	274
444	A new family of two-dimensional ferroelastic semiconductors with negative Poisson's ratios. Nanoscale, 2020, 12, 14150-14159.	5.6	21
445	Surface and length effects for aqueous electrochemical reduction of CO2 as studied over copper nanowire arrays. Journal of Physics and Chemistry of Solids, 2020, 144, 109507.	4.0	11
446	Synthesis and Applications of Wide Bandgap 2D Layered Semiconductors Reaching the Green and Blue Wavelengths. ACS Applied Electronic Materials, 2020, 2, 1777-1814.	4.3	50
447	Designing a Transparent CdIn ₂ S ₄ /In ₂ S ₃ Bulkâ€Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting. Advanced Materials, 2020, 32, e2002893.	21.0	67
448	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	13.8	151
449	Transition metal-doped α-borophene as potential oxygen and hydrogen evolution electrocatalyst: A density functional theory study. Catalysis Communications, 2020, 144, 106090.	3.3	20
450	Supercritical CO ₂ -constructed intralayer [Bi ₂ O ₂] ²⁺ structural distortion for enhanced CO ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 13320-13327.	10.3	29
451	Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter, 2020, 2, 1377-1413.	10.0	254
452	Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery. Rare Metals, 2020, 39, 815-823.	7.1	94
453	Recent Advancement in MoS2 for Hydrogen Evolution Reactions. Current Graphene Science, 2020, 3, 11-25.	0.5	1

#	Article	IF	CITATIONS
454	Promises of the "Nano-World―for electrochemical sensing and energy devices. Journal of Solid State Electrochemistry, 2020, 24, 2189-2191.	2.5	1
455	Construction of echinoids-like MoS2@NiS2 electrocatalyst for efficient and robust water oxidation. Electrochimica Acta, 2020, 353, 136527.	5.2	23
456	Don't Forget Langmuir–Blodgett Films 2020: Interfacial Nanoarchitectonics with Molecules, Materials, and Living Objects. Langmuir, 2020, 36, 7158-7180.	3.5	143
457	Emerging 2D pnictogens for catalytic applications: status and challenges. Journal of Materials Chemistry A, 2020, 8, 12887-12927.	10.3	32
458	Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. Progress in Solid State Chemistry, 2020, 59, 100283.	7.2	65
459	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	7.8	74
460	Two-dimensional silicene composite nanosheets enable exogenous/endogenous-responsive and synergistic hyperthermia-augmented catalytic tumor theranostics. Biomaterials, 2020, 256, 120206.	11.4	55
461	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	4.3	74
462	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	14.9	390
463	Synthesis of CoS2/SnO2@MoS2 nanocube heterostructures for achieving enhanced electrocatalytic hydrogen evolution in acidic media. Inorganic Chemistry Frontiers, 2020, 7, 2660-2668.	6.0	20
464	Recent Studies on Multifunctional Electrocatalysts for Fuel Cell by Various Nanomaterials. Catalysts, 2020, 10, 621.	3.5	4
465	Hybrid nanomaterials as chemical sensors. , 2020, , 213-239.		6
466	Black phosphorus quantum dots as novel electrogenerated chemiluminescence emitters for the detection of Cu ²⁺ . Chemical Communications, 2020, 56, 4680-4683.	4.1	34
467	Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy and Environmental Science, 2020, 13, 1593-1616.	30.8	166
468	Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochimica Acta, 2020, 344, 136052.	5.2	23
469	Two-Dimensional Amorphous SnO _{<i>x</i>} from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO ₂ Reduction toward Formic Acid. Nano Letters, 2020, 20, 2916-2922.	9.1	97
470	Two-dimensional metal–organic framework nanosheets: synthetic methodologies and electrocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 15271-15301.	10.3	79
471	Preparation and Biomedical Applications of Multicolor Carbon Dots: Recent Advances and Future Challenges. Particle and Particle Systems Characterization, 2020, 37, 1900489.	2.3	27

# 472	ARTICLE Nickel nanoflakes on 4-Amino-4H-1,2,4-triazole/graphene for sustainable hydrogen evolution in acid and alkaline media. Applied Surface Science, 2020, 515, 145999.	IF 6.1	CITATIONS
473	Two-dimensional metal oxide nanomaterials for sustainable energy applications. , 2020, , 39-72.		3
474	A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions. Carbon, 2020, 162, 586-594.	10.3	55
475	Theoretical Study on a Nitrogen-Doped Graphene Nanoribbon with Edge Defects as the Electrocatalyst for Oxygen Reduction Reaction. ACS Omega, 2020, 5, 5142-5149.	3.5	27
476	Modulation of crystal water in cobalt phosphate for promoted water oxidation. Chemical Communications, 2020, 56, 4575-4578.	4.1	37
477	Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically. Matter, 2020, 2, 323-344.	10.0	115
478	CoS ₂ @N-doped carbon core–shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 6795-6803.	10.3	75
479	Ni _x Fe _{1â^'x} B nanoparticle self-modified nanosheets as efficient bifunctional electrocatalysts for water splitting: experiments and theories. Journal of Materials Chemistry A, 2020, 8, 7360-7367.	10.3	28
480	3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale, 2020, 12, 7416-7432.	5.6	56
481	Zn- and Cd-based coordination polymers with a novel anthracene dicarboxylate ligand for highly selective detection of hydrogen peroxide. Dalton Transactions, 2020, 49, 4817-4823.	3.3	5
482	Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. Journal of Materials Chemistry A, 2020, 8, 7457-7473.	10.3	41
483	Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Nanoscale, 2020, 12, 9669-9679.	5.6	62
484	Structural Designs and inâ€situ Xâ€ray Characterizations of Metal Phosphides for Electrocatalysis. ChemCatChem, 2020, 12, 3621-3638.	3.7	13
485	In ₂ Se ₃ nanosheets for harmonic mode-locked fiber laser. Nanotechnology, 2020, 31, 295402.	2.6	15
486	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	21.0	106
487	Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8143-8170	10.3	180
488	Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nature Communications, 2020, 11, 1664.	12.8	191
489	Optimized Metal Chalcogenides for Boosting Water Splitting. Advanced Science, 2020, 7, 1903070.	11.2	190

#	Article	IF	CITATIONS
490	Intermetallic borides: structures, synthesis and applications in electrocatalysis. Inorganic Chemistry Frontiers, 2020, 7, 2248-2264.	6.0	94
491	Multi-yolk–shell bismuth@porous carbon as a highly efficient electrocatalyst for artificial N ₂ fixation under ambient conditions. Inorganic Chemistry Frontiers, 2020, 7, 2006-2016.	6.0	15
492	A molten-salt protected pyrolysis approach for fabricating a ternary nickel–cobalt–iron oxide nanomesh catalyst with promoted oxygen-evolving performance. Chemical Communications, 2020, 56, 4579-4582.	4.1	23
493	Recent Advances in Atomicâ€Level Engineering of Nanostructured Catalysts for Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 1910534.	14.9	100
494	Construction and Application of Interfacial Inorganic Nanostructures. Chinese Journal of Chemistry, 2020, 38, 772-786.	4.9	13
495	Synthesis of 2D single crystal WSe2/C nanostripe array as anode material for Na-ion batteries. Materials Letters, 2020, 273, 127949.	2.6	2
496	Ion-Induced Delamination of Layered Bulk Metal–Organic Frameworks into Ultrathin Nanosheets for Boosting the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 10554-10563.	6.7	17
497	Molybdenum and Phosphorous Dual Doping in Cobalt Monolayer Interfacial Assembled Cobalt Nanowires for Efficient Overall Water Splitting. Advanced Functional Materials, 2020, 30, 2002533.	14.9	107
498	Laser Irradiation of Electrode Materials for Energy Storage and Conversion. Matter, 2020, 3, 95-126.	10.0	74
499	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	21.0	148
500	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	14.9	19
501	Recent Advances in Filler Engineering of Polymer Electrolytes for Solid-State Li-Ion Batteries: A Review. Energy & Fuels, 2020, 34, 9189-9207.	5.1	89
502	Electro-catalytic hydrogen evolution and magnetic behavior of N-doped-rGO supported NixPy. SN Applied Sciences, 2020, 2, 1.	2.9	2
503	Bimetallic Cu/Pt Oxygen Reduction Reaction Catalyst for Fuel Cells Cathode Materials. Catalysts, 2020, 10, 667.	3.5	13
504	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	2.0	19
505	Insights on boosting oxygen evolution reaction performance via boron incorporation into nitrogen-doped carbon electrocatalysts. Applied Surface Science, 2020, 528, 146979.	6.1	18
506	Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society, 2020, 142, 12976-12986.	13.7	21
507	Hierarchical Co–Mo–S nanoflowers as efficient electrocatalyst for hydrogen evolution reaction in neutral media. Journal of Alloys and Compounds, 2020, 844, 156108.	5.5	22

		CITATION REPORT		
#	Article		IF	Citations
508	Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 2020, 12,	15944-15969.	5.6	83
509	Recent Developments on Emerging Properties, Growth Approaches, and Advanced App Metallic 2D Layered Vanadium Dichalcogenides. Advanced Materials Interfaces, 2020,	lications of 7, 1901682.	3.7	28
510	Free‣tanding NiO Nanosheets as Nonâ€Enzymatic Electrochemical Sensors. Chemis 2424-2429.	trySelect, 2020, 5,	1.5	7
511	Largeâ€Size, Porous, Ultrathin NiCoP Nanosheets for Efficient Electro/Photocatalytic V Advanced Functional Materials, 2020, 30, 1910830.	Vater Splitting.	14.9	134
512	Electrochemistry in Carbonâ€based Quantum Dots. Chemistry - an Asian Journal, 2020	, 15, 1214-1224.	3.3	31
513	An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene gly temperature range supercapacitors. Journal of Power Sources, 2020, 452, 227847.	col for wide	7.8	69
514	3D Grapheneâ€Based H ₂ â€Production Photocatalyst and Electrocatalyst. Materials, 2020, 10, 1903802.	Advanced Energy	19.5	199
515	Universal Surfactantâ€Free Strategy for Selfâ€Standing 3D Tremellaâ€Like Pd–M (M Nanosheets for Superior Alcohols Electrocatalysis. Advanced Functional Materials, 202	= Ag, Pb, and Au) 0, 30, 2000255.	14.9	191
516	Fabrication of two-dimensional chemically reduced graphene oxide nanosheets for the electrochemical determination of epinephrine. Bulletin of Materials Science, 2020, 43,	1.	1.7	20
517	Nanoparticle-Decorated Ultrathin La2O3 Nanosheets as an Efficient Electrocatalysis fo Evolution Reactions. Nano-Micro Letters, 2020, 12, 49.	r Oxygen	27.0	51
518	A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 5313-5323.	2, 2020, 12,	5.6	60
519	Well-dispersed Co3Fe7 alloy nanoparticles wrapped in N-doped defect-rich carbon nan- highly efficient and methanol-resistant catalyst for oxygen-reduction reaction. Journal o and Interface Science, 2020, 569, 277-285.	osheets as a of Colloid	9.4	54
520	Vanadium Carbide-Entrapped Graphitic Carbon Nitride Nanocomposites: Synthesis and Platforms for Accurate Detection of Furazolidone. ACS Applied Nano Materials, 2020, 3	Electrochemical 3, 2554-2561.	5.0	68
521	Three-Dimensional ZnInS Nanoflakes@Carbon Fiber Frameworks for Biocatalytic Precip Photoelectrochemical Immunoassay. ACS Applied Bio Materials, 2020, 3, 1761-1768.	itation-Based	4.6	10
522	ZIF-derived porous carbon composites coated on NiCo ₂ S ₄ n toward efficient water splitting. Nanotechnology, 2020, 31, 195402.	anotubes array	2.6	8
523	Metalâ€free graphene/boron nitride heterointerface for CO ₂ reduction: S controls catalytic activity and selectivity. EcoMat, 2020, 2, e12013.	urface curvature	11.9	17
524	Electronâ€6tate Confinement of Polysulfides for Highly Stable Sodium–Sulfur Batter Materials, 2020, 32, e1907557.	ies. Advanced	21.0	150
525	Metal-free two-dimensional phosphorus carbide as an efficient electrocatalyst for hydro evolution reaction comparable to platinum. Nano Energy, 2020, 71, 104603.	bgen	16.0	52

#	Article	IF	CITATIONS
526	Graphene Supported MoS ₂ Structures with High Defect Density for an Efficient HER Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 12629-12638.	8.0	101
527	Shear Exfoliated Metal–Organic Framework Nanosheet-Enabled Flexible Sensor for Real-Time Monitoring of Superoxide Anion. ACS Applied Materials & Interfaces, 2020, 12, 5429-5436.	8.0	49
528	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	14.2	308
529	Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 2789-2797.	10.3	60
530	Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews, 2020, 120, 2288-2346.	47.7	158
531	Defect engineering in two-dimensional electrocatalysts for hydrogen evolution. Nanoscale, 2020, 12, 4283-4294.	5.6	92
532	A bifunctional nanoporous Ni–Co–Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Nanoscale, 2020, 12, 4426-4434.	5.6	101
533	Exploring the spin polarization and electronic transport properties for zigzag MoS2 nanoribbons with antisite defects. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 113968.	2.7	3
534	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	32.8	134
535	Iron-Cluster-Directed Synthesis of 2D/2D Fe–N–C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano, 2020, 14, 2436-2444.	14.6	130
536	CO2-assisted fabrication of two-dimensional amorphous transition metal oxides. Dalton Transactions, 2020, 49, 2048-2052.	3.3	4
537	Current Trends in the Optical Characterization of Two-Dimensional Carbon Nanomaterials. Frontiers in Chemistry, 2019, 7, 927.	3.6	10
538	Nonâ€3d Metal Modulation of a 2D Ni–Co Heterostructure Array as Multifunctional Electrocatalyst for Portable Overall Water Splitting. Small, 2020, 16, e1906775.	10.0	119
539	Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70, 104525.	16.0	143
540	Ultrathin Ni(0)â€Embedded Ni(OH) ₂ Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting. Advanced Materials, 2020, 32, e1906915.	21.0	259
541	Structuralâ€Phase Catalytic Redox Reactions in Energy and Environmental Applications. Advanced Materials, 2020, 32, e1905739.	21.0	56
542	Exfoliation of metal–organic frameworks into efficient single-layer metal–organic nanosheet electrocatalysts by the synergistic action of host–guest interactions and sonication. Nanoscale, 2020, 12, 3623-3629.	5.6	62
543	Plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry. MRS Bulletin, 2020, 45, 37-42.	3.5	14

ARTICLE IF CITATIONS Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped 544 5.2 27 carbon nanosheets for water splitting. Electrochimica Acta, 2020, 337, 135685. Nitrogen and Sulfur Coâ€doped Carbon Nanosheets for Electrochemical Reduction of CO₂. 545 ChemCatChem, 2020, 12, 2203-2208. Interfacial Engineering of Cobalt Nitrides and Mesoporous Nitrogen-Doped Carbon: Toward Efficient Overall Water-Splitting Activity with Enhanced Charge-Transfer Efficiency. ACS Energy Letters, 2020, 546 17.4 125 5,692-700. Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured 547 Materials. Advanced Energy Materials, 2020, 10, 1903120. Integrated Microdroplets Array for Intelligent Electrochemical Fabrication. Advanced Functional 548 14.9 18 Materials, 2020, 30, 1910329. Fabrication of oxygen-doped MoSe2 hierarchical nanosheets for highly sensitive and selective 549 10.4 detection of trace trimethylamine at room temperature in air. Nano Research, 2020, 13, 1704-1712. Nanoheterostructures of Partially Oxidized RuNi Alloy as Bifunctional Electrocatalysts for Overall 550 6.8 23 Water Splitting. ChemSusChem, 2020, 13, 2739-2744. Tuning Interfacial Electron Transfer by Anchoring NiFe-LDH on In-situ Grown Cu2O for Enhancing Oxygen Evolution. Catalysis Letters, 2020, 150, 3049-3057. 551 2.6 2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. 552 6.3 71 Science China Materials, 2020, 63, 2119-2152. Nanoscale materials with different dimensions for advanced electrocatalysts., 2020, 193-218. Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocatalysts: 18.8 70 554 Synthesis, application, and perspective. Coordination Chemistry Reviews, 2020, 415, 213280. Atomic Layer Deposition of MoSe2 Using New Selenium Precursors. FlatChem, 2020, 21, 100166. 5.6 A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance 556 Bifunctional Electrocatalysts towards Efficient Overall Water Splitting. ACS Applied Materials & amp; 8.0 103 Interfaces, 2020, 12, 19447-19456. Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation. Physical 2.8 76 Chemistry Chemical Physics, 2020, 22, 9216-9224. The <i>in situ</i> morphology transformation of bismuth-based catalysts for the effective 558 4.9 27 electroreduction of carbon dioxide. Sustainable Energy and Fuels, 2020, 4, 2831-2840. 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and 11.3 126 electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020, 7, 021304. A Cu₂B₂ monolayer with planar hypercoordinate motifs: an efficient catalyst 560 10.3 32 for CO electroreduction to ethanol. Journal of Materials Chemistry A, 2020, 8, 9607-9615. Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 3211-3228.

#	Article	IF	CITATIONS
562	In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chemical Engineering Journal, 2020, 395, 125180.	12.7	100
563	Vertically aligned FeOOH nanosheet arrays on alkali-treated nickel foam as highly efficient electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 574, 241-250.	9.4	31
564	Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology, 2020, 31, 315715.	2.6	31
565	Research Progress in Covalent Organic Frameworks for Photoluminescent Materials. Chemistry - A European Journal, 2020, 26, 16568-16581.	3.3	31
566	Recent trends in alkaline hydrogen evolution using nonprecious multi-metallic electrocatalysts. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100342.	5.9	7
567	Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe. Molecules, 2020, 25, 1585.	3.8	15
568	1†T-phase molybdenum sulfide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Applied Catalysis B: Environmental, 2020, 272, 118984.	20.2	68
569	Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 53, 290-302.	12.9	154
570	Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Science China Materials, 2021, 64, 137-148.	6.3	55
571	Molten salt as ultrastrong polar solvent enables the most straightforward pyrolysis towards highly efficient and stable single-atom electrocatalyst. Journal of Energy Chemistry, 2021, 54, 519-527.	12.9	11
572	A simple synthesis of Co3O4@CNT to boost electrochemical nitrogen fixation. Electrochimica Acta, 2021, 367, 137421.	5.2	15
573	Fe doped amorphous single layered vanadyl phosphate nanosheets as highly efficient electrocatalyst for water oxidation. Journal of Colloid and Interface Science, 2021, 586, 505-513.	9.4	8
574	Wettability of MXene and its interfacial adhesion with epoxy resin. Materials Chemistry and Physics, 2021, 257, 123820.	4.0	27
575	Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination. Journal of Membrane Science, 2021, 620, 118869.	8.2	30
576	Establishing a Theoretical Landscape for Identifying Basal Plane Active 2D Metal Borides (MBenes) toward Nitrogen Electroreduction. Advanced Functional Materials, 2021, 31, 2008056.	14.9	97
577	Fullerenes as Key Components for Lowâ€Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie - International Edition, 2021, 60, 122-141.	13.8	64
578	Ultrasound-assisted exfoliation of a layered 2D coordination polymer with HER electrocatalytic activity. Ultrasonics Sonochemistry, 2021, 70, 105292.	8.2	16
579	Destabilizing Alkaline Water with 3dâ€Metal (Oxy)(Hydr)Oxides for Improved Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 553-564.	3.3	17

#	Article	IF	CITATIONS
580	Design of Hybrid Zeolitic Imidazolate Frameworkâ€Derived Material with C–Mo–S Triatomic Coordination for Electrochemical Oxygen Reduction. Small, 2021, 17, e2003256.	10.0	14
581	Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. Progress in Solid State Chemistry, 2021, 61, 100294.	7.2	24
582	Selfâ€Assembled Twoâ€Dimensional NiO/CeO ₂ Heterostructure Rich in Oxygen Vacancies as Efficient Bifunctional Electrocatalyst for Alkaline Hydrogen Evolution and Oxygen Evolution. Chemistry - A European Journal, 2021, 27, 3766-3771.	3.3	33
583	Structural engineering of Fe-doped Ni2P nanosheets arrays for enhancing bifunctional electrocatalysis towards overall water splitting. Applied Surface Science, 2021, 536, 147909.	6.1	37
584	Improvement of the electrocatalytic performance of FeP in neutral electrolytes with Fe nanoparticles. Chemical Engineering Journal, 2021, 408, 127330.	12.7	33
585	Extensive incorporation of carboxyl groups into g-C3N4 by integrated oxygen doping and HNO3 oxidation for enhanced catalytic ozonation of para-chlorobenzoic acid and atrazine. Separation and Purification Technology, 2021, 256, 117806.	7.9	22
586	Graphene-based monoatomic chain spintronics: contact-derived half-metallicity, sp2 vs sp. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114486.	2.7	0
587	Two-dimensional transition metal phthalocyanine sheet as a promising electrocatalyst for nitric oxide reduction: a first principle study. Environmental Science and Pollution Research, 2021, 28, 7191-7199.	5.3	22
588	"More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2007423.	14.9	179
589	Nonlayered 2D ultrathin molybdenum nitride synthesized through the ammonolysis of 2D molybdenum dioxide. Chemical Communications, 2021, 57, 223-226.	4.1	22
590	Anchoring Mo on C9N4 monolayers as an efficient single atom catalyst for nitrogen fixation. Journal of Energy Chemistry, 2021, 57, 443-450.	12.9	41
591	A DFT study on enhanced adsorption of H2 on Be-decorated porous graphene nanosheet and the effects of applied electrical fields. International Journal of Hydrogen Energy, 2021, 46, 5891-5903.	7.1	15
592	FeOx clusters decorated hcp Ni nanosheets as inverse electrocatalyst to stimulate excellent oxygen evolution performance. Applied Catalysis B: Environmental, 2021, 284, 119687.	20.2	33
593	Simplified synthesis of N-doped carbon nanotube arrayed mesoporous carbon for electrochemical detection of amitrole. Chemical Physics, 2021, 542, 111074.	1.9	14
594	Nb4C3Tx (MXene) as a new stable catalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 1955-1966.	7.1	62
595	Intrinsic mechanical properties of monolayer nickel ditelluride: An atomistic study. Computational Condensed Matter, 2021, 26, e00522.	2.1	3
596	Strategies for engineering the MXenes toward highly active catalysts. Materials Today Nano, 2021, 13, 100104.	4.6	10
597	Vanadium Dopants: A Boon or a Bane for Molybdenum Dichalcogenidesâ€Based Electrocatalysis Applications. Advanced Functional Materials, 2021, 31, 2009083.	14.9	14

#	Article	IF	CITATIONS
598	A Review of Al Alloy Anodes for Al–Air Batteries in Neutral and Alkaline Aqueous Electrolytes. Acta Metallurgica Sinica (English Letters), 2021, 34, 309-320.	2.9	26
599	Layered PdW nanosheet assemblies for alcohol electrooxidation. Applied Surface Science, 2021, 537, 147860.	6.1	44
600	Integrating hydrogen production with anodic selective oxidation of sulfides over a CoFe layered double hydroxide electrode. Chemical Science, 2021, 12, 938-945.	7.4	41
601	Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coordination Chemistry Reviews, 2021, 429, 213649.	18.8	6
602	Visible-light driven ZnIn2S4/TiO2-x heterostructure for boosting photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2021, 46, 6262-6271.	7.1	53
603	Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2021, 587, 79-89.	9.4	89
604	In situ surface-confined fabrication of single atomic Fe-N4 on N-doped carbon nanoleaves for oxygen reduction reaction. Journal of Energy Chemistry, 2021, 59, 482-491.	12.9	38
605	Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A, 2021, 9, 2018-2042.	10.3	34
606	An efficient label-free immunosensor based on ce-MoS2/AgNR composites and screen-printed electrodes for PSA detection. Journal of Solid State Electrochemistry, 2021, 25, 973-982.	2.5	9
607	Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827.	10.3	140
608	Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 857-874.	10.3	100
609	Formation of FeOOH Nanosheets Induces Substitutional Doping of CeO _{2â~'} <i>_x</i> with Highâ€Valence Ni for Efficient Water Oxidation. Advanced Energy Materials, 2021, 11, 2002731.	19.5	110
610	Co/VN heterostructure coated with holey interconnected carbon frameworks as bifunctional catalysts. International Journal of Hydrogen Energy, 2021, 46, 3337-3345.	7.1	10
611	Efficient and durable FeCoNi-(Oxy)hydroxide anode: Stoichiometric ration regulated morphology-, defect- and valence-dependent water oxidation performance. Chemical Engineering Journal, 2021, 417, 127934.	12.7	4
612	Twoâ€Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 6673-6681.	13.8	227
613	Recent Advances in Electrochemical Water Splitting and Reduction of CO ₂ into Green Fuels on 2D Phosphoreneâ€Based Catalyst. Energy Technology, 2021, 9, .	3.8	14
614	Theoretical investigation of CO2 electroreduction on N (B)-doped graphdiyne mononlayer supported single copper atom. Applied Surface Science, 2021, 538, 148145.	6.1	34
615	MXenes: Novel electrocatalysts for hydrogen production and nitrogen reduction. Catalysis Today, 2021, 370, 2-13.	4.4	22

#	Article	IF	CITATIONS
616	Electrocatalytic water-splitting for the controllable and sustainable synthesis of deuterated chemicals. Science Bulletin, 2021, 66, 562-569.	9.0	38
617	Fe3O4 nano assembly embedded in 2D-crumpled porous carbon sheets for high energy density supercapacitor. Chemical Engineering Journal, 2021, 420, 127584.	12.7	34
618	Promoting electrocatalytic water oxidation through tungsten-modulated oxygen vacancies on hierarchical FeNi-layered double hydroxide. Nano Energy, 2021, 80, 105540.	16.0	76
619	Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Metals, 2021, 40, 1412-1430.	7.1	61
620	Fullerenes as Key Components for Lowâ€Ðimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie, 2021, 133, 124-143.	2.0	11
621	Stateâ€ofâ€theâ€Art Progress in Diverse Black Phosphorusâ€Based Structures: Basic Properties, Synthesis, Stability, Photo―and Electrocatalysisâ€Driven Energy Conversion. Advanced Functional Materials, 2021, 31, 2005197.	14.9	40
622	Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648.	47.7	361
623	Surface and Interface Engineering: Molybdenum Carbide–Based Nanomaterials for Electrochemical Energy Conversion. Small, 2021, 17, e1903380.	10.0	87
624	Graphitic Carbon Nitride-based Chemiluminescent and Electrochemiluminescent Sensors. RSC Nanoscience and Nanotechnology, 2021, , 38-79.	0.2	0
625	Optimizing the oxygen reduction catalytic activity of a bipyridine-based polymer through tuning the molecular weight. Journal of Materials Chemistry A, 2021, 9, 3322-3327.	10.3	6
626	Gas–Liquid–Solid Triphase Interfacial Chemical Reactions Associated with Gas Wettability. Advanced Materials Interfaces, 2021, 8, 2001636.	3.7	17
627	Iron-based single-atom electrocatalysts: synthetic strategies and applications. RSC Advances, 2021, 11, 3079-3095.	3.6	27
628	Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 9979-9999.	10.3	50
629	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021, 23, 2834-2867.	9.0	96
630	Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 6710-6731.	10.3	46
631	Structure and properties of 2D materials in general and their importance to energy storage. , 2021, , 11-75.		0
632	Pyrolysis-free polymer-based oxygen electrocatalysts. Energy and Environmental Science, 2021, 14, 2789-2808.	30.8	55
633	Boosting electrocatalytic oxygen evolution activity of bimetallic CoFe selenite by exposing specific crystal facets. New Journal of Chemistry, 0, , .	2.8	4
ARTICLE IF CITATIONS # Recent advances in surface/interface engineering of noble-metal free catalysts for energy conversion 634 5.9 9 reactions. Materials Chemistry Frontiers, 2021, 5, 3576-3592. A NiN₃-embedded MoS₂monolayer as a promising electrocatalyst with high activity for the oxygen evolution reaction: a computational study. Sustainable Energy and Fuels, 2021, 5, 3330-3339. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical 636 38.1 170 Society Reviews, 2021, 50, 10983-11031. H4,4,4-graphyne with double Dirac points as high-efficiency bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2021, 9, 4082-4090. Recent Progress in 2D Catalysts for Photocatalytic and Electrocatalytic Artificial Nitrogen Reduction 638 19.5 73 to Ammonia. Advanced Energy Materials, 2021, 11, 2003294. Boosting electrochemical nitrogen reduction reaction performance of two-dimensional Mo porphyrin monolayers <i>via</i> turning the coordination environment. Physical Chemistry Chemical 2.8 Physics, 2021, 23, 4178-4186. Designing electrode materials for the electrochemical reduction of carbon dioxide. Materials 640 12.2 18 Horizons, 2021, 8, 2420-2443. 2D Materials for electrochemical carbon dioxide reduction., 2021, , 183-196. 641 Allov-strain-output induced lattice dislocation in Ni₃FeN/Ni₃Fe ultrathin 642 nanosheets for highly efficient overall water splitting. Journal of Materials Chemistry A, 2021, 9, 10.3 54 4036-4043. Research progress of two-dimensional layered and related derived materials for nitrogen reduction 643 reaction. Sustainable Energy and Fuels, 2021, 5, 3260-3277. Lanthanum-incorporated \hat{l}^2 -Ni(OH) < sub>2 < /sub> nanoarrays for robust urea electro-oxidation. 644 21 4.1 Chemical Communications, 2021, 57, 2029-2032. Screening of effective NRR electrocatalysts among the Si-based MSi₂N₄ (M =) Tj ETQq1 $\frac{1}{0}$,784314,rgBT / Highly Efficient Electrocatalytic Water Splitting., 2021, , 1335-1367. 646 1 Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride 647 with highly improved photocatalytic efficiency. Journal of Materials Chemistry A, 2021, 9, 4700-4706. Recent advances in engineered metal oxide nanostructures for supercapacitor applications: 648 10.3 127 experimental and theoretical aspects. Journal of Materials Chemistry A, 2021, 9, 17643-17700. Two-dimensional Ti₃C₂ MXene-based nanostructures for emerging 649 37 optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963. Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844. 650 38.1 245 Fundamentals of polymeric nanostructured materials., 2021, , 1-40.

#	Article	IF	CITATIONS
652	Highly Efficient MoS ₂ Nanocatalysts for Slurry-Phase Hydrogenation of Unconventional Feedstocks into Fuels. Energy & Fuels, 2021, 35, 2590-2601.	5.1	8
653	Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application. Journal of Materials Chemistry A, 2021, 9, 3855-3879.	10.3	54
654	Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 22643-22652.	10.3	30
655	First-Principles Calculations of Exciton Radiative Lifetimes in Monolayer Graphitic Carbon Nitride Nanosheets: Implications for Photocatalysis. ACS Applied Nano Materials, 2021, 4, 1985-1993.	5.0	20
656	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	38.1	249
657	Few-layered MoN–MnO heterostructures with interfacial-O synergistic active centers boosting electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 8325-8331.	10.3	23
658	Twoâ€Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 6747-6755.	2.0	25
659	The Role of Defects in Metal–Organic Frameworks for Nitrogen Reduction Reaction: When Defects Switch to Features. Advanced Functional Materials, 2021, 31, 2010052.	14.9	92
660	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	47.7	442
661	One-step synthesis of carbon-encapsulated nickel phosphide nanoparticles with efficient bifunctional catalysis on oxygen evolution and reduction. International Journal of Hydrogen Energy, 2021, 46, 8519-8530.	7.1	21
662	Design and in situ synthesis of ZnInS@ZIF-8-nanofilms multifunctional nanocomposite: A case application for simultaneous fluorescent sensing and enhanced photocatalytic performance toward antibiotic. Microporous and Mesoporous Materials, 2021, 315, 110916.	4.4	18
663	Sulfur doping optimized intermediate energetics of FeCoOOH for enhanced oxygen evolution catalytic activity. Cell Reports Physical Science, 2021, 2, 100331.	5.6	7
664	Vertically Aligned MoS ₂ with In-Plane Selectively Cleaved Mo–S Bond for Hydrogen Production. Nano Letters, 2021, 21, 1848-1855.	9.1	63
665	Tunable dielectric constant of water confined in graphene oxide nanochannels. Journal of Molecular Liquids, 2021, 324, 115139.	4.9	6
666	Hybrid Zeolitic Imidazolate Frameworks for Promoting Electrocatalytic Oxygen Evolution via a Dual-Site Relay Mechanism. Inorganic Chemistry, 2021, 60, 3074-3081.	4.0	17
667	Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nature Communications, 2021, 12, 1124.	12.8	227
668	2D Materials Bridging Experiments and Computations for Electro/Photocatalysis. Advanced Energy Materials, 2022, 12, 2003841.	19.5	116
669	A review on mechanisms and recent developments in p-n heterojunctions of 2D materials for gas sensing applications. Journal of Materials Science, 2021, 56, 9575-9604.	3.7	64

ARTICLE IF CITATIONS Monitoring of electrochemical reactions on different electrode configurations by ambient mass 670 11.4 11 spectrometry. TrAC - Trends in Analytical Chemistry, 2021, 135, 116180. Reviewâ€"Novel Carbon Nanomaterials Based Flexible Electrochemical Biosensors. Journal of the 671 Electrochemical Society, 2021, 168, 027504. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 672 9.5 59 2021, 8, nwab019. Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 2021, 32, 9.0 94 2597-2616. Tungsten doping generated Mo2C-MoC heterostructure to improve HER performance in alkaline 674 5.2 24 solution. Electrochimica Acta, 2021, 370, 137796. In situ growth of flower-like Cu3BiS3 on copper foam for electrocatalyzing hydrogen evolution 2.4 reaction. lonics, 2021, 27, 1645-1652. Engineering transition metal-based nanomaterials for high-performance electrocatalysis. Materials 676 3.2 14 Reports Energy, 2021, 1, 100006. High-Repetition-Rate-Modulated Pulsed Fiber Laser Based on FeS₂. Journal of Physical 3.1 Chemistry C, 2021, 125, 5288-5295. Electrochemically Controlled Synthesis of Ultrathin Nickel Hydroxide Nanosheets for 678 4.0 24 Electrocatalytic Óxygen Evolution. Inorganic Chemistry, 2021, 60, 3365-3374. Polyoxotungstates-supported Nill/Coll-containing 3D inorganic-organic hybrids as supercapacitor 679 electrodes toward boosting capacitor performance. Journal of Electroanalytical Chemistry, 2021, 882, 3.8 115017. Oxygen Evolution and Reduction Reaction Activity Investigations on Fe, Co or Ni embedded Tetragonal 680 1.9 0 Graphene by A Thermodynamical Fullâ€Landscape Searching Scheme. ChemistryOpen, 2021, 10, 672-680. Synthesis of Lead-Free Cs₂AgBiX₆ (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO₂ Photocatalytic Reduction. Nano Letters, 2021, 9.1 140 21, 1620-1627. Recent Advance of Transitionâ€Metalâ€Based Layered Double Hydroxide Nanosheets: Synthesis, Properties, 682 19.5 137 Modification, and Electrocatalytic Applications. Advanced Energy Materials, 2021, 11, 2002863. Recent Advances in Nonprecious Metal Oxide Electrocatalysts and Photocatalysts for N₂ 63 Reduction Reaction under Ambient Condition. Small Science, 2021, 1, 2000069. Metal–Organicâ€Frameworkâ€Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. 684 13.8 153 Angewandte Chemie - International Edition, 2021, 60, 8472-8476. Tuning the Electronic Bandgap of Graphdiyne by Hâ€Substitution to Promote Interfacial Charge Carrier Separation for Enhanced Photocatalytic Hydrogen Production. Advanced Functional Materials, 2021, 14.9 31, 2100994. In situ integrated 2D reduced graphene oxide nanosheets with MoSSe for hydrogen evolution 686 6.8 31 reaction and supercapacitor application. Applied Surface Science Advances, 2021, 3, 100054. Transition metal doped C3N monolayer as efficient electrocatalyst for carbon dioxide 6.1 electroreduction: A computational study. Applied Surface Science, 2021, 542, 148568.

#	Article	IF	CITATIONS
688	Twoâ€Dimensional Metal Telluride Atomic Crystals: Preparation, Physical Properties, and Applications. Advanced Functional Materials, 2021, 31, 2010901.	14.9	22
689	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie, 2021, 133, 19724-19742.	2.0	30
690	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie - International Edition, 2021, 60, 19572-19590.	13.8	341
691	Metal–Organicâ€Frameworkâ€Supported Molecular Electrocatalysis for the Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 8553-8557.	2.0	20
692	Supersaturation-triggered synthesis of 2D/1D phosphide heterostructures as multi-functional catalysts for water splitting. Applied Physics Letters, 2021, 118, .	3.3	10
693	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. Advanced Energy Materials, 2021, 11, 2100303.	19.5	61
694	Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 2021, 3, 100053.	19.1	68
695	Revealing the Synergy of Cation and Anion Vacancies on Improving Overall Water Splitting Kinetics. Advanced Functional Materials, 2021, 31, 2010718.	14.9	48
696	Interface Confinement in Metal Nanosheet for High-Efficiency Semi-Hydrogenation of Alkynes. ACS Catalysis, 2021, 11, 5231-5239.	11.2	22
697	Ultrathin two-dimensional carbon nanosheets with highly active Cu-Nx sites as specific peroxidase mimic for determining total antioxidant capacity. Sensors and Actuators B: Chemical, 2021, 333, 129549.	7.8	43
698	Cation Exchange Enabled Cu Dopants Location Tailoring and Photoelectric Properties Regulation in CdS Nanosheets. Journal of Physical Chemistry Letters, 2021, 12, 3976-3982.	4.6	5
699	Ultra dispersed Co supported on nitrogen-doped carbon: An efficient electrocatalyst for oxygen reduction reaction and Zn-air battery. Chemical Engineering Science, 2021, 234, 116442.	3.8	17
700	A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of M ₃ N@C _{2<i>n</i>} (2 <i>n</i> = 68, 78, and 80) Fullerenes. Journal of the American Chemical Society, 2021, 143, 6037-6042.	13.7	37
701	Platinumâ€Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performances toward Alcohol Oxidation Reactions. ChemPlusChem, 2021, 86, 574-586.	2.8	28
702	DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap changes and I-V responses. Applied Surface Science, 2021, 546, 149104.	6.1	89
703	Biomedical applications of 2D monoelemental materials formed by group VA and VIA: a concise review. Journal of Nanobiotechnology, 2021, 19, 96.	9.1	30
704	The construction of a new deep eutectic solvents system based on choline chloride and butanediol: The influence of the hydroxyl position of butanediol on the structure of deep eutectic solvent and supercapacitor performance. Journal of Power Sources, 2021, 490, 229365.	7.8	36
705	2D/2D Heterostructures: Rational Design for Advanced Batteries and Electrocatalysis. Energy and Environmental Materials, 2022, 5, 115-132.	12.8	70

#	Article	IF	CITATIONS
706	Grapheneâ€Like Hydrogenâ€Bonded Melamine–Cyanuric Acid Supramolecular Nanosheets as Pseudoâ€Porous Catalyst Support. Advanced Materials, 2021, 33, e2007368.	21.0	31
707	Boosting Electrochemical CO ₂ Reduction by Controlling Coordination Environment in Atomically Dispersed Ni@N _{<i>x</i>} C _{<i>y</i>} Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 6438-6445.	6.7	18
708	CoFe/N, S–C Featured with Graphitic Nanoribbons and Multiple CoFe Nanoparticles as Highly Stable and Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Omega, 2021, 6, 11059-11067.	3.5	5
709	Structural and Electronic Engineering of Ir-Doped Ni-(Oxy)hydroxide Nanosheets for Enhanced Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 5386-5395.	11.2	75
710	Polymer/MXene nanocomposite–a new age for advanced materials. Polymer-Plastics Technology and Materials, 0, , 1-16.	1.3	4
711	Carbon and Oxygen Coordinating Atoms Adjust Transition Metal Single-Atom Catalysts Based On Boron Nitride Monolayers for Highly Efficient CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2021, 13, 18934-18943.	8.0	13
712	Photoelectrochemical Activity of Layered Metal Phosphorous Trichalcogenides for Water Oxidation. Advanced Materials Interfaces, 2021, 8, 2100294.	3.7	8
713	Self-supported amorphous nanoporous nickel-cobalt phosphide catalyst for hydrogen evolution reaction. Progress in Natural Science: Materials International, 2021, 31, 201-206.	4.4	27
714	Proximity Enhanced Hydrogen Evolution Reactivity of Substitutional Doped Monolayer WS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 19406-19413.	8.0	24
715	A review on amorphous noble-metal-based electrocatalysts for fuel cells: Synthesis, characterization, performance, and future perspective. International Journal of Hydrogen Energy, 2021, 46, 14190-14211.	7.1	37
716	Single Transition Metal Atom Bound to the Unconventional Phase of the MoS ₂ Monolayer for Catalytic Oxygen Reduction Reaction: A First-Principles Study. ACS Applied Materials & Interfaces, 2021, 13, 17412-17419.	8.0	26
717	Stable, Efficient, Copper Coordination Polymer-Derived Heterostructured Catalyst for Oxygen Evolution under pH-Universal Conditions. ACS Applied Materials & Interfaces, 2021, 13, 25461-25471.	8.0	7
718	Promoting N2 electroreduction to ammonia by fluorine-terminating Ti3C2Tx MXene. Nano Convergence, 2021, 8, 14.	12.1	13
719	Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices. Journal of Materials Science, 2021, 56, 13875-13924.	3.7	8
720	Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coordination Chemistry Reviews, 2021, 435, 213806.	18.8	97
721	Single-atom site catalysts supported on two-dimensional materials for energy applications. Chinese Chemical Letters, 2021, 32, 3771-3781.	9.0	38
722	Exploring Li4N and Li4O superalkalis as efficient dopants for the Al12N12 nanocage to design high performance nonlinear optical materials with high thermodynamic stability. Polyhedron, 2021, 200, 115145.	2.2	12
723	Few-Layer MoS ₂ Nanosheet/Carbon Nanotube Composite Films for Long-Lifetime Lithium Storage and Hydrogen Generation. ACS Applied Nano Materials, 2021, 4, 4754-4762.	5.0	13

#	Article	IF	Citations
724	Application of Supra Molecular Immaterialness Adsorbent in Indoor Volatile Organic Compounds Control in Hot and Humid Areas. Integrated Ferroelectrics, 2021, 216, 231-246.	0.7	1
725	Graphene-Based Two-Dimensional Mesoporous Materials: Synthesis and Electrochemical Energy Storage Applications. Materials, 2021, 14, 2597.	2.9	11
726	High-temperature stability and phase transformations of titanium carbide (Ti ₃ C ₂ T _x) MXene. Journal of Physics Condensed Matter, 2021, 33, 224002.	1.8	26
727	Sensitive label-free detection of bilirubin in blood using boron nitride-modified nanorod arrays as SERS substrates. Sensors and Actuators B: Chemical, 2021, 334, 129634.	7.8	17
728	Synergistic Interfacial and Doping Engineering of Heterostructured NiCo(OH)x-CoyW as an Efficient Alkaline Hydrogen Evolution Electrocatalyst. Nano-Micro Letters, 2021, 13, 120.	27.0	28
729	Metalâ€Assisted Efficient Nanotubular Electrocatalyst of MoS ₂ for Hydrogen Production. ChemCatChem, 2021, 13, 3237-3246.	3.7	2
730	A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials. Current Pharmaceutical Biotechnology, 2021, 22, 823-847.	1.6	12
731	On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials. Journal of Surface Investigation, 2021, 15, 485-494.	0.5	4
732	2D Metalâ€Free Nanomaterials Beyond Graphene and Its Analogues toward Electrocatalysis Applications. Advanced Energy Materials, 2021, 11, 2101202.	19.5	24
733	Co-Based Transition Metal Hydroxide Nanosheet Arrays on Carbon Cloth for Sensing Glucose and Formaldehyde. ACS Applied Nano Materials, 2021, 4, 5076-5083.	5.0	12
734	Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2021, 590, 330-340.	9.4	112
735	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	21.0	190
736	Unraveling the mechanism of hydrogen evolution reaction on cobalt compound electrocatalysts. Applied Surface Science, 2021, 550, 149355.	6.1	12
737	Electrochemically Synthesized Bis(diimino)metal Coordination Nanosheets as Ultrastable Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 5403-5407.	5.1	7
738	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	18.0	29
739	Electrocatalysis for the cleaner energy conversion process. Energy Reports, 2021, , .	5.1	0
740	Rational design of MXene-based films for energy storage: Progress, prospects. Materials Today, 2021, 46, 183-211.	14.2	83
741	Recent advances in single-atom catalysts for advanced oxidation processes in water purification. Journal of Hazardous Materials, 2021, 412, 125253.	12.4	113

#	Article	IF	CITATIONS
742	Synthesis and photoelectric properties of SnSe films through selenization of evaporated Sn-metal films. Modern Physics Letters B, 2021, 35, 2150382.	1.9	0
743	Opportunities and Challenges in Precise Synthesis of Transition Metal Singleâ€Atom Supported by 2D Materials as Catalysts toward Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2103558.	14.9	51
744	Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Science Bulletin, 2021, 66, 1228-1252.	9.0	103
745	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. Accounts of Materials Research, 2021, 2, 559-573.	11.7	97
746	Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emergent Materials, 2021, 4, 951-970.	5.7	24
747	2D transition metal carbides (MXenes) in metal and ceramic matrix composites. Nano Convergence, 2021, 8, 16.	12.1	33
748	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copperâ€Based Catalysts toward Multicarbon Products. Advanced Functional Materials, 2021, 31, 2102151.	14.9	123
749	Recent Development of Electrocatalytic CO ₂ Reduction Application to Energy Conversion. Small, 2021, 17, e2100323.	10.0	53
750	Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Research, 2022, 15, 310-316.	10.4	65
751	Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides. Nano Research, 2022, 15, 978-984.	10.4	15
752	Corrosion engineering derived Ga doped CoSe2 nanosheets intrinsically active for oxygen evolution reaction. Journal of Power Sources, 2021, 497, 229895.	7.8	23
753	Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 21401-21418.	7.1	108
754	Laser irradiation construction of nanomaterials toward electrochemical energy storage and conversion: Ongoing progresses and challenges. InformaÄnÃ-Materiály, 2021, 3, 1393-1421.	17.3	46
755	Electrocatalytic Mechanism of N ₂ Reduction Reaction by Single-Atom Catalyst Rectangular TM-TCNQ Monolayers. ACS Applied Materials & Interfaces, 2021, 13, 29641-29653.	8.0	42
756	Nanocomposites based on biocompatible polymers and graphene oxide for antibacterial coatings. Polymers and Polymer Composites, 2021, 29, S1609-S1620.	1.9	10
757	Efficient electroreduction of CO2 by single-atom catalysts two-dimensional metal hexahydroxybenzene frameworks: A theoretical study. Applied Surface Science, 2021, 550, 149389.	6.1	15
758	In situ growth of NiFe MOF/NF by controlling solvent mixtures as efficient electrocatalyst in oxygen evolution. Inorganic Chemistry Communication, 2021, 128, 108605.	3.9	11
759	Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coordination Chemistry Reviews, 2021, 436, 213825.	18.8	136

#	Article	IF	CITATIONS
760	Microchemical Engineering in a 3D Ordered Channel Enhances Electrocatalysis. Journal of the American Chemical Society, 2021, 143, 12600-12608.	13.7	25
761	Solventâ€Mediated Shell Dimension Reconstruction of Core@Shell PdAu@Pd Nanocrystals for Robust C1 and C2 Alcohol Electrocatalysis. Small, 2021, 17, e2101428.	10.0	41
762	A universal CoO/CoSe2 heterostructure electrocatalyst towards hydrogen evolution reaction via in-situ partial surface-oxidation-selenization method. Materials Chemistry and Physics, 2021, 267, 124644.	4.0	9
763	Density Functional Theory Studies of Heteroatom-Doped Graphene-like GaN Monolayers as Electrocatalysts for Oxygen Evolution and Reduction. ACS Applied Nano Materials, 2021, 4, 7125-7133.	5.0	9
764	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	27.0	71
765	In Silico Design of Covalent Organic Framework-Based Electrocatalysts. Jacs Au, 2021, 1, 1497-1505.	7.9	28
766	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	47.7	156
767	2D Hydrogen-Bonded Molecular Crystals Showing Terminal-Group-Triggered Phase Transitions and Dielectric Responses. Crystal Growth and Design, 2021, 21, 5342-5348.	3.0	4
768	Emerging Dualâ€Atomicâ€Site Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	21.0	226
769	Rapid and Scalable Synthesis of Prussian Blue Analogue Nanocubes for Electrocatalytic Water Oxidation ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2347-2353.	4.9	15
770	Gate-controlled reversible rectifying behavior investigated in a two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MoS</mml:mi><mml diode. Physical Review B, 2021, 104, .</mml </mml:msub></mml:mrow></mml:math 	:m 8n2 2 <td>m&#nn></mn</td></tr><tr><td>771</td><td>Defect and Doping Engineered Penta-graphene for Catalysis of Hydrogen Evolution Reaction.
Nanoscale Research Letters, 2021, 16, 130.</td><td>5.7</td><td>19</td></tr><tr><td>772</td><td>Recent Advances in Boron Nitride Based Hybrid Polymer Nanocomposites. Macromolecular Materials
and Engineering, 2021, 306, 2100429.</td><td>3.6</td><td>26</td></tr><tr><td>773</td><td>Role of Catalytic Materials on Conversion of Sulfur Species for Room Temperature Sodium–Sulfur
Battery. Energy and Environmental Materials, 2022, 5, 693-710.</td><td>12.8</td><td>18</td></tr><tr><td>774</td><td>Remediation of water from per-/poly-fluoroalkyl substances (PFAS) – Challenges and perspectives.
Journal of Environmental Chemical Engineering, 2021, 9, 105784.</td><td>6.7</td><td>53</td></tr><tr><td>775</td><td>Mini Review on Active Sites in Ce-Based Electrocatalysts for Alkaline Water Splitting. Energy &
Fuels, 2021, 35, 19000-19011.</td><td>5.1</td><td>34</td></tr><tr><td>776</td><td>Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Research, 2022, 15, 1809-1816.</td><td>10.4</td><td>111</td></tr><tr><td>777</td><td>Conifer Cone (<i>Pinus resinosa</i>) as a Green Corrosion Inhibitor for Steel Rebar in
Chloride-Contaminated Synthetic Concrete Pore Solutions. ACS Applied Materials & Interfaces,
2021, 13, 43676-43695.</td><td>8.0</td><td>42</td></tr></tbody></table></td>	m&#nn></mn</td></tr><tr><td>771</td><td>Defect and Doping Engineered Penta-graphene for Catalysis of Hydrogen Evolution Reaction. Nanoscale Research Letters, 2021, 16, 130.</td><td>5.7</td><td>19</td></tr><tr><td>772</td><td>Recent Advances in Boron Nitride Based Hybrid Polymer Nanocomposites. Macromolecular Materials and Engineering, 2021, 306, 2100429.</td><td>3.6</td><td>26</td></tr><tr><td>773</td><td>Role of Catalytic Materials on Conversion of Sulfur Species for Room Temperature Sodium–Sulfur Battery. Energy and Environmental Materials, 2022, 5, 693-710.</td><td>12.8</td><td>18</td></tr><tr><td>774</td><td>Remediation of water from per-/poly-fluoroalkyl substances (PFAS) – Challenges and perspectives. Journal of Environmental Chemical Engineering, 2021, 9, 105784.</td><td>6.7</td><td>53</td></tr><tr><td>775</td><td>Mini Review on Active Sites in Ce-Based Electrocatalysts for Alkaline Water Splitting. Energy & Fuels, 2021, 35, 19000-19011.</td><td>5.1</td><td>34</td></tr><tr><td>776</td><td>Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Research, 2022, 15, 1809-1816.</td><td>10.4</td><td>111</td></tr><tr><td>777</td><td>Conifer Cone (<i>Pinus resinosa</i>) as a Green Corrosion Inhibitor for Steel Rebar in Chloride-Contaminated Synthetic Concrete Pore Solutions. ACS Applied Materials & Interfaces, 2021, 13, 43676-43695.</td><td>8.0</td><td>42</td></tr></tbody></table>

#	Article	IF	CITATIONS
778	MoS ₂ Effect on Nickel Electrochemical Activation: An Atomistic/Experimental Approach. Journal of Physical Chemistry C, 2021, 125, 18640-18652.	3.1	2
779	<i>P</i> â€Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angewandte Chemie, 2021, 133, 21407-21411.	2.0	61
780	Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Research, 2022, 15, 818-837.	10.4	90
781	A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chinese Chemical Letters, 2022, 33, 562-566.	9.0	16
782	NiTe Monolayer: Two-Dimensional Metal with Superior Basal-Plane Activity for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 19164-19170.	3.1	12
783	Catalytic Role of Adsorption of Electrolyte/Molecules as Functional Ligands on Two-Dimensional TM-N ₄ Monolayer Catalysts for the Electrocatalytic Nitrogen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 40590-40601.	8.0	11
784	Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. Chinese Journal of Catalysis, 2021, 42, 1297-1326.	14.0	38
785	Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction. Composites Communications, 2021, 26, 100792.	6.3	38
786	Amino-functionalized iron-based MOFs modified with 2D FeCo(OH) hybrids for boosting oxygen evolution. Journal of Alloys and Compounds, 2021, 871, 159580.	5.5	14
787	Lanthanum-doped α-Ni(OH)2 1D-2D-3D hierarchical nanostructures for robust bifunctional electro-oxidation. Particuology, 2021, 57, 104-111.	3.6	32
788	Coâ€Delivery of Doxorubicin and Chloroquine by Polyglycerol Functionalized MoS2 Nanosheets for Efficient Multidrugâ€Resistant Cancer Therapy. Macromolecular Bioscience, 2021, 21, e2100233.	4.1	7
789	<i>P</i> â€Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 21237-21241.	13.8	98
790	Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. Advanced Materials, 2021, 33, e2008376.	21.0	114
791	Controlling the Orientation and Viscoelasticity of Materials-Binding Peptides on Hexagonal Boron Nitride Using Fatty Acids. Journal of Physical Chemistry B, 2021, 125, 10621-10628.	2.6	3
792	Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Research, 2022, 15, 2773-2809.	10.4	69
793	Fast construction of (Fe2O3)x@Ni-MOF heterostructure nanosheets as highly active catalyst for water oxidation. Journal of Alloys and Compounds, 2022, 892, 162149.	5.5	21
794	Coronene-Based 2D Metal–Organic Frameworks: A New Family of Promising Single-Atom Catalysts for Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 20870-20876.	3.1	13
795	Constructing a Graphene-Encapsulated Amorphous/Crystalline Heterophase NiFe Alloy by Microwave Thermal Shock for Boosting the Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 12284-12292.	11.2	93

#	Article	IF	CITATIONS
796	Enhancing the activity of metal-organic nanosheets for oxygen evolution reaction by substituent effects. Journal of Colloid and Interface Science, 2022, 608, 306-312.	9.4	8
797	Geometric model of 3D curved graphene with chemical dopants. Carbon, 2021, 182, 223-232.	10.3	7
798	Creating Fluorineâ€Đoped MoS ₂ Edge Electrodes with Enhanced Hydrogen Evolution Activity. Small Methods, 2021, 5, e2100612.	8.6	44
799	In situ structural reconstruction of NiMo alloy as a versatile organic oxidation electrode for boosting hydrogen production. Rare Metals, 2022, 41, 836-843.	7.1	15
800	MXene-Derived Quantum Dots for Energy Conversion and Storage Applications. Energy & Fuels, 2021, 35, 14304-14324.	5.1	41
801	Design of transition metal oxides nanosheets for the direct electrocatalytic oxidation of glucose. Materials Chemistry and Physics, 2021, 269, 124770.	4.0	11
802	Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam. Applied Surface Science, 2021, 561, 150080.	6.1	27
803	Magnetic and electronic properties of two-dimensional metal-organic frameworks TM ₃ (C ₂ NH) ₁₂ *. Chinese Physics B, 2021, 30, 097102.	1.4	5
804	One-step ionothermal accompanied thermolysis strategy for N-doped carbon quantum dots hybridized NiFe LDH ultrathin nanosheets for electrocatalytic water oxidation. Electrochimica Acta, 2021, 391, 138932.	5.2	15
805	Manganese Oxoborateâ€Based Nanostructures as Novel Oxygen Evolution Catalysts in Neutral Media. ChemNanoMat, 0, , .	2.8	3
806	Exploring the growth and oxidation of 2D-TaS ₂ on Cu(111). Nanotechnology, 2021, 32, 505605.	2.6	3
807	An option for green and sustainable future: Electrochemical conversion of ammonia into nitrogen. Journal of Energy Chemistry, 2021, 60, 384-402.	12.9	27
808	Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115341.	3.5	40
809	Two-dimensional IrN2 monolayer: An efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Journal of Colloid and Interface Science, 2021, 600, 711-718.	9.4	27
810	Fe-incorporated cobalt-based metal-organic framework ultrathin nanosheets for electrocatalytic oxygen evolution. Chemical Engineering Journal, 2021, 422, 130055.	12.7	19
811	Self-supported amorphous nickel-iron phosphorusoxides hollow spheres on Ni-Fe foam for highly efficient overall water splitting. Electrochimica Acta, 2021, 392, 138996.	5.2	16
812	Stable and high-performance Ir electrocatalyst with boosted utilization efficiency in acidic overall water splitting. Chemical Engineering Journal, 2021, 424, 130337.	12.7	23
813	Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. Chinese Journal of Catalysis, 2021, 42, 1831-1842.	14.0	38

#	ARTICLE	IF	CITATIONS
814	Boosting carbon monoxide production during CO2 reduction reaction via Cu-Sb2O3 interface cooperation. Journal of Colloid and Interface Science, 2021, 601, 661-668.	9.4	10
815	Review on MXenes-based nanomaterials for sustainable opportunities in energy storage, sensing and electrocatalytic reactions. Journal of Molecular Liquids, 2021, 342, 117524.	4.9	35
816	Theoretical study of thiophene-inserted COF as high performance anode material for Li-ion battery. Chemical Physics Letters, 2021, 783, 139042.	2.6	6
817	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021, 297, 120389.	20.2	49
818	Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chinese Journal of Catalysis, 2021, 42, 1876-1902.	14.0	58
819	Understanding the activity transport nexus in water and CO2 electrolysis: State of the art, challenges and perspectives. Chemical Engineering Journal, 2021, 424, 130501.	12.7	38
820	A general strategy for constructing transition metal Oxide/CeO2 heterostructure with oxygen vacancies toward hydrogen evolution reaction and oxygen evolution reaction. Journal of Power Sources, 2021, 512, 230514.	7.8	32
821	Ni-doped MoS2 modified graphitic carbon nitride layered hetero-nanostructures as highly efficient photocatalysts for environmental remediation. Applied Catalysis B: Environmental, 2021, 297, 120419.	20.2	32
822	Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: Towards efficient overall water splitting. Journal of Energy Chemistry, 2021, 62, 440-450.	12.9	38
823	Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst. Journal of Colloid and Interface Science, 2021, 602, 325-333.	9.4	63
824	Biomass-derived precious metal-free porous carbon: Ca-N,P-doped carbon materials and its electrocatalytic properties. Journal of Alloys and Compounds, 2021, 883, 160726.	5.5	19
825	Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density. Applied Catalysis B: Environmental, 2021, 298, 120488.	20.2	93
826	MXene-induced electronic optimization of metal-organic framework-derived CoFe LDH nanosheet arrays for efficient oxygen evolution. Applied Catalysis B: Environmental, 2021, 298, 120599.	20.2	82
827	Concentration modulate engineering of cobalt-selenium-sulfide electrodes toward water splitting: A first principle study. Applied Surface Science, 2021, 570, 151229.	6.1	5
828	Tailoring surface and interface electronic structure of NiFe LDH via V doping for enhanced oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 885, 160929.	5.5	24
829	Natural DNA-derived highly-graphitic N, P, S-tridoped carbon nanosheets for multiple electrocatalytic applications. Chemical Engineering Journal, 2022, 429, 132102.	12.7	22
830	Recent progress of electrocatalysts for oxygen reduction in fuel cells. Journal of Colloid and Interface Science, 2022, 607, 791-815.	9.4	55
831	Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: A theoretical investigation. Chemical Engineering Journal, 2022, 427, 132038.	12.7	65

#	Article	IF	CITATIONS
832	Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. Journal of Colloid and Interface Science, 2022, 607, 1091-1102.	9.4	76
833	Predominantly enhanced catalytic activities of surface protected ZnO nanorods integrated stainless-steel mesh structures: A synergistic impact on oxygen evolution reaction process. Chemical Engineering Journal, 2022, 429, 132360.	12.7	9
834	Metastable five-fold twinned Ru incorporated Cu nanosheets with Pt-like hydrogen evolution kinetics. Chemical Engineering Journal, 2022, 428, 131099.	12.7	15
835	A facile preparation method for MoS2 nanosheets and their well-controllable interfacial assembly with PEDOT: PSS for effective electrochemical hydrogen evolution reactions. Journal of Materials Science, 2021, 56, 7008-7021.	3.7	7
836	Hydrogen-etched CoS ₂ to produce a Co ₉ S ₈ @CoS ₂ heterostructure electrocatalyst for highly efficient oxygen evolution reaction. RSC Advances, 2021, 11, 30448-30454.	3.6	12
837	Recent advances in the metal–organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review. RSC Advances, 2021, 11, 21904-21925.	3.6	58
838	GdFeO ₃ Perovskite Oxide Decorated by Group X Heterometal Oxides and Bifunctional Oxygen Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 2788-2798.	8.0	34
839	Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. Nanoscale Advances, 2021, 3, 5525-5541.	4.6	13
840	The <i>in situ</i> derivation of a NiFe-LDH ultra-thin layer on Ni-BDC nanosheets as a boosted electrocatalyst for the oxygen evolution reaction. CrystEngComm, 2021, 23, 1172-1180.	2.6	17
841	Variation of the electrocatalytic activity of isostructural oxides Sr ₂ LaFeMnO ₇ and Sr ₂ LaCoMnO ₇ for hydrogen and oxygen-evolution reactions. Dalton Transactions, 2021, 50, 14196-14206.	3.3	16
842	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	30.8	198
843	Functionalized nanoprobes for <i>in situ</i> detection of telomerase. Chemical Communications, 2021, 57, 3736-3748.	4.1	14
844	Space-confined construction of two-dimensional nitrogen-doped carbon with encapsulated bimetallic nanoparticles as oxygen electrocatalysts. Chemical Communications, 2021, 57, 8190-8193.	4.1	12
845	Hetero Atom Doped Graphene Nanoarchitectonics as Electrocatalysts Towards the Oxygen Reduction and Evolution Reactions in Acidic Medium. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1859-1876.	3.7	15
846	Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts. Nanoscale, 2021, 13, 1581-1595.	5.6	38
847	Effective CO Migration among Multiabsorbed Sites Achieves the Low-Barrier and High-Selective Conversion to C2 Products on the Ni ₂ B ₅ Monolayer. ACS Applied Materials & Interfaces, 2021, 13, 3845-3855.	8.0	11
848	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	5.5	24
849	Preparation of zero valence Pd nanoparticles with ultra-efficient electrocatalytic activity for ORR. Journal of Materials Chemistry A, 2021, 9, 14507-14514.	10.3	38

#	Article	IF	CITATIONS
850	Up-scalable emerging energy conversion technologies enabled by 2D materials: from miniature power harvesters towards grid-connected energy systems. Energy and Environmental Science, 2021, 14, 3352-3392.	30.8	26
851	2D CoOOH nanosheets as oxidase mimic for the colorimetric assay of sulfite in food. Analytical Methods, 2021, 13, 764-768.	2.7	6
852	Schottky diodes based on 2D materials for environmental gas monitoring: a review on emerging trends, recent developments and future perspectives. Journal of Materials Chemistry C, 2021, 9, 395-416.	5.5	36
853	Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies. Energies, 2021, 14, 252.	3.1	141
854	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	38.1	461
855	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	30.8	188
856	2D Metal Organic Framework Nanosheet: A Universal Platform Promoting Highly Efficient Visibleâ€Lightâ€Induced Hydrogen Production. Advanced Energy Materials, 2019, 9, 1803402.	19.5	200
857	Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chemistry - A European Journal, 2020, 26, 6583-6590.	3.3	32
858	Ultra-fast diffusion of hydrogen in a novel mesoporous N-doped carbon. Carbon, 2020, 166, 307-315.	10.3	7
859	Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2T MXene for enhancing water oxidation catalysis. Chemical Engineering Journal, 2020, 398, 125605.	12.7	113
860	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	19.1	129
861	Construction of hierarchical Prussian Blue Analogue phosphide anchored on Ni2P@MoOx nanosheet spheres for efficient overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 13353-13364.	7.1	13
862	Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: A review. International Journal of Hydrogen Energy, 2020, 45, 15763-15784.	7.1	116
863	Recent advances in electrocatalysts for seawater splitting. Nano Materials Science, 2023, 5, 101-116.	8.8	86
864	Grain boundary engineering of Co ₃ O ₄ nanomeshes for efficient electrochemical oxygen evolution. Nanotechnology, 2020, 31, 455401.	2.6	11
865	BN cluster-doped graphdiyne as visible-light assisted metal-free catalysts for conversion CO ₂ to hydrocarbon fuels. Nanotechnology, 2020, 31, 495401.	2.6	16
866	Conductive two-dimensional M ₃ (C ₆ S ₃ O ₃) ₂ monolayers as effective electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 24887-24894.	10.3	20
867	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	38.1	75

#	Article	IF	CITATIONS
868	Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy and Environmental Science, 2021, 14, 6419-6427.	30.8	154
869	Incorporating Nb into MoSe ₂ Nanoflowers for Overall Electrocatalytic Water Splitting. Israel Journal of Chemistry, 2022, 62, .	2.3	4
870	Emerging Electrocatalysts for Water Oxidation under Nearâ€Neutral CO ₂ Reduction Conditions. Advanced Materials, 2022, 34, e2105852.	21.0	34
872	Elemental 2D Materials: Solutionâ€Processed Synthesis and Applications in Electrochemical Ammonia Production. Advanced Functional Materials, 2022, 32, 2107280.	14.9	20
873	Chapter 9. High Electrocatalytic Performance of Two-dimensional Layered MoS2-based Materials for the Hydrogen Evolution Reaction. RSC Smart Materials, 2019, , 283-310.	0.1	1
874	CO ₂ -to-Formate Conversion by Pulse Electrodeposited Sn on Cu Electrode. Journal of the Electrochemical Society, 2020, 167, 155501.	2.9	3
875	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	8.6	36
876	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	12.9	66
877	Emerging 2D-Nanostructured materials for electrochemical and sensing Application-A review. International Journal of Hydrogen Energy, 2022, 47, 1371-1389.	7.1	34
878	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	47.7	87
879	Metal-nitrogen intimacy of the nitrogen-doped ruthenium oxide for facilitating electrochemical hydrogen production. Applied Catalysis B: Environmental, 2022, 303, 120873.	20.2	19
880	Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts. Nano Energy, 2022, 91, 106661.	16.0	49
881	Nanostructure Engineering of Graphitic Carbon Nitride for Electrochemical Applications. ACS Nano, 2021, 15, 18777-18793.	14.6	61
882	Exploring Structure-function Relationship of Two-dimensional Electrocatalysts with Synchrotron Radiation X-ray Absorption Spectrum. Current Chinese Science, 2021, 1, 22-42.	0.5	2
883	Pyrolysis Route for the Conversion of Bacterial Cellulose to Graphene Oxide. ACS Sustainable Chemistry and Engineering, 2021, 9, 113-119.	6.7	4
884	Unveiling the role of 2D monolayer Mn-doped MoS ₂ material: toward an efficient electrocatalyst for H ₂ evolution reaction. Physical Chemistry Chemical Physics, 2021, 24, 265-280.	2.8	21
885	Earth-abundant electrocatalysts for sustainable energy conversion. , 2022, , 131-168.		0
886	Transition metal atoms M (M = Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni foam for efficient oxygen evolution reaction and urea oxidation reaction. Journal of Alloys and Compounds, 2022, 893, 162269.	5.5	36

# 887	ARTICLE Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	IF 30.8	CITATIONS
888	Controllable preparation of crystalline red phosphorus and its photocatalytic properties. Nanoscale, 2021, 13, 18955-18960.	5.6	15
889	Highly Efficient Electrocatalytic Water Splitting. , 2020, , 1-33.		0
890	Electrocatalytic Nitrogen (N2) Reduction. Green Energy and Technology, 2020, , 107-122.	0.6	1
891	Study of photogenerated exciton dissociation in transition metal dichalcogenide van der Waals heterojunction A2-MWS ₄ : a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 26768-26779.	2.8	2
892	Cobalt–Iron–Phosphate Hydrogen Evolution Reaction Electrocatalyst for Solar-Driven Alkaline Seawater Electrolyzer. Nanomaterials, 2021, 11, 2989.	4.1	14
893	Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Research, 2022, 15, 2887-2894.	10.4	12
894	Enhanced effect of H2O monolayer on metal doped nitrogen-containing graphene for hydrogen evolution reactions. Chemical Engineering Journal, 2022, 431, 133283.	12.7	2
895	Single-domain h-BN on Pt(110): Electronic structure, correlation, and bonding. Physical Review Research, 2020, 2, .	3.6	5
896	Amorphous materials for elementary-gas-involved electrocatalysis: an overview. Nanoscale, 2021, 13, 19783-19811.	5.6	19
897	Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Chemistry, 2022, 23, 100632.	3.5	24
898	Exploring the Synergistic Effect of Novel Niâ€Fe in 2D Bimetallic Metalâ€Organic Frameworks for Enhanced Electrochemical Reduction of CO ₂ . Advanced Materials Interfaces, 2022, 9, 2101505.	3.7	32
899	Pyridinic-N Doped Porous Graphene Supported on Metal Substrates As the Promising Electrocatalyst for Oxygen Reduction Reaction. Energy & Fuels, 2021, 35, 19634-19640.	5.1	1
900	Prussian Blue Analogue/FeCoNi-Layered Double Hydroxide Nanorod Arrays on Nickel Foam for Urea Electrolysis. ACS Applied Nano Materials, 2021, 4, 12407-12414.	5.0	7
901	An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Materials Today Energy, 2022, 23, 100902.	4.7	33
902	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348.	47.7	104
903	Transition Metal-Modified Co ₄ Clusters Supported on Graphdiyne as an Effective Nitrogen Reduction Reaction Electrocatalyst. Inorganic Chemistry, 2021, 60, 18251-18259.	4.0	21
904	Two-dimensional Pt2P3 monolayer: A promising bifunctional electrocatalyst with different active sites for hydrogen evolution and CO2 reduction. Chinese Chemical Letters, 2022, 33, 3987-3992.	9.0	16

#	Article	IF	CITATIONS
905	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	47.7	210
906	Recent Advances in Manifold Exfoliated Synthesis of Twoâ€Dimensional Nonâ€precious Metalâ€Based Nanosheet Electrocatalysts for Water Splitting. Small Structures, 2022, 3, 2100153.	12.0	43
907	Improving the Activity of Electrocatalysts toward the Hydrogen Evolution Reaction, the Oxygen Evolution Reaction, and the Oxygen Reduction Reaction via Modification of Metal and Ligand of Conductive Two-Dimensional Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12. 11652-11658.	4.6	36
908	Dual Modification of Carbon Support Enables Robust Anchoring of Ruthenium Nanoclusters for Efficient Hydrogen Evolution and Aromatic Nitroreduction. Advanced Materials Interfaces, 2022, 9, 2101564.	3.7	4
909	Quenchâ€Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution Reaction of Porous NiCo ₂ O ₄ Nanowires. Small, 2022, 18, e2106187.	10.0	38
910	Two-dimensional materials for electrochemical CO ₂ reduction: materials, <i>in situ</i> / <i>operando</i> characterizations, and perspective. Nanoscale, 2021, 13, 19712-19739.	5.6	18
911	Self-supporting CoP-C nanosheet arrays derived from a metal–organic framework as synergistic catalysts for efficient water splitting. Dalton Transactions, 2021, 50, 17549-17558.	3.3	8
913	Atomicâ€Level Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, 2100185.	12.0	29
914	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	5.4	17
915	Structural Changes of Spinel MCo ₂ O ₄ (M = Mn, Fe, Co, Ni, and Zn) Electrocatalysts during the Oxygen Evolution Reaction Investigated by In Situ X-ray Absorption Spectroscopy. ACS Applied Energy Materials, 2022, 5, 278-294.	5.1	41
916	Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials, 2022, 12, 177.	4.1	123
917	Recent advances in the pre-oxidation process in electrocatalytic urea oxidation reactions. Chemical Communications, 2022, 58, 2430-2442.	4.1	71
918	Recent progress in seawater electrolysis for hydrogen evolution by transition metal phosphides. Catalysis Communications, 2022, 162, 106382.	3.3	30
919	Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications. Journal of Power Sources, 2022, 520, 230873.	7.8	22
920	Tuning the band gap of the InSe monolayer by substitutional doping. Applied Surface Science, 2022, 579, 152190.	6.1	7
921	Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coordination Chemistry Reviews, 2022, 454, 214339.	18.8	71
922	Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy, 2022, 94, 106913.	16.0	119
923	Synergy of cobalt vacancies and iron doping in cobalt selenide to promote oxygen electrode reactions in lithium-oxygen batteries. Journal of Colloid and Interface Science, 2022, 612, 171-180.	9.4	11

#	Article	IF	CITATIONS
924	Nanocomposites of MoS2 nanoparticles with carboxyl-functionalized carbon nanotubes and borocarbonitrides nanosheets, and their electrocatalytic hydrogen evolution reaction activity. Materials Research Bulletin, 2022, 149, 111697.	5.2	7
925	Theoretical Study Oxygen Reduction Activity of Phosphorus-doped Graphene Nanoribbons. Journal of Material Science and Technology Research, 0, 7, .	0.3	0
926	Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. Advanced Science, 2022, 9, e2105135.	11.2	110
927	Double-atom catalysts for energy-related electrocatalysis applications: a theoretical perspective. Journal Physics D: Applied Physics, 2022, 55, 203001.	2.8	57
928	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie, 2022, 134, .	2.0	3
929	Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 3808-3817.	10.3	17
930	Towards Perfect Absorption of Single Layer CVD Graphene in an Optical Resonant Cavity: Challenges and Experimental Achievements. Materials, 2022, 15, 352.	2.9	3
931	Two-dimensional copper based colloidal nanocrystals: synthesis and applications. Nanoscale, 2022, 14, 2885-2914.	5.6	13
932	Superlattice in a Ru superstructure for enhancing hydrogen evolution. Angewandte Chemie, 0, , .	2.0	5
933	A metallic Cu ₂ N monolayer with planar tetracoordinated nitrogen as a promising catalyst for CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 1560-1568.	10.3	13
934	Lightâ€Assisted CO ₂ Hydrogenation over Pd ₃ Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	89
935	Assembling Metal Organic Layer Composites for Highâ€Performance Electrocatalytic CO ₂ Reduction to Formate. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
936	Non-metal boron atoms on a CuB ₁₂ monolayer as efficient catalytic sites for urea production. Chemical Science, 2022, 13, 1342-1354.	7.4	34
937	Two-Dimensional Conjugated Metal–Organic Frameworks for Electrocatalysis: Opportunities and Challenges. ACS Nano, 2022, 16, 1759-1780.	14.6	94
938	Pyrolysis of date seeds loaded with layered double hydroxide: Kinetics, thermodynamics, and pyrolytic gas properties. Energy Conversion and Management, 2022, 252, 115127.	9.2	23
939	Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS ₂ Nanohybrid for Enhanced Photodynamic Killing of Bacterial Pathogens/Cancerous Cells. ACS Applied Bio Materials, 2022, 5, 747-760.	4.6	6
940	Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective. Chemical Society Reviews, 2022, 51, 812-828.	38.1	62
941	Self-Healing Graphene-Templated Platinum–Nickel Oxide Heterostructures for Overall Water Splitting, ACS Nano, 2022, 16, 930-938.	14.6	34

#	Article	IF	CITATIONS
942	A review of recent progress in modified metal–organic frameworks as photocatalysts. Journal of Materials Science: Materials in Electronics, 2022, 33, 4737-4754.	2.2	5
943	Superlattice in a Ru Superstructure for Enhancing Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	62
944	Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. Materials Science and Engineering C, 2022, 135, 112689.	7.3	17
945	Electrochemiluminescence detection of oxygen vacancies in layered double hydroxides. Chemical Communications, 2022, 58, 423-426.	4.1	8
946	Peroxidase-like activity of Ru–N–C nanozymes in colorimetric assay of acetylcholinesterase activity. Analytica Chimica Acta, 2022, 1191, 339362.	5.4	19
947	Ultrathin two-dimensional triptycence-based metal-organic framework for highly selective CO2 electroreduction to CO. Chinese Chemical Letters, 2023, 34, 107134.	9.0	8
948	One-Step Synthesis of Heterostructural MoS ₂ -(FeNi) ₉ S ₈ on Ni–Fe Foam Synergistically Boosting for Efficient Fresh/Seawater Electrolysis. ACS Applied Energy Materials, 2022, 5, 1810-1821.	5.1	17
949	Twoâ€Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	6.8	33
950	New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 971-1013.	4.9	18
951	Lightâ€Assisted CO 2 Hydrogenation over Pd 3 Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie, 0, , .	2.0	11
952	Beyond sonication: Advanced exfoliation methods for scalable production of 2D materials. Matter, 2022, 5, 515-545.	10.0	33
953	Synthesis of Stable Leadâ€Free Cs ₃ Sb ₂ (Br <i>_x</i> >i> _{1â^'} <i>_x</i>) ₉ (0 ≤(i)xA≤) Perovskite Nanoplatelets and Their Application in CO ₂ Photocatalytic Reduction, Small, 2022, 18, e2106001.	10.0	28
954	A Cathode Material of Fuel Cells: F-Doped Î ³ -Graphyne/PtPd Nanocomposite from Plasma Activation and Gamma Irradiation. ACS Applied Energy Materials, 2022, 5, 2036-2044.	5.1	16
955	Exfoliated Fe3GeTe2 and Ni3GeTe2 materials as water splitting electrocatalysts. FlatChem, 2022, 32, 100334.	5.6	11
956	Theoretical investigation on the Ni atom-pair supported by N-doped graphene for the oxygen reduction reaction. Computational and Theoretical Chemistry, 2022, 1209, 113598.	2.5	4
957	Synergistically boosting oxygen evolution performance of iron-tannic electrocatalyst via localized photothermal effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128248.	4.7	9
958	Re nanoclusters anchored on nanosheet supports: Formation of Re-O-matrix bonding and evaluation as all-pH-range hydrogen evolution reaction (HER) electrocatalysts. Journal of Energy Chemistry, 2022, 69, 185-193.	12.9	14
959	Compositional and crystallographic design of Ni-Co phosphide heterointerfaced nanowires for high-rate, stable hydrogen generation at industry-relevant electrolysis current densities. Nano Energy, 2022, 95, 106989.	16.0	36

#	Article	IF	CITATIONS
960	Modifying the 316L stainless steel surface by an electrodeposition technique: towards high-performance electrodes for alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 6, 1382-1397.	4.9	6
961	Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS. Small, 2022, 18, e2106017.	10.0	18
962	Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications. Advances in Materials Science and Engineering, 2022, 2022, 1-72.	1.8	25
963	Excellent Electrocatalytic Hydrogen Evolution Reaction Performances of Partially Graphitized Activated-Carbon Nanobundles Derived from Biomass Human Hair Wastes. Nanomaterials, 2022, 12, 531.	4.1	13
964	Electrochemical CO ₂ Reduction On Two-Dimensional Metal 1,3,5-triamino-2,4,6-Benzenetriol Frameworks: A Density Functional Study. Journal of the Electrochemical Society, 2022, 169, 024513.	2.9	6
965	Insight into the Reactivity of Carbon Structures for Nitrogen Reduction Reaction. Langmuir, 2021, 37, 14657-14667.	3.5	5
966	Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nature Catalysis, 2021, 4, 1050-1058.	34.4	272
967	Interfacial Electronic Structure Modulation of Pt-MoS ₂ Heterostructure for Enhancing Electrocatalytic Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
968	Nanoparticles and nanofluids: Characteristics and behavior aspects. , 2022, , 41-71.		2
969	Encapsulated RuP ₂ –RuS ₂ nanoheterostructure with regulated interfacial charge redistribution for synergistically boosting hydrogen evolution electrocatalysis. Nanoscale, 2022, 14, 6258-6267.	5.6	10
970	Structural Design and Performance of Electrocatalysts for Carbon Dioxide Reduction: A Review. Acta Chimica Sinica, 2022, 80, 199.	1.4	3
971	Electrochemical conversion of CO ₂ to syngas with a stable H ₂ /CO ratio in a wide potential range over ligand-engineered metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 9954-9959.	10.3	5
972	Robust Ru-N Metal-Support Interaction to Promote Self-Powered H2 Production Assisted by Hydrazine Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
973	Biomass upgrading coupled with H ₂ production <i>via</i> a nonprecious and versatile Cu-doped nickel nanotube electrocatalyst. Journal of Materials Chemistry A, 2022, 10, 10181-10191.	10.3	23
974	Single Ni active sites with a nitrogen and phosphorus dual coordination for an efficient CO ₂ reduction. Nanoscale, 2022, 14, 6846-6853.	5.6	9
975	Functionalization of Graphene Sponge Electrodes with Two-Dimensional Materials for Tailored Electrocatalytic Activity Towards Contaminants of Emerging Concern. SSRN Electronic Journal, 0, , .	0.4	0
976	Electrochemical Treatment of Waste Activated Sludge: Performance, Mechanism and Improvement Possibilities. SSRN Electronic Journal, 0, , .	0.4	0
977	Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy and Environmental Science, 2022, 15, 1672-1681.	30.8	41

#	Article	IF	CITATIONS
978	Near-Infrared-Driven Photoelectrocatalytic Oxidation of Urea on La-Ni-Based Perovskites. SSRN Electronic Journal, 0, , .	0.4	0
979	Recent Developments of Thermosetting Polymers for Advanced Composites. , 2022, , 1047-1056.		1
980	A heteroepitaxially grown two-dimensional metal–organic framework and its derivative for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 10408-10416.	10.3	13
981	Three-dimensional CoOOH nanoframes confining high-density Mo single atoms for large-current-density oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 6242-6250.	10.3	20
982	<i>In situ</i> phase transition induced TM–MoC/Mo ₂ C (TM= Fe, Co, Ni, and Cu) heterostructure catalysts for efficient hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 10493-10502.	10.3	20
983	Mo/Co doped 1T-VS ₂ nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Materials Chemistry A, 2022, 10, 9067-9079.	10.3	38
984	Recent Advances of Covalent Organic Frameworks in Chemical Sensing. Chemical Research in Chinese Universities, 2022, 38, 339-349.	2.6	19
985	A perspective on highâ€entropy twoâ€dimensional materials. SusMat, 2022, 2, 65-75.	14.9	19
986	In situ electrochemical dehydrogenation of ultrathin Co(OH)2 nanosheets for enhanced hydrogen evolution. Chinese Chemical Letters, 2023, 34, 107248.	9.0	19
987	Emerging Optical Microscopy Techniques for Electrochemistry. Annual Review of Analytical Chemistry, 2022, 15, 57-82.	5.4	24
988	Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catalysis, 2022, 2, 693-723.	6.1	39
989	MXene Nanoarchitectonics: Defectâ€Engineered 2D MXenes towards Enhanced Electrochemical Water Splitting. Advanced Energy Materials, 2022, 12, .	19.5	125
990	Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nature Chemistry, 2022, 14, 267-273.	13.6	51
991	Molecular-Scale Manipulation of Layer Sequence in Heteroassembled Nanosheet Films toward Oxygen Evolution Electrocatalysts. ACS Nano, 2022, 16, 4028-4040.	14.6	29
992	Extraordinarily high hydrogen-evolution-reaction activity of corrugated graphene nanosheets derived from biomass rice husks. International Journal of Hydrogen Energy, 2022, 47, 40317-40326.	7.1	21
993	Quasi zero-dimensional MoS2 quantum dots decorated 2D Ti3C2Tx MXene as advanced electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 10583-10593.	7.1	13
994	Constructing La-doped ultrathin Co-based nanostructured electrocatalysts for high-performance water oxidation process. International Journal of Hydrogen Energy, 2022, 47, 14504-14514.	7.1	7
995	Amorphous Chromium Oxide with Hollow Morphology for Nitrogen Electrochemical Reduction under Ambient Conditions. ACS Applied Materials & amp; Interfaces, 2022, 14, 14474-14481.	8.0	8

#	Article	IF	CITATIONS
997	Nanostructured Transition Metal Nitrides as Emerging Electrocatalysts for Water Electrolysis: Status and Challenges. EnergyChem, 2022, 4, 100072.	19.1	55
998	Molybdenum bound nitrogenâ€doped graphene catalyst for reduction of N ₂ to NH ₃ and NH ₂ NH ₂ , using FLP as a coâ€catalyst: A DFT study. Applied Organometallic Chemistry, 0, , .	3.5	3
999	Putting surface-enhanced Raman spectroscopy to work for nanozyme research: Methods, materials and applications. TrAC - Trends in Analytical Chemistry, 2022, 152, 116603.	11.4	18
1000	Efficient and Selective CO ₂ Reduction to Formate on Pdâ€Doped Pb ₃ (CO ₃) ₂ (OH) ₂ : Dynamic Catalyst Reconstruction and Accelerated CO ₂ Protonation. Small, 2022, 18, e2107885.	10.0	18
1001	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	47.7	118
1002	Sub-ppb-Level Detection of Nitrogen Dioxide Based on High-Quality Black Phosphorus. ACS Applied Materials & Interfaces, 2022, 14, 13942-13951.	8.0	17
1003	Recent advances in <scp>MXene</scp> as electrocatalysts for sustainable energy generation: A review on surface engineering and compositing of <scp>MXene</scp> . International Journal of Energy Research, 2022, 46, 8625-8656.	4.5	26
1004	Highly sensitive detection of kinetin with electrochemical exfoliation of graphene nanosheets. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
1005	Molybdenum Oxide Nanoparticle Aggregates Grown by Chemical Vapor Transport. Materials, 2022, 15, 2182.	2.9	6
1006	Polytypic Phase Transition of Nb _{1–<i>x</i>} V _{<i>x</i>} Se ₂ via Colloidal Synthesis and Their Catalytic Activity toward Hydrogen Evolution Reaction. ACS Nano, 2022, 16, 4278-4288.	14.6	18
1007	Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide. Rare Metals, 2022, 41, 1851-1858.	7.1	10
1008	Direct Synthesis of Stable 1Tâ€MoS ₂ Doped with Ni Single Atoms for Water Splitting in Alkaline Media. Small, 2022, 18, e2107238.	10.0	58
1009	Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. Small, 2022, 18, e2107572.	10.0	100
1010	Modulation of the B4N monolayer as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 11511-11519.	7.1	1
1011	Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation. Nano-Micro Letters, 2022, 14, 90.	27.0	51
1012	Electrochemically co-deposited silicate sol–gel/PdAu alloy nanostructures and their application in electrocatalytic methanol oxidation. Journal of Chemical Sciences, 2022, 134, 1.	1.5	0
1013	Bio-inspired synthesis of transition-metal oxide hybrid ultrathin nanosheets for enhancing the cycling stability in lithium-ion batteries. Nano Research, 2022, 15, 5064-5071.	10.4	8
1014	How computations accelerate electrocatalyst discovery. CheM, 2022, 8, 1575-1610.	11.7	23

# 1015	ARTICLE Layer-by-layer nanohybrids of Ni-Cr-LDH intercalated with 0D polyoxotungstate for highly efficient hybrid supercapacitor. Journal of Colloid and Interface Science, 2022, 616, 548-559.	IF 9.4	Citations 30
1016	Sulfur and oxygen dual vacancies manipulation on 2D NiS2/CeO2 hybrid heterostructure to boost overall water splitting activity. Materials Today Chemistry, 2022, 24, 100791.	3.5	12
1017	In-situ reconstruction of catalysts in cathodic electrocatalysis: New insights into active-site structures and working mechanisms. Journal of Energy Chemistry, 2022, 70, 414-436.	12.9	28
1018	Chemical vapor deposition of two-dimensional molybdenum nitride/graphene van der Waals heterostructure with enhanced electrocatalytic hydrogen evolution performance. Applied Surface Science, 2022, 589, 152934.	6.1	19
1019	Au ³⁺ Species-Induced Interfacial Activation Enhances Metal–Support Interactions for Boosting Electrocatalytic CO ₂ Reduction to CO. ACS Catalysis, 2022, 12, 923-934.	11.2	42
1020	MXene─A New Paradigm Toward Artificial Nitrogen Fixation for Sustainable Ammonia Generation: Synthesis, Properties, and Future Outlook. , 2022, 4, 212-245.		20
1021	Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2022, 12, .	19.5	81
1022	Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent–Organic Frameworks for Efficient Nitrogen Fixation. ACS Applied Materials & Interfaces, 2022, 14, 1024-1033.	8.0	32
1023	Insights into Tuning of Moâ€Based Structures toward Enhanced Electrocatalytic Performance of Nitrogenâ€ŧoâ€Ammonia Conversion. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	3
1024	Pt ₃ Fe Nanoparticles on B,N-Codoped Carbon as Oxygen Reduction and pH-Universal Hydrogen Evolution Electrocatalysts. ACS Applied Nano Materials, 2022, 5, 318-325.	5.0	11
1025	Two-Dimensional Biphenylene: A Graphene Allotrope with Superior Activity toward Electrochemical Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2021, 12, 12230-12234.	4.6	43
1026	Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	72
1027	Boron-Functionalized Organic Framework as a High-Performance Metal-Free Catalyst for N ₂ Fixation. Journal of Physical Chemistry Letters, 2021, 12, 12142-12149.	4.6	9
1028	Creating Edge Sites within the Basal Plane of a MoS ₂ Catalyst for Substantially Enhanced Hydrodeoxygenation Activity. ACS Catalysis, 2022, 12, 8-17.	11.2	50
1029	Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behaviors, and solar-driven applications. Journal of Materials Chemistry A, 2022, 10, 12296-12316.	10.3	29
1030	PtSe ₂ on a reduced graphene oxide foil for the alkaline hydrogen evolution reaction. Materials Advances, 2022, 3, 4348-4358.	5.4	6
1031	Enriched <i>d</i> â€Band Holes Enabling Fast Oxygen Evolution Kinetics on Atomic‣ayered Defectâ€Rich Lithium Cobalt Oxide Nanosheets. Advanced Functional Materials, 2022, 32, .	14.9	24
1032	Atomic Dispersion of Rh on Interconnected Mo ₂ C Nanosheet Network Intimately Embedded in 3D Ni _{<i>x</i>} MoO _{<i>y</i>} Nanorod Arrays for pHâ€Universal Hydrogen Evolution. Energy and Environmental Materials, 2023, 6, .	12.8	4

#	Article	IF	CITATIONS
1033	Metal-organic aerogel derived hierarchical porous metal-carbon nanocomposites as efficient bifunctional electrocatalysts for overall water splitting. Journal of Colloid and Interface Science, 2022, 621, 398-405.	9.4	6
1034	Hybridization of 2D Nanomaterials with 3D Graphene Architectures for Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2022, 32, .	14.9	26
1035	Computational atomicâ€scale design and experimental verification for layered double hydroxide as an efficient alkaline oxygen evolution reaction catalyst. International Journal of Energy Research, 2022, 46, 11972-11988.	4.5	6
1036	Phase-Tuned MoS ₂ and Its Hybridization with Perovskite Oxide as Bifunctional Catalyst: A Rationale for Highly Stable and Efficient Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 18248-18260.	8.0	16
1037	lron oxide (Fe2O3) synthesized via solution-combustion technique with varying fuel-to-oxidizer ratio: FT-IR, XRD, optical and dielectric characterization. Materials Chemistry and Physics, 2022, 286, 126118.	4.0	18
1038	Mechanism of the Significant Acceleration of Polyethylene Terephthalate Glycolysis by Defective Ultrathin ZnO Nanosheets with Heteroatom Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 5476-5488.	6.7	15
1039	2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chinese Journal of Catalysis, 2022, 43, 1380-1398.	14.0	33
1040	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	47.7	126
1041	Ruthenium Single Atoms Anchored on Commercial Carbon Cloth for Efficient Electrocatalytic Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1042	Artificial Intelligence for Nanostructured Materials. Nanobiotechnology Reports, 2022, 17, 1-9.	0.6	0
1043	Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catalysis, 2022, 12, 5605-5660.	11.2	46
1044	Structural engineering of ultrathin vertical NbS ₂ on carbon cloth by chemical vapor deposition for hydrogen evolution reaction. Functional Materials Letters, 2022, 15, .	1.2	3
1045	Novel Three-Dimensional Electrochemical Reactor with P and N-Codoped Activated Carbon for Water Decontamination: High Efficiency and Contribution of Singlet Oxygen. ACS ES&T Water, 2022, 2, 721-729.	4.6	3
1046	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	19.1	20
1047	Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology, 2022, 33, 342002.	2.6	8
1048	Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polymer Reviews, 2023, 63, 127-199.	10.9	23
1049	Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. Biosensors, 2022, 12, 314.	4.7	103
1050	Bifunctional Catalytic Activity of Solvothermally Synthesized CeO ₂ Nanosphere/NiO Nanoflake Nanocomposites. ACS Applied Energy Materials, 2022, 5, 5666-5679.	5.1	17

#	Article	IF	CITATIONS
1051	Catalyst designing strategies for electrochemical CO ₂ reduction: a perspective. Progress in Energy, 2022, 4, 032002.	10.9	5
1052	A facile synthesis of metal ferrites (MFe2O4, M = Co, Ni, Zn, Cu) as effective electrocatalysts toward electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 20129-20137.	7.1	26
1053	Activating the Electrocatalysis of MoS ₂ Basal Plane for Hydrogen Evolution via Atomic Defect Configurations. Small, 2022, 18, .	10.0	26
1054	Structural Evolution and Bandgap Modulation of Layered <i>β</i> -GeSe ₂ Single Crystal under High Pressure. Chinese Physics B, 0, , .	1.4	1
1055	In-situ electronic structure redistribution tuning of single-atom Mn/g-C3N4 catalyst to trap atomic-scale lead(II) for highly stable and accurate electroanalysis. Journal of Hazardous Materials, 2022, 435, 129009.	12.4	12
1056	Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis. Journal of Materials Science and Technology, 2022, 127, 1-18.	10.7	18
1057	Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chemical Reviews, 2022, 122, 10675-10709.	47.7	60
1058	The novel dual-category active sites of NiCoP/CoP as high-performance electrocatalyst for urea electrolysis and synergistic hydrogen production. Materials Chemistry Frontiers, 2022, 6, 1681-1689.	5.9	14
1059	Localized surface plasmon resonances in a hybrid structure consisting of a mono-layered Al sheet and Ti ₃ C ₂ F MXene. Physical Chemistry Chemical Physics, 2022, 24, 12389-12396.	2.8	13
1060	Aramid textile with near-infrared laser-induced graphene for efficient adsorption materials. Journal of Hazardous Materials, 2022, 436, 129150.	12.4	10
1061	Improved Interfacial Ion Transport through Nanofluidic Hybrid Membranes Based on Covalent Organic Frameworks for Osmotic Energy Generation. ACS Applied Energy Materials, 2022, 5, 7176-7184.	5.1	7
1062	Effect of local coordination on catalytic activities and selectivities of Fe-based catalysts for N ₂ reduction. Physical Chemistry Chemical Physics, 2022, 24, 14517-14524.	2.8	1
1063	Soluble Two-Dimensional Donor–Acceptor Aza-Fused Aromatic Frameworks and their Electrochromism between the Visible and Near-Infrared Regions. Chemistry of Materials, 2022, 34, 4896-4909.	6.7	5
1064	Functionalization of graphene sponge electrodes with two-dimensional materials for tailored electrocatalytic activity towards specific contaminants of emerging concern. Chemical Engineering Journal, 2022, 446, 137057.	12.7	7
1065	Microwave-assisted facile synthesis of layered reduced graphene oxide-tungsten disulfide sandwiched Fe3O4 nanocomposite as effective and sensitive sensor for detection of dopamine. Materials Chemistry and Physics, 2022, 287, 126283.	4.0	28
1066	Theoretical study of single transition metal atom catalysts supported on two-dimensional Nb2NO2 for efficient electrochemical CO2 reduction to CH4. Journal of CO2 Utilization, 2022, 62, 102069.	6.8	10
1067	Progress on two-dimensional binary oxide materials. Nanoscale, 2022, 14, 9576-9608.	5.6	7
1068	Near-infrared-driven photoelectrocatalytic oxidation of urea on La-Ni-based perovskites. Chemical Engineering Journal, 2022, 446, 137240.	12.7	13

CITAT	LON	DEDODT	
U.I.I.A	HON.	KEPORI	

#	Article	IF	CITATIONS
1069	Recent progress on tungsten oxide-based materials for the hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2022, 47, 20378-20397.	7.1	18
1070	Oxygen Vacancy Induced Boosted Visibleâ€Light Driven Photocatalytic CO ₂ Reduction and Electrochemical Water Oxidation Over CuCoâ€ZIF@Fe ₂ O ₃ @CC Architecture. Small Methods, 2022, 6, .	8.6	11
1071	Emerging Dual-Functional 2D transition metal oxides for carbon capture and Utilization: A review. Fuel, 2022, 324, 124706.	6.4	15
1072	Doping-engineered biphenylene as a metal-free electrocatalyst for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2022, 6, 3446-3452.	4.9	8
1073	Hematite nanoparticles decorated nitrogen-doped reduced graphene oxide/graphitic carbon nitride multifunctional heterostructure photocatalyst towards environmental applications. New Journal of Chemistry, 2022, 46, 13100-13116.	2.8	5
1074	Layered 2D transition metal (W, Mo, and Pt) chalcogenides for hydrogen evolution reaction. , 2022, , 495-525.		2
1075	In Situ Confinement Pyrolysis Synthesis of Graphene-Wrapped Fept Nanoparticles Anchored on Hierarchically N-Doped Porous Graphitic Carbon Nanoflakes for Boosting Oxygen Reduction Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1076	Low-potential-driven electrocatalytic reduction of CO2 to hydrocarbons by cobalt-based metal-organic nanosheets. Journal of Catalysis, 2022, 413, 168-175.	6.2	7
1077	Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Research, 2022, 15, 7994-8000.	10.4	25
1079	Recent Trends in Carbon Nanotube Electrodes for Flexible Supercapacitors: A Review of Smart Energy Storage Device Assembly and Performance. Chemosensors, 2022, 10, 223.	3.6	32
1080	Sulfur Doping Triggering Enhanced Pt–N Coordination in Graphitic Carbon Nitride-Supported Pt Electrocatalysts toward Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 7406-7414.	11.2	40
1081	Highly active bifunctional electrocatalyst: Nanoporous (Ni,Co) _{0.} <scp> ₈₅ Se </scp> anchored on <scp>rGO</scp> for water and hydrazine oxidation. International Journal of Energy Research, 2022, 46, 15938-15947.	4.5	20
1082	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	47.7	35
1083	Twoâ€Ðimensional Polydopamine Fabrication by a Mild Oxidationâ€Based Exfoliation Route and its Application for Cancer Treatment. Advanced Materials Interfaces, 0, , 2200440.	3.7	2
1084	Coâ€N as a Promoter towards Modulation Surface Chemistry of PtCo Alloy on 2D Thin Layer Hierarchical Porous Nitrogenâ€Carbon for the Efficient Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	1.5	1
1085	Emerging Graphene Derivatives and Analogues for Efficient Energy Electrocatalysis. Advanced Functional Materials, 2022, 32, .	14.9	22
1086	Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. Chinese Journal of Catalysis, 2022, 43, 2240-2248.	14.0	60
1087	Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy, 2022, 100, 107467.	16.0	35

#	Article	IF	CITATIONS
1088	Application of nanotechnology in disaster prevention: An introduction. , 2022, , 3-17.		0
1089	Introductory chapter: Fundamentals of photocatalysis and electrocatalysis. , 2022, , 1-30.		0
1090	Heterointerface-Rich Sn/Mo/NiÂTrimetallicÂSulfide Porous Nanosheets WithÂEnhanced Electrocatalytic H2-EvolutionÂActivity. SSRN Electronic Journal, 0, , .	0.4	0
1091	<i>meta</i> -Position synergistic effect induced by Ni–Mo co-doped WSe ₂ to enhance the hydrogen evolution reaction. Dalton Transactions, 2022, 51, 11758-11767.	3.3	14
1092	A self-supported S-doped Fe-based organic framework platform enhances electrocatalysis toward highly efficient oxygen evolution in alkaline media. Journal of Materials Chemistry A, 2022, 10, 17246-17253.	10.3	7
1093	High performance transition metal-based electrocatalysts for green hydrogen production. Chemical Communications, 2022, 58, 7874-7889.	4.1	14
1094	Transition Metal Atoms Anchored on Square Graphyne as Multifunctional Electrocatalysts: A Computational Investigation. SSRN Electronic Journal, 0, , .	0.4	0
1095	Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews, 2022, 51, 6307-6416.	38.1	109
1096	Amorphous Fe Hydroxide Nanoparticles Embedded in Ni3s2 as High-Efficiency and Low-Cost Electrocatalysts for Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
1097	Simultaneous Regulation of Li-Ion Intercalation and Oxygen Termination Decoration on Ti3c2tx Mxene Toward Enhanced Oxygen Electrocatalysis for Li-O2 Batteries. SSRN Electronic Journal, 0, , .	0.4	Ο
1098	Graphene oxide-based materials in electrocatalysis. , 2022, , 189-238.		0
1099	Room Temperature Preparation of Two-Dimensional Black Phosphorus@Metal Organic Framework Heterojunctions and Their Efficient Overall Water-Splitting Electrocatalytic Reactions. ACS Applied Materials & Interfaces, 2022, 14, 31502-31509.	8.0	24
1100	Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Research, 2023, 16, 1703-1711.	10.4	11
1101	Oneâ€Pot Synthesis of Hatâ€like PdAu Alloy Open Nanostructures with Improved Oxidaseâ€like Activities. ChemNanoMat, 0, , .	2.8	Ο
1102	Hydrogen evolution reaction on VS2-NiS2 hybrid nanostructured electrocatalyst in acidic media: a binder-free electrode. Journal of the Iranian Chemical Society, 0, , .	2.2	2
1103	Construction of Core–Shell CoMoO4@γ-FeOOH Nanosheets for Efficient Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 2215.	4.1	8
1104	Kinetic Regulation Engineering and Inâ€5itu Spectroscopy Studies on Transitionâ€Metalâ€Based Electrocatalysts for Water Splitting. ChemElectroChem, 2022, 9, .	3.4	4
1105	A novel electrode hybrid of N–Ti3C2T /C/CuS fabricated using ZIF-67 as an intermediate derivation for superhigh electrochemical properties of supercapacitors. Journal of Materials Research and Technology, 2022, 19, 3507-3520.	5.8	12

#	Article	IF	CITATIONS
1106	Electrochemical treatment of waste activated sludge: Volume reduction mechanism and improvement possibilities. Separation and Purification Technology, 2022, 300, 121617.	7.9	5
1107	Atomicâ€Level Design of Active Site on Twoâ€Dimensional MoS ₂ toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling. Advanced Functional Materials, 2022, 32, .	14.9	53
1108	Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catalysis, 2022, 12, 8936-8975.	11.2	41
1109	Tensile strained PdNi bimetallene for energy-efficient hydrogen production integrated with formate oxidation. Chemical Engineering Journal, 2022, 450, 137995.	12.7	13
1110	Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, .	10.0	19
1111	Research on nickel-based catalysts for carbon dioxide methanation combined with literature measurement. Journal of CO2 Utilization, 2022, 63, 102117.	6.8	16
1112	Co-axial hierarchical structures composed of Mo-S-Ni nanosheets on carbon nanotube backbone for accelerating electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 600, 154066.	6.1	4
1113	Electrocatalytic and photocatalytic sustainable conversion of carbon dioxide to value-added chemicals: State-of-the-art progress, challenges, and future directions. Journal of Environmental Chemical Engineering, 2022, 10, 108219.	6.7	17
1114	Interaction of graphene with Au _n clusters: a first-principles study. Journal of Physics Condensed Matter, 2022, 34, 405701.	1.8	2
1115	α-MoB ₂ Nanosheets for Hydrogen Evolution in Alkaline and Acidic Media. ACS Applied Nano Materials, 2022, 5, 10183-10191.	5.0	9
1116	Alloy electrocatalysts. EnergyChem, 2023, 5, 100083.	19.1	24
1117	Strategies for designing efficient electrocatalytic HER catalysts at the atomic scale. Chem Catalysis, 2022, 2, 1505-1509.	6.1	2
1118	In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nature Communications, 2022, 13, .	12.8	93
1119	Electronic Tuning of Core–Shell CoNi Nanoalloy/N-Doped Few-Layer Graphene for Efficient Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Journal of Physical Chemistry Letters, 2022, 13, 6743-6748.	4.6	9
1120	Amorphous Fe hydroxide nanoparticles embedded in Ni3S2 as high-efficiency and low-cost electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2022, 427, 140889.	5.2	10
1121	Oriented interlayered charge transfer in NiCoFe layered double hydroxide/MoO3 stacked heterostructure promoting the oxygen-evolving behavior. Journal of Colloid and Interface Science, 2022, 627, 891-899.	9.4	21
1122	Co-prosperity of electrocatalytic activity and stability in high entropy spinel (Cr _{0.2} Mn _{0.2} Fe _{0.2} Ni _{0.2} Zn _{0.2}) ₃ O for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 17633-17641.	<sub.84<td>นโชร</td></s	นโชร
1123	Interfacial Electronic Regulation on Nico2o4 Nanowires@Nife-Ldh Nanosheets Heterostructure for Efficient Oxygen Evolution. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
1124	Rational design and modulation strategies of Mo-based electrocatalysts and photo/electrocatalysts towards nitrogen reduction to ammonia (NH3). Chemical Engineering Journal, 2023, 451, 138320.	12.7	29
1125	Progress on nanostructured gel catalysts for oxygen electrocatalysis. Nano Research, 2022, 15, 10343-10356.	10.4	11
1126	Hierarchical Porous Carbon Sponge with High Capacitance and High Catalytic Activity for the Oxygen Reduction Reaction. Energy & Fuels, 2022, 36, 8562-8568.	5.1	0
1127	<scp>Mo₂P</scp> Monolayer as a Superior Electrocatalyst for Urea Synthesis from Nitrogen and Carbon Dioxide Fixation: A Computational Study. Energy and Environmental Materials, 2024, 7, .	12.8	7
1128	Barrel-Shaped-Polyoxometalates Exhibiting Electrocatalytic Water Reduction at Neutral pH: A Synergy Effect. Inorganic Chemistry, 2022, 61, 13868-13882.	4.0	3
1129	Computational exploration of dual atom catalysts loaded on defective graphene for oxygen reduction reaction. Applied Surface Science, 2022, 605, 154534.	6.1	5
1130	Ultrathin Pdâ€based Perforated Nanosheets for Fuel Cells Electrocatalysis. ChemElectroChem, 0, , .	3.4	5
1131	Mn-Based Hierarchical Polyhedral 2D/3D Nanostructures MnX ₂ (X = S, Se, Te) Derived from Mn-Based Metal–Organic Frameworks as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. Energy & Fuels, 2022, 36, 10327-10338.	5.1	8
1132	Exploring CO ₂ electrochemical reduction mechanism on two-dimensional metal 2,3,6,7,10,11-triphenylenehexathiolate frameworks using density functional theory. Molecular Physics, 2022, 120, .	1.7	2
1134	Fabrication and Characterization of P-Type Semiconducting Copper Oxide-Based Thin-Film Photoelectrodes for Solar Water Splitting. Coatings, 2022, 12, 1206.	2.6	3
1135	An Electrocatalytic Strategy for Dehydrogenative [4 + 2] Cycloaddition over a <scp>Cobaltâ€BasedCatalyst. Chinese Journal of Chemistry, 2022, 40, 2741-2746.</scp>)> 4.9	6
1136	Rational design of graphyne-based dual-atom site catalysts for CO oxidation. Nano Research, 2023, 16, 343-351.	10.4	9
1137	WSe ₂ –VSe ₂ Alloyed Nanosheets to Enhance the Catalytic Performance of Hydrogen Evolution Reaction. ACS Nano, 2022, 16, 12569-12579.	14.6	19
1138	MoSe ₂ –VSe ₂ –NbSe ₂ Ternary Alloy Nanosheets to Boost Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, .	21.0	24
1139	Strategies of Anode Design for Seawater Electrolysis: Recent Development and Future Perspective. Small Science, 2022, 2, .	9.9	31
1140	A review of heteroatomic doped two-dimensional materials as electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 29698-29729.	7.1	14
1141	Revealing Fast Cu-lon Transport and Enhanced Conductivity at the CuInP ₂ S ₆ –In _{4/3} P ₂ S ₆ Heterointerface. ACS Nano, 2022, 16, 15347-15357.	14.6	9
1142	Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. Small, 2022, 18, .	10.0	14

#	Article	IF	CITATIONS
1143	Grafting of Pd on Covalently and Noncovalently Modified Nâ€Doped Graphene for Electrocatalysis. Advanced Materials Interfaces, 2022, 9, .	3.7	4
1144	Rational Design of Atomic Site Catalysts for Electrocatalytic Nitrogen Reduction Reaction: One Step Closer to Optimum Activity and Selectivity. Electrochemical Energy Reviews, 2022, 5, .	25.5	22
1145	Investigating graphdiyne based materials for rechargeable batteries. Nano Today, 2022, 46, 101588.	11.9	8
1146	Structural transformation of metal–organic framework with constructed tetravalent nickel sites for efficient water oxidation. Journal of Energy Chemistry, 2022, 74, 404-411.	12.9	16
1147	Electrocatalytic water splitting for efficient hydrogen evolution using molybdenum disulfide nanomaterials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 285, 115930.	3.5	2
1148	A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 471, 214741.	18.8	24
1149	A universal substrate for the nanoscale investigation of two-dimensional materials. Applied Surface Science, 2022, 604, 154585.	6.1	3
1150	In situ confined pyrolysis preparation of graphene-wrapped FePt nanoparticles anchored on N-doped hierarchically porous graphitic carbon nanoflakes for boosting oxygen reduction reaction. Applied Surface Science, 2022, 604, 154475.	6.1	7
1151	Emerging electrocatalytic activities in transition metal selenides: synthesis, electronic modulation, and structure-performance correlations. Chemical Engineering Journal, 2023, 451, 138514.	12.7	28
1152	Metal–Organic Frameworkâ€Based Nanomaterials for Electrocatalytic Oxygen Evolution. Small Methods, 2022, 6, .	8.6	53
1153	Preparation of a MnO2@C@MnO Core-shell Heterojunction as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2022, 17, 221050.	1.3	1
1154	Transition metal atoms anchored on square graphyne as multifunctional electrocatalysts: A computational investigation. Molecular Catalysis, 2022, 531, 112706.	2.0	2
1155	Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2022, 430, 141095.	5.2	9
1156	Sp-nitrogen and Î ³ -ray modulating multiply Î ³ -graphyne for anchoring Pt nanoparticles to boost oxygen reduction activity and stability. Applied Materials Today, 2022, 29, 101626.	4.3	2
1157	Simultaneous regulation of Li-ion intercalation and oxygen termination decoration on Ti3C2Tx MXene toward enhanced oxygen electrocatalysis for Li-O2 batteries. Chemical Engineering Journal, 2023, 451, 138818.	12.7	5
1158	Amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets for highly efficient and stable overall urea splitting. Journal of Colloid and Interface Science, 2023, 629, 501-510.	9.4	10
1159	Catalytic centers with multiple oxidation states: a strategy for breaking the overpotential ceiling from the linear scaling relation in oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 23079-23086.	10.3	2
1160	Construction of a highly stable g-C ₃ N ₄ /NH ₂ -MIL-88B(Fe)/CD@graphene oxide self-cleaning membrane for dye wastewater separation and degradation. New Journal of Chemistry, 2022, 46, 17438-17455.	2.8	5

#	Article	IF	CITATIONS
1161	An inorganic–organic hybrid nanomaterial with a core–shell structure constructed by using Mn–BTC and Ag ₅ [BW ₁₂ O ₄₀] for supercapacitors and photocatalytic dye degradation. Nanoscale Advances, 2022, 4, 4358-4365.	4.6	8
1162	Atomically dispersed metal catalysts for the electrochemical nitrogen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 22331-22353.	10.3	15
1163	Regulating the coordination environment of a metal–organic framework for an efficient electrocatalytic oxygen evolution reaction. Energy Advances, 2022, 1, 641-647.	3.3	2
1164	Strain-mediated oxygen evolution reaction on magnetic two-dimensional monolayers. Nanoscale Horizons, 2022, 7, 1404-1410.	8.0	6
1165	Molten Salt Synthesis of Cofe Alloy EmbeddedÂln 2d UltrathinÂN-Doped Porous Carbon NanosheetsÂFor Efficient CooperativeÂOxygen Electrocatalysis. SSRN Electronic Journal, 0, , .	0.4	0
1166	In-situ corrosion induced Zr-doped Ni/Fe (oxy)hydroxide layer on Ni-Fe foam realizing efficient electrocatalysis for oxygen evolution reaction. Applied Surface Science, 2023, 607, 155043.	6.1	4
1167	Recent Advances in the Development of Nanocatalysts for Direct Methanol Fuel Cells. Energies, 2022, 15, 6335.	3.1	9
1168	Supramolecular assembly-derived carbon-nitrogen-based functional materials for photo/electrochemical applications: progress and challenges. , 2023, 2, 20220032.		4
1169	Unraveling the Effect of A-Site Sr-Doping in Double Perovskites Ca _{2–<i>x</i>} Sr <i>_x</i> ScRuO ₆ (<i>x</i> = 0 and 1): Structural Interpretation and Mechanistic Investigations of Trifunctional Electrocatalytic Effects. ACS Applied Energy Materials, 2022, 5, 11632-11645.	5.1	7
1170	Nickel-based nanosheets array as a binder free and highly efficient catalyst for electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 34887-34897.	7.1	6
1171	Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials, 2022, 12, 3226.	4.1	50
1172	Recent progress in electrochemical reduction of carbon monoxide toward multi-carbon products. Materials Today, 2022, 59, 182-199.	14.2	22
1173	Inner Co Synergizing Outer Ru Supported on Carbon Nanotubes for Efficient pH-Universal Hydrogen Evolution Catalysis. Nano-Micro Letters, 2022, 14, .	27.0	39
1174	Full Composition Tuning of W _{1–<i>x</i>} Nb _{<i>x</i>} Se ₂ Alloy Nanosheets to Promote the Electrocatalytic Hydrogen Evolution Reaction. ACS Nano, 2022, 16, 13949-13958.	14.6	9
1175	Facile hydrothermal synthesis of layered 1T′ MoTe2 nanotubes as robust hydrogen evolution electrocatalysts. Frontiers in Chemistry, 0, 10, .	3.6	1
1176	A Brief Assessment on Recent Developments in Efficient Electrocatalytic Nitrogen Reduction with 2D Non-Metallic Nanomaterials. Nanomaterials, 2022, 12, 3413.	4.1	81
1177	Intermetallic Nanocrystals: Seedâ€Mediated Synthesis and Applications in Electrocatalytic Reduction Reactions. Chemistry - A European Journal, 0, , .	3.3	4
1178	Phase Engineering of Metastable Transition Metal Dichalcogenides via Ionic Liquid Assisted Synthesis. ACS Nano, 2022, 16, 15215-15225.	14.6	9

#	Article	IF	CITATIONS
1179	Review on recent advances in twoâ€dimensional nanomaterialsâ€based cathodes for lithiumâ€sulfur batteries. EcoMat, 2023, 5, .	11.9	15
1180	Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies. Progress in Solid State Chemistry, 2022, 68, 100370.	7.2	9
1182	Molecular intercalation of transition metal dichalcogenide nanosheets to enhance electrocatalytic activity toward hydrogen evolution reaction. Bulletin of the Korean Chemical Society, 2022, 43, 1352-1363.	1.9	4
1183	Carbon dioxide adsorption and conversion to methane and ethane on hydrogen boride sheets. Communications Chemistry, 2022, 5, .	4.5	8
1184	Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production. Nature Communications, 2022, 13, .	12.8	22
1185	Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. Advanced Materials, 2023, 35, .	21.0	27
1186	Lamellar-assembled PdNi super-nanosheets as effective oxygen redox dual-electrocatalysts for rechargeable Zn-air batteries. Nano Research, 2023, 16, 2163-2169.	10.4	2
1187	Onâ€Chip Investigation of Electrocatalytic Oxygen Reduction Reaction of 2D Materials. Small, 2022, 18, .	10.0	4
1188	Boosting Alkaline Hydrogen Evolution Reaction via an Unexpected Dynamic Evolution of Molybdenum and Selenium on MoSe ₂ Electrode. Advanced Energy Materials, 2022, 12, .	19.5	50
1189	Stepwise dispersion of nickel species for efficient coupling of electrocatalytic redox reactions. Chemical Engineering Journal, 2023, 454, 140062.	12.7	3
1190	A novel method to prepare antibacterial ZnO nanoflowers. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	5
1191	Engineering the Structural Defects of Spinel Oxide Nanoneedles by Doping of V for a Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2022, 14, 50055-50067.	8.0	13
1192	Recent progress of iron-based electrocatalysts for nitrogen reduction reaction. Journal of Materials Science and Technology, 2023, 140, 121-134.	10.7	13
1193	Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water splitting and metal–air batteries. Nano Materials Science, 2022, , .	8.8	12
1194	Perspective of p-block single-atom catalysts for electrocatalysis. Trends in Chemistry, 2022, 4, 1135-1148.	8.5	12
1195	E <tb>thanol Exchange between Two Graphene Surfaces in Nanoconfined Aqueous Solution: Rate and Mechanism. Journal of Chemical Physics, 0, , .</tb>	3.0	0
1196	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	3.7	11
1197	Rational design of advanced oxygen electrocatalysts for high-performance zinc-air batteries. Chem Catalysis, 2022, 2, 3357-3394.	6.1	7

#	Article	IF	CITATIONS
1198	Surface engineering of morphology and electronic structure of CoP by Zn doping for enhanced water splitting performance. Journal of Alloys and Compounds, 2023, 934, 167828.	5.5	7
1199	Synergistically engineered 2D MXenes for metal-ion/Li–S batteries: Progress and outlook. Materials Today Advances, 2022, 16, 100303.	5.2	4
1200	Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordination Chemistry Reviews, 2023, 474, 214864.	18.8	90
1201	Theoretical prediction on stability, electronic and activity properties of single-atom catalysts anchored graphene and boron phosphide heterostructures. Fuel, 2023, 332, 126213.	6.4	10
1202	Hierarchical porous structured trimetallic non-oxides CoFeMo-A (A= P, Se) as electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds, 2023, 932, 167538.	5.5	7
1203	Interfacial electronic regulation on NiCo2O4 nanowires@NiFe-LDH nanosheets heterostructure for efficient oxygen evolution. Journal of Alloys and Compounds, 2023, 931, 167465.	5.5	10
1204	Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews, 2022, 51, 9620-9693.	38.1	93
1205	Recent Advances in the MXenes for Photocatalytic and Hydrogen Production Applications. , 2022, , 2219-2260.		0
1206	Synergistic effect of diatomic Mo–B site confined in graphene-like C2N enables electrocatalytic nitrogen reduction via novel mechanism. Journal of Chemical Physics, 2022, 157.	3.0	6
1207	2rS <mml:math si13.svg_display="inline<br" xmlns:mml="http://www.w3.org/1998/Math/Math/MathML_altimg=">id="d1e711"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> /WTe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si13.svg" display="inline"</mml:math 	6.1	6
1208	id= d1e719 Schmittinsto Schmittinow Tuning Coâ€Catalytic Sites in Hierarchical Porous Nâ€Doped Carbon for Highâ€Performance Rechargeable and Flexible Znâ€Air Battery. Advanced Energy Materials, 2023, 13, .	19.5	49
1209	Bioinspired and Bioderived Aqueous Electrocatalysis. Chemical Reviews, 2023, 123, 2311-2348.	47.7	22
1210	Zeolitic imidazolate framework-67Âderived cobalt-based catalysts for water splitting. Materials Today Chemistry, 2022, 26, 101210.	3.5	2
1211	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	14.7	17
1212	Constructing nickel-based bifunctional oxygen catalyst and dual network hydrogel electrolyte for high-performance, compressible and rechargeable zinc-air batteries. Materials Today Physics, 2022, 29, 100924.	6.0	4
1213	Unveiling the reconstructed active phase of Ni ₃ Se ₂ model for water splitting. New Journal of Chemistry, 0, , .	2.8	3
1214	High surface area siloxene for photothermal and electrochemical catalysis. Nanoscale, 2022, 15, 154-161.	5.6	7
1215	Green Nanomaterials as Surfaces and Coatings. , 2022, , 1-19.		0

#	Article	IF	CITATIONS
1216	Thiacalixarene-based {Co/Fe} ₁₆ coordination clusters: bimetallic synergistic effect for an enhanced oxygen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 926-933.	6.0	6
1217	Excluding false positives: A perspective toward credible ammonia quantification in nitrogen reduction reaction. Chinese Journal of Catalysis, 2023, 44, 50-66.	14.0	9
1218	<i>In situ</i> characterisation for nanoscale structure–performance studies in electrocatalysis. Nanoscale Horizons, 2023, 8, 146-157.	8.0	6
1219	Metallic active-site engineering: a bridge between covalent triazine frameworks and high-performance catalysts. Journal of Materials Chemistry A, 2023, 11, 2070-2091.	10.3	9
1220	A computational study on CO ₂ electrochemical reduction on two dimensional metal-1,2,3,4,5,6,7,8,9,10,11,12-perthiolated coronene frameworks. New Journal of Chemistry, 0, , .	2.8	0
1221	Iron-nickel layered dihydroxide nanosheet-wrapped single-layer ordered mesoporous carbon with novel riveting structure as a superior composite electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2023, 440, 141739.	5.2	1
1222	Two-dimensional alloying MNS4 (M, NÂ=ÂMn, Fe, Co, Ni, Pd) materials with pentagonal pucker for highly efficient electrocatalytic hydrogen reaction. Applied Surface Science, 2023, 612, 155897.	6.1	2
1223	Nanogels and Nanocomposite Hydrogels for Sensing Applications. , 2022, , 1-26.		0
1224	Ultrathin origami accordionâ€like structure of vacancyâ€rich graphitized carbon nitride for enhancing CO ₂ photoreduction. , 2023, 5, .		8
1225	A review on system and materials for aqueous flexible metalâ \in "air batteries. , 2023, 5, .		8
1226	2D Molybdenum Compounds for Electrocatalytic Energy Conversion. Advanced Functional Materials, 2023, 33, .	14.9	12
1227	Layered Double Hydroxide Templated Synthesis of Amorphous NiCoFeB as a Multifunctional Electrocatalyst for Overall Water Splitting and Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2023, 13, .	19.5	24
1228	First Principles Study of Double Boron Atoms Supported on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction. Crystals, 2022, 12, 1744.	2.2	0
1229	2D, Metalâ€Free Electrocatalysts for the Nitrogen Reduction Reaction. Advanced Functional Materials, 2023, 33, .	14.9	17
1230	Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts. Nature Communications, 2022, 13, .	12.8	10
1231	Unraveling the Electrocatalytic Activity of Platinum Doped Zirconium Disulfide toward the Oxygen Reduction Reaction. Energy & Fuels, 2023, 37, 567-579.	5.1	3
1232	Nanostructured carbon electrocatalysts for clean energy conversion and storage: A mini review on the structural impactA. Frontiers in Materials, 0, 9, .	2.4	0
1233	Tailoring the Sb ₂ Se ₃ /rGO Heterointerfaces for Modulation of Electrocatalytic Hydrogen Evolution Performances in Acidic Media. ACS Applied Energy Materials, 2023. 6. 58-67.	5.1	5

#	Article	IF	CITATIONS
1234	Recent advances in cobalt disulfide for electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 9231-9243.	7.1	10
1235	Electrocatalytic Properties of Perovskites and Their Nanocomposites. ACS Symposium Series, 0, , 151-189.	0.5	1
1236	Emerging 2D Copperâ€Based Materials for Energy Storage and Conversion: A Review and Perspective. Small, 2023, 19, .	10.0	21
1237	Controllable Synthesis of 2D Materials by Electrochemical ExfoliationÂfor Energy Storage and Conversion Application. Small, 2023, 19, .	10.0	13
1238	Small amounts of main group metal atoms matter: ultrathin Pd-based alloy nanowires enabling high activity and stability towards efficient oxygen reduction reaction and ethanol oxidation. Nanoscale, 2023, 15, 3772-3779.	5.6	6
1239	Ultrafast preparation of NiFe nanocluster/graphene heterojunction catalysts for oxygen evolution reaction. CrystEngComm, 2023, 25, 925-934.	2.6	1
1240	Structures and properties of nano-XNH ₂ (X = C, Si, Ge, and Sn). AIP Advances, 2023, 13, 015113.	1.3	0
1241	Preparation of 2D Polyaniline/MoO _{3â^'} <i>_x</i> Superlattice Nanosheets via Intercalationâ&nduced Morphological Transformation for Efficient Chemodynamic Therapy. Advanced Healthcare Materials, 2023, 12, .	7.6	11
1242	Filling the Gap between Heteroatom Doping and Edge Enrichment of 2D Electrocatalysts for Enhanced Hydrogen Evolution. ACS Nano, 2023, 17, 1287-1297.	14.6	9
1243	Dinitrogen reduction using ruthenium coordinated by nitrogenâ€doped graphene and cobalt complex coordinated by anionic PNP pincer ligand as catalysts and Frustrated Lewis Pair as a coâ€catalyst: Density Functional Theory studies. Applied Organometallic Chemistry, 2023, 37, .	3.5	2
1244	Recent Escalations in MXenes: From Fundamental to Applications. , 2023, , 205-239.		0
1245	2D Layered Bimetallic Phosphorous Trisulfides M ^I M ^{III} P ₂ S ₆ (M ^I Â= Cu, Ag; M ^{III} Â=) ⁻	ſjæðQq1	1 @.7 84314
1246	Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers, 2023, 15, 267.	4.5	14
1247	In Situ Surface Reconstruction of Catalysts for Enhanced Hydrogen Evolution. Catalysts, 2023, 13, 120.	3.5	3
1248	0D/2D/3D ternary Au/Ti3C2/TiO2 photocatalyst based on accelerating charge transfer and enhanced stability for efficiently hydrogen production. Applied Surface Science, 2023, 615, 156397.	6.1	9
1249	Design of novel type-I (type-II) band alignment in GeC-VXY (VÂ=ÂCI, Br; YÂ=ÂSe, Te) van der Waals heterostructure for optoelectronic and renewable energy application. Applied Surface Science, 2023, 615, 156260.	6.1	8
1250	Ultrafine Fe2C in porous N-doped carbon by Polydopamineâ^'Silane Co-deposition for efficient oxygen reduction reaction and zinc-air battery. International Journal of Hydrogen Energy, 2023, 48, 9659-9668.	7.1	1
1251	Recent progress in metal–organic frameworks (MOFs) for electrocatalysis. , 2023, 1, 9-38.		49

ARTICLE IF CITATIONS Controllable synthesis of MOFs-derived porous and tubular bimetallic Feâ€"Ni phosphides for efficient 1252 4.1 8 electrocatalytic water splitting. Catalysis Science and Technology, 2023, 13, 1512-1517. How About Vanadiumâ€Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries?. 11.2 Advanced Science, 2023, 10, . Defectâ€engineered twoâ€dimensional transition metal dichalcogenides towards electrocatalytic 1254 26 hydrogen evolution reaction., 2023, 5,. Composition-Tuned (MoWV)Se₂ Ternary Alloy Nanosheets as Excellent Hydrogen Evolution Reaction Electrocatalysts. ACS Nano, 2023, 17, 2968-2979. 14.6 Ionâ€Assisted Preparation of Bimetallic Porous Nanodendrites for Active and Stable Water Electrolysis. 1256 10.0 0 Small, 0, , 2207332. First-principles-driven catalyst design protocol of 2D/2D heterostructures for electro- and 2.8 photocatalytic nitrogen reduction reaction. Physical Chemistry Chemical Physics, 0, , . Recent Advances in the Synthesis of MXene Quantum Dots. Chemical Record, 2023, 23, . 1258 5.8 7 Polymer-based nanomaterials: an introduction., 2023, , 27-59. 1259 Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and 1260 47.7 23 Applications. Chemical Reviews, 2023, 123, 3329-3442. Theoretical study the electrocatalytic performance and mechanism of novel designed electrocatalyst 6.4 Ru@2DMs for CO2RR. Fuel, 2023, 340, 127541. Defect engineering of two-dimensional materials for advanced energy conversion and storage. 1262 38.1 66 Chemical Society Reviews, 2023, 52, 1723-1772. Structural transformation of metal–organic frameworks and identification of electrocatalytically active species during the oxygen evolution reaction under neutral conditions. Inorganic Chemistry Frontiers, 2023, 10, 2961-2977. 6.0 Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. 1264 47.7 9 Chemical Reviews, 2023, 123, 3625-3692. Computational Design of a Two-Dimensional Copper Carbide Monolayer as a Highly Efficient Catalyst for Carbon Monoxide Electroreduction to Ethanol. ACS Applied Materials & amp; Interfaces, 2023, 15, 8.0 13033-13041. Efficient Synthesis of 2D Mica Nanosheets by Solvothermal and Microwave-Assisted Techniques for 1266 2 2.9 CO2 Capture Applications. Materials, 2023, 16, 2921. Recent progress of MXene-based membranes for high-performance and efficient gas separation. 3.9 Diamond and Related Materials, 2023, 135, 109883 Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure 1268 design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 18.8 29 483, 215066. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. 1269 18.8 44 Coordination Chemistry Reviews, 2023, 482, 215058.

#	Article	IF	CITATIONS
1270	Phytic acid empowered two nanos "Polypyrrole tunnels and transition Metal-(Oxy)hydroxide Sheets― in a single platform for unmitigated redox water splitting. Chemical Engineering Journal, 2023, 463, 142280.	12.7	13
1271	Density functional theory studies of Pt2Ga and Pd2Ga monolayers as multifunctional electrocatalytic materials. Computational Materials Science, 2023, 224, 112164.	3.0	0
1272	The HER performance of 2D materials is underestimated without morphology correction. Chemical Engineering Journal, 2023, 465, 142852.	12.7	4
1273	Screening of transition metal-based MOF as highly efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Surfaces and Interfaces, 2023, 38, 102821.	3.0	9
1274	Defect engineered Janus MoSiGeN4 as highly efficient electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2023, 622, 156894.	6.1	9
1275	Synergistic double-atom catalysts of metal-boron anchored on g-C2N for electrochemical nitrogen reduction: Mechanistic insight and catalyst screening. Journal of Energy Chemistry, 2023, 80, 350-360.	12.9	13
1276	Enhancing photocatalytic antibiotics mineralization and water oxidation via constructing interfacial electric field in plate-on-plate BiOCI/WO3 photocatalysts. Journal of Colloid and Interface Science, 2023, 642, 264-272.	9.4	6
1278	Theoretical study the catalytic performance and mechanism of novel designed single atom catalysts M1/2DMs for 1,3-butadiene hydrogenation. Applied Surface Science, 2023, 617, 156585.	6.1	0
1279	A Mini Review on Transition Metal Chalcogenides for Electrocatalytic Water Splitting: Bridging Material Design and Practical Application. Energy & Fuels, 2023, 37, 2608-2630.	5.1	39
1280	Morphology control and electronic tailoring of CoxAy (AÂ=ÂP, S, Se) electrocatalysts for water splitting. Chemical Engineering Journal, 2023, 460, 141674.	12.7	21
1281	Defect Engineering in Two-Dimensional Layered PdTe ₂ for Enhanced Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 2601-2609.	11.2	10
1282	Copperâ€Phthalocyanineâ€based Covalent Organic Polymers for Electrocatalytic Ambient Ammonia Synthesis. ChemCatChem, 2023, 15, .	3.7	0
1284	Advanced twoâ€dimensional materials toward polysulfides regulation of metal–sulfur batteries. SmartMat, 2023, 4, .	10.7	6
1285	Scalable Edge-Oriented Metallic Two-Dimensional Layered Cu ₂ Te Arrays for Electrocatalytic CO ₂ Methanation. ACS Nano, 2023, 17, 4790-4799.	14.6	14
1286	Recent Advances and New Challenges: Two-Dimensional Metal–Organic Framework and Their Composites/Derivatives for Electrochemical Energy Conversion and Storage. International Journal of Energy Research, 2023, 2023, 1-47.	4.5	3
1287	Strategies to Improve the Oxygen Reduction Reaction Activity on Pt–Bi Bimetallic Catalysts: A Density Functional Theory Study. Journal of Physical Chemistry Letters, 2023, 14, 1990-1998.	4.6	4
1288	N2 photofixation promoted by in situ photoinduced dynamic iodine vacancies at step edge in Bi5O7I nanotubes. Nano Research, 2023, 16, 6679-6686.	10.4	4
1289	Recent advances in nanoâ€scaffolds for tissue engineering applications: Toward natural therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	6
#	Article	IF	CITATIONS
------	---	------	-----------
1290	Microenvironment Engineering of Single/Dualâ€Atom Catalysts for Electrocatalytic Application. Advanced Materials, 2023, 35, .	21.0	56
1291	Facile green synthesis of Ag/carbon nanotubes composite for efficient water splitting applications. Synthetic Metals, 2023, 294, 117310.	3.9	13
1292	Recent progress in the synthesis, characterization and photocatalytic application of energy conversion over single metal atoms decorated graphitic carbon nitride. International Journal of Hydrogen Energy, 2023, 48, 19459-19485.	7.1	14
1293	Regulating Hollow Carbon Cage Supported NiCo Alloy Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2023, 15, 12078-12087.	8.0	14
1294	Preparation of a self-supported nickel–aluminum–cobalt phosphating electrode and its electrocatalytic performance in total water decomposition. New Journal of Chemistry, 2023, 47, 6645-6652.	2.8	2
1295	Conducting Polymers for Water Splitting Applications. , 2022, , 1-30.		Ο
1296	Growth Process of Two-Dimensional Metal–Organic Framework Cu-BDC: A Particle Attachment Crystallization Mechanism Revealed by Microdroplet Flow Reaction. Crystal Growth and Design, 2023, 23, 2845-2851.	3.0	2
1297	Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. Nanoscale, 2023, 15, 6456-6475.	5.6	7
1298	Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. Journal of Materials Chemistry A, 2023, 11, 10463-10472.	10.3	13
1299	The recent progress of laser-induced graphene based device applications. Journal of Semiconductors, 2023, 44, 031701.	3.7	4
1300	Nonâ€van der Waals 2D Materials for Electrochemical Energy Storage. Advanced Functional Materials, 2023, 33, .	14.9	9
1301	Plate-Like Colloidal Metal Nanoparticles. Chemical Reviews, 2023, 123, 3493-3542.	47.7	24
1302	Multilayered Molybdate Microflowers Fabricated by Oneâ€Pot Reaction for Efficient Water Splitting. Advanced Science, 2023, 10, .	11.2	7
1303	A Lowâ€Temperature Synthetic Route Toward a Highâ€Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis. Advanced Science, 2023, 10, .	11.2	9
1304	One-dimensional metal-organic frameworks: Synthesis, structure and application in electrocatalysis. , 2023, 1, 100010.		2
1305	Electrochemical hydrogen evolution on Pt-based catalysts from a theoretical perspective. Journal of Chemical Physics, 2023, 158, .	3.0	4
1306	Polysulfide-Induced Synthesis of Coral-Like MoS ₂ /NiS ₂ Nanostructures for Overall Water Splitting. ACS Applied Nano Materials, 2023, 6, 5136-5144.	5.0	3
1307	Lattice-disordered high-entropy metal hydroxide nanosheets as efficient precatalysts for bifunctional electro-oxidation. Journal of Colloid and Interface Science, 2023, 642, 41-52.	9.4	19

#	Article	IF	CITATIONS
1308	Interfacial engineering of heterostructured carbon-supported molybdenum cobalt sulfides for efficient overall water splitting. Tungsten, 2023, 5, 589-597.	4.8	26
1309	Immobilized triatomic CuB ₂ clusters on 2D carbon nitride: highly selective conversion of CO to ethanol at low potentials. Physical Chemistry Chemical Physics, 2023, 25, 11501-11512.	2.8	1
1311	Design and development of multi-functional graphitic carbon nitride heterostructures embedded with copper and iron oxide nanoparticles as versatile sensing platforms for environmental and agricultural applications. Ceramics International, 2023, 49, 20688-20698.	4.8	4
1312	One-step solution-induced impregnation synthesis of strongly coupled platinumâ€``molybdenum/silicon carbide quantum dots heterostructures encapsulated on reduced graphene oxide sheet as electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 24306-24319.	7.1	2
1313	Emerging metallenes: synthesis strategies, biological effects and biomedical applications. Chemical Society Reviews, 2023, 52, 2833-2865.	38.1	4
1314	Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. Nanoscale, 2023, 15, 8508-8531.	5.6	5
1315	Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023, 59, 102780.	18.0	12
1316	Ionic liquids enhanced highly efficient photoelectrochemical reduction of CO2 to ethanol over Cu2O/TiO2 nanoarrays. Molecular Catalysis, 2023, 543, 113161.	2.0	3
1317	Oxygen Vacancies Unfold the Catalytic Potential of NiFe-Layered Double Hydroxides by Promoting Their Electronic Transport for Oxygen Evolution Reaction. ACS Catalysis, 2023, 13, 6000-6012.	11.2	26
1318	Multifunctional Pt3Rh–Co3O4 alloy nanoparticles with Pt-enriched surface and induced synergistic effect for improved performance in ORR, OER, and HER. Environmental Research, 2023, 229, 115950.	7.5	3
1319	Facile synthesis of strongly coupled Platinum-Molybdenum/Silicon Carbide quantum-dots heterostructures as Electrocatalyst for Hydrogen Evolution Reaction. Electrochimica Acta, 2023, , 142457.	5.2	0
1320	Graphene-based nanomaterials for antibiotics-independent antibacterial applications. , 2023, , 227-253.		0
1321	Green Nanomaterials as Surfaces and Coatings. , 2023, , 1655-1673.		0
1322	Recent progress in Ni–Fe layered double hydroxide-based electrocatalysts for oxygen evolution reaction in alkaline media. Scientia Sinica Chimica, 2023, 53, 832-852.	0.4	0
1323	Photoelectrocatalysis Synthesis of Ammonia Based on a Ni-Doped MoS ₂ /Si Nanowires Photocathode and Porous Water with High N ₂ Solubility. ACS Applied Materials & Interfaces, 2023, 15, 23085-23092.	8.0	3
1324	Novel route of NiCr-layered double hydroxide nanosheets synthesis on nickel foam as a bifunctional electrocatalyst for water splitting process. International Journal of Hydrogen Energy, 2023, 48, 22495-22501.	7.1	4
1325	Is the doped MoS ₂ basal plane an efficient hydrogen evolution catalyst? Calculations of voltage-dependent activation energy. Physical Chemistry Chemical Physics, 2023, 25, 15162-15172.	2.8	2
1326	Low-temperature selective synthesis of metastable α-MoC with electrochemical properties: Electrochemical co-reduction of CO2 and MoO3 in molten salts. Chinese Chemical Letters, 2024, 35, 108583.	9.0	3

#	Article	IF	CITATIONS
1327	Perspectives on two-dimensional ultra-thin materials in energy catalysis and storage. APL Materials, 2023, 11, .	5.1	2
1328	Metal Alloysâ€Structured Electrocatalysts: Metal–Metal Interactions, Coordination Microenvironments, and Structural Property–Reactivity Relationships. Advanced Materials, 2023, 35, .	21.0	23
1329	Electro- and Photocatalytic Conversion of N ₂ to NH ₃ by Chemically Modified Transition Metal Dichalcogenides, MoS ₂ , and WS ₂ . Journal of the Electrochemical Society, 2023, 170, 056501.	2.9	2
1330	Nanogels and Nanocomposite Hydrogels for Sensing Applications. , 2023, , 2007-2032.		0
1331	Magnetic Moment Is an Effective Descriptor for Electrocatalytic Nitrogen Reduction Reaction on Two-Dimensional Organometallic Nanosheets. ACS Applied Materials & Interfaces, 2023, 15, 22012-22024.	8.0	6
1332	Optimization sulfur doping of electronic structure with metal active center for defect-rich FeCo bimetallic hydroxyl oxide catalysts. International Journal of Hydrogen Energy, 2023, , .	7.1	0
1333	Photovoltaic Electrocatalytic Seawater Splitting. , 2023, , 225-294.		0
1334	Probing the Evolution of Active Sites in MoO ₂ for Hydrogen Generation in Acidic Medium. ACS Applied Energy Materials, 2023, 6, 5342-5351.	5.1	1
1335	In Situ Electrochemical Oxyanion Steering of Water Oxidation Electrocatalysts for Optimized Activity and Stability. Advanced Energy Materials, 2023, 13, .	19.5	12
1336	Dual-Atomic-Site-Integrated photocatalysts for green energy synthesis. Chemical Engineering Journal, 2023, 467, 143429.	12.7	2
1337	Graphitic carbon nitride-based electrocatalysts for energy applications. , 2023, 1, 100003.		3
1338	The emergence of single-atom-layer catalysis. , 2023, 1, 100004.		2
1339	Mesoporous PtPb Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution and Ethanol Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
1340	Reversible NH3 capture on g-C3N5 ferroelectric nanosheet investigated by density functional theory. Solid State Communications, 2023, 371, 115233.	1.9	2
1341	Design of novel transition-metal-doped C4N4 as highly effective electrocatalysts for nitrogen fixation with a new intrinsic descriptor. Journal of Energy Chemistry, 2023, 84, 131-139.	12.9	20
1342	Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. Small, 2023, 19, .	10.0	6
1343	Optimizing hydrogen production by alkaline water decomposition with transition metal-based electrocatalysts. Environmental Chemistry Letters, 2023, 21, 2583-2617.	16.2	8
1344	Tuning the Activity of Silver Alloys for the Oxygen Reduction Reaction in Alkaline Media. ACS Applied Energy Materials, 2023, 6, 6428-6442.	5.1	1

#	Article	IF	CITATIONS
1345	Direct Bottom-Up <i>In Situ</i> Growth: A Paradigm Shift for Studies in Wet-Chemical Synthesis of Gold Nanoparticles. Chemical Reviews, 2023, 123, 8488-8529.	47.7	22
1346	Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship. Materials Today, 2023, 67, 229-255.	14.2	13
1347	Sodium-alginate-laden MXene and MOF systems and their composite hydrogel beads for batch and fixed-bed adsorption of naproxen with electrochemical regeneration. Carbohydrate Polymers, 2023, 318, 121098.	10.2	3
1348	Tailoring Metal–Organic Frameworks and Derived Materials for High-Performance Zinc–Air and Alkaline Batteries. ACS Applied Materials & Interfaces, 2023, 15, 30220-30239.	8.0	2
1349	Exploring The Synergistic Effect Of CoSeP/CoP Interface Catalyst For Efficient Urea Electrolysis. Small, 2023, 19, .	10.0	4
1350	Design and simple preparation of a novel 1D/2D/3D multi-structure composite for high-performance supercapacitors. Journal of Alloys and Compounds, 2023, 963, 171034.	5.5	4
1351	Principles of Designing Electrocatalyst to Boost Reactivity for Seawater Splitting. Advanced Energy Materials, 2023, 13, .	19.5	15
1352	Research progress in graphene based single atom catalysts in recent years. Fuel Processing Technology, 2023, 250, 107879.	7.2	4
1353	Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. Frontiers in Chemistry, 0, 11, .	3.6	2
1354	Carbon-based single-atom catalysts: impacts of atomic coordination on the oxygen reduction reaction. Nanoscale, 2023, 15, 9605-9634.	5.6	6
1355	Going beyond atom visualization—Characterization of supported two-atom single-cluster catalysts with scanning transmission electron microscopy. Science China Materials, 2023, 66, 2733-2740.	6.3	0
1356	Sulfur-vacancy engineering of natural molybdenite for enhanced EMW absorption. Chemical Engineering Journal, 2023, 466, 143337.	12.7	4
1357	Decoupling the Surface and Bulk Reactivities of MXenes and Catalytic Activity Tuning through Surface Chemistry Modification. ACS Catalysis, 2023, 13, 6823-6836.	11.2	6
1358	Tuning the Hydroxyl Density of MXene to Regulate the Electrochemical Performance of Anchored Cobalt Phthalocyanine for CO ₂ Reduction. ACS Applied Materials & Interfaces, 2023, 15, 24346-24353.	8.0	4
1359	Controllable HCHO and CH3OH catalytic reduction on the surfaces of ferroelectric In2Se3 monolayer with intrinsic defect. Surfaces and Interfaces, 2023, 39, 102916.	3.0	0
1360	A Green and Effective Organocatalyst for Faster Oxidation of Li ₂ S in Electrochemical Processes. Advanced Functional Materials, 2023, 33, .	14.9	5
1361	Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Research, 2023, 16, 8712-8728.	10.4	13
1362	Vertically molybdenum disulfide nanosheets on carbon cloth using CVD by controlling growth atmosphere for electrocatalysis. Nanotechnology, 2023, 34, 375601.	2.6	3

#	Article	IF	CITATIONS
1363	Mesoporous PtPb Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution and Ethanol Oxidation. Angewandte Chemie, 2023, 135, .	2.0	0
1364	Defect activation of atomically thin electrocatalysts for the oxygen evolution reaction. Cell Reports Physical Science, 2023, 4, 101471.	5.6	0
1365	Data-driven pursuit of electrochemically stable 2D materials with basal plane activity toward oxygen electrocatalysis. Energy and Environmental Science, 2023, 16, 5003-5018.	30.8	12
1366	A highly hydrophilic hydrazone-linked covalent organic framework as a fluorescent multianalyte sensor for detection of Cu2+ and Hg2+ in aqueous solution. Microchemical Journal, 2023, 193, 109041.	4.5	2
1368	High specific surface area MXene/SWCNT/cellulose nanofiber aerogel film as an electrode for flexible supercapacitors. Composites Part B: Engineering, 2023, 264, 110888.	12.0	10
1369	Self-assembled CoS/S-rGO dual-functional composite, and reliable hydrogen evolution performance in both acidic and alkaline media. Materials Today Advances, 2023, 19, 100404.	5.2	0
1370	Quasi-2D PdSi _{2–<i>x</i>} Ge _{<i>x</i>} N ₄ (<i>x</i> = 0, 1, 2): Promising Candidates for Spontaneous Overall Water Splitting. ACS Applied Energy Materials, 2023, 6, 7578-7586.	5.1	2
1371	Carbon nanotubes encapsulating Pt/MoN heterostructures for superior hydrogen evolution. Journal of Colloid and Interface Science, 2023, 650, 1174-1181.	9.4	1
1372	2D stacking of graphene and boron nitride for efficient metal free overall water splitting. International Journal of Hydrogen Energy, 2024, 51, 503-514.	7.1	2
1373	Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chemical Reviews, 2023, 123, 9676-9717.	47.7	6
1374	Influence of vacancies on the dielectric characteristics of the hexagonal boron nitride lattice: theoretical study. Journal of Materials Science, 2023, 58, 11711-11722.	3.7	0
1375	Recent Progress in Metal-Organic Frameworks and their Derivatives as Advanced Electrocatalysts for Oxygen Reduction Reactions. , 2023, , 129-161.		0
1376	The "mediated molecular―assisted construction of Mo2N islands dispersed on Co-based nanosheets for high-efficient electrocatalytic hydrogen evolution reaction. Nano Research, 2023, 16, 10857-10866.	10.4	4
1377	Hybrid water electrolysis with integrated and cascading reactions using two-dimensional electrocatalysts. Journal of Materials Chemistry A, 2023, 11, 16433-16457.	10.3	5
1378	Additive manufacturing: New paradigm for developing water splitting systems. International Journal of Hydrogen Energy, 2023, , .	7.1	1
1379	Oxynitride, Oxyfluoride, and Nitrofluoride Perovskites: Theoretical Evaluation of Photon Absorption Properties for Solar Water Splitting. Journal of Physical Chemistry C, 2023, 127, 15620-15629.	3.1	3
1380	Two-Dimensional Geometry-Dependent Interfaces for Enhanced Water Splitting Kinetics. , 0, , 2216-2225.		1
1381	High-Performance Electrocatalytic CO ₂ Reduction for CO Generation Using Hydrophobic Porous Carbon Supported Au. ACS Sustainable Chemistry and Engineering, 2023, 11, 11229-11238.	6.7	5

#	Article	IF	CITATIONS
1382	Recent advances in molybdenum diselenide-based electrocatalysts: preparation and application in the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 5517-5554.	6.0	4
1383	Efficient Electrocatalytic Hydrogen Evolution Reaction on CuO Immobilized Stainlessâ€Steel Electrode Prepared by the SILAR Method. ChemistrySelect, 2023, 8, .	1.5	4
1384	Two-dimensional conductive metal–organic frameworks as efficient electrocatalysts for oxygen evolution and reduction reactions. Inorganic Chemistry Frontiers, 2023, 10, 5044-5052.	6.0	5
1385	Evidence of Topological Phase Transition with Excellent Catalytic Activity in the AgCaAs Heusler Alloy: A First-Principles Investigation. Journal of Physical Chemistry C, 2023, 127, 15461-15473.	3.1	4
1386	Chevrel phases: synthesis, structure, and electrocatalytic applications. Materials Chemistry Frontiers, 2023, 7, 5500-5518.	5.9	1
1387	In-situ growth of hierarchically porous FeNi2S4/Ti3C2Tx nanosheets arrays on Ni-Fe foam for overall water splitting. Journal of Solid State Chemistry, 2023, 327, 124264.	2.9	1
1389	Recent Advances in External Fieldsâ€Enhanced Electrocatalysis. Advanced Energy Materials, 2023, 13, .	19.5	4
1390	Non-precious metal-based catalysts for water electrolysis to produce H ₂ under industrial conditions. Materials Chemistry Frontiers, 2023, 7, 5661-5692.	5.9	3
1391	Two-dimensional transition metal dichalcogenides beyond MoS2 for the catalytic reduction of nitroarenes: MoSe2 exhibits enhanced performance. Applied Catalysis B: Environmental, 2023, 339, 123174.	20.2	1
1392	Recent developments in 2D MXene-based materials for next generation room temperature NO ₂ gas sensors. Nanoscale Advances, 2023, 5, 4649-4669.	4.6	4
1393	A quaternary heterojunction nanoflower for significantly enhanced electrochemical water splitting. Dalton Transactions, 0, , .	3.3	0
1394	Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chemical Reviews, 2023, 123, 10750-10807.	47.7	3
1395	Recent advances in single-atom catalysts for acidic electrochemical oxygen reduction to hydrogen peroxide. Nano Energy, 2023, 116, 108798.	16.0	1
1396	Design of a palladium-nickel alloy/nickel nitride interface for selective hydrogenation of nitrobenzene catalysis. Science China Materials, 0, , .	6.3	0
1397	N <i>x</i> C-Induced Switching of Methane and Ethylene Products' Selectivity from CO ₂ Electroreduction over Cu Catalyst. ACS Catalysis, 2023, 13, 11625-11633.	11.2	4
1398	Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition. ACS Nano, 2023, 17, 16348-16368.	14.6	1
1399	Dimensional engineering to simultaneously enhance energy density and stability of MAPbBr ₃ -based photo-rechargeable ion capacitors. Sustainable Energy and Fuels, 2023, 7, 5018-5028.	4.9	2
1400	Electrocatalytic study of the hydrogen evolution reaction on MoS ₂ /BP and MoSSe/BP in acidic media. Nanoscale Advances, 2023, 5, 5332-5339.	4.6	3

#	Article	IF	CITATIONS
1401	Emerging two-dimensional materials for the electrocatalytic nitrogen reduction reaction to yield ammonia. Journal of Materials Chemistry A, 2023, 11, 22590-22607.	10.3	2
1402	Amazing enhancement of OER performances: creating a well-designed functional Ni and N-doped carbon layer as a support material for fabricating a NiFe-LDH electrocatalyst. Chemical Communications, 2023, 59, 11572-11575.	4.1	1
1403	Recent Advances of Single-Atom Metal Supported at Two-Dimensional MoS2 for Electrochemical CO2 Reduction and Water Splitting. Atmosphere, 2023, 14, 1486.	2.3	0
1404	2D nanocrystals of metal oxides and hydroxides with nanosheet/nanoflake morphology in biomedicine, energy and chemistry. Russian Chemical Reviews, 2023, 92, .	6.5	0
1405	Advanced bifunctional catalysts for energy production by electrolysis of earth-abundant water. Fuel, 2024, 357, 129753.	6.4	5
1406	Recent Progress on Carbonâ€Based Electrocatalysts for Oxygen Reduction Reaction: Insights on the Type of Synthesis Protocols, Performances and Outlook Mechanisms. ChemElectroChem, 2023, 10, .	3.4	0
1407	On-chip electrocatalytic microdevices. Nature Protocols, 2023, 18, 2891-2926.	12.0	2
1408	A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 10570-10601.	11.2	0
1409	Epitaxial growth of metal-organic framework nanosheets into single-crystalline orthogonal arrays. Nature Communications, 2023, 14, .	12.8	4
1410	Cu2CoSnS4 electrocatalyst embedded paper working electrodes for efficient, stable, pH universal, and large-current-density hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 49, 829-842.	7.1	5
1411	Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution. Sustainability, 2023, 15, 14389.	3.2	1
1412	Self-assembly method for two-dimensional mesoporous materials: a review for recent progress. , 0, 3, .		0
1413	Ultrathin two-dimensional cobalt-organic framework nanosheets as an effective electrocatalyst for overall water splitting under alkaline conditions. Electrochimica Acta, 2023, 466, 143075.	5.2	3
1414	2D material/epoxy composite coatings, a perspective from the regulation of 2D materials. Progress in Organic Coatings, 2023, 183, 107817.	3.9	1
1415	Porphene and porphite as porphyrin analogs of graphene and graphite. Nature Communications, 2023, 14, .	12.8	2
1416	Nanostructured electrocatalysts for low-temperature water splitting: A review. Electrochimica Acta, 2023, 471, 143335.	5.2	4
1417	Magnetic topological materials in two-dimensional: theory, material realization and application prospects. Science Bulletin, 2023, 68, 2639-2657.	9.0	4
1418	Small Tech, Big Impact: Agri-nanotechnology Journey to Optimize Crop Protection and Production for Sustainable Agriculture. Plant Stress, 2023, 10, 100253.	5.5	2

#	Article	IF	CITATIONS
1419	Modulating electronic structure of Ni/carbon spherical nano-superstructures through transition metal-doping as highly efficient catalysts for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2023, 948, 117827.	3.8	0
1420	Probing Active Sites on Pristine and Defective MnPX ₃ (X: S and Se) Monolayers for Electrocatalytic Water Splitting. ACS Omega, 2023, 8, 33920-33927.	3.5	0
1421	Exploring the impact of Nafion modifier on electrocatalytic CO2 reduction over Cu catalyst. Journal of Energy Chemistry, 2024, 88, 543-551.	12.9	1
1422	Electrochemical imaging correlated to hydrogen evolution reaction on transition metal dichalcogenide, WS2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2023, 41, .	1.2	2
1423	High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions. Frontiers in Energy, 0, , .	2.3	2
1424	One-pot synthesis of 3D surface-wrinkled PdAu nanospheres for robust alcohols electrocatalysis. Journal of Colloid and Interface Science, 2023, 650, 1509-1517.	9.4	4
1425	Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction. Chinese Journal of Catalysis, 2023, 52, 252-262.	14.0	1
1426	Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chemical Society Reviews, 2023, 52, 7802-7847.	38.1	7
1427	Effect of urea and ammonium fluoride ratio on CuCo ₂ S ₄ /NF as a highly efficient HER catalyst. RSC Advances, 2023, 13, 28713-28728.	3.6	0
1428	Next Generation Noble Metalâ€Engineered Catalysts: From Structure Evolution to Structureâ€Reactivity Correlation in Water Splitting. Advanced Functional Materials, 0, , .	14.9	0
1429	Defect engineering: the role of cationic vacancies in photocatalysis and electrocatalysis. Journal of Materials Chemistry A, 2023, 11, 23653-23682.	10.3	4
1430	Effects of doping and modulation on hydrogen evolution reaction of Pt@MoS2 single-atom catalysts: A first-principles study. Molecular Catalysis, 2023, 549, 113485.	2.0	0
1431	Structure types and characteristics of nanomaterials. , 2024, , 15-41.		0
1432	Advances in electrode synthesis and fabrication for electrochemical water splitting. Fuel, 2024, 357, 129741.	6.4	0
1433	Design of novel transition metal doped pyrazine-modified graphyne as highly effective electrocatalysts for nitrogen fixation. Journal of Environmental Chemical Engineering, 2023, 11, 111073.	6.7	1
1434	Nanocomposite of nickel phthalocyanine nanoparticles and detonation nanodiamonds for enhanced electrocatalysis. Diamond and Related Materials, 2023, 140, 110424.	3.9	0
1435	An experimental and theoretical framework for identifying the band type and the carrier transport properties of transition metal dichalcogenides heterostructures. , 0, , .		0
1436	Defect Engineering of MoS ₂ Nanosheets by Heavy-Ion Irradiation for Hydrogen Evolution. ACS Applied Nano Materials, 0, , .	5.0	0

ARTICLE IF CITATIONS Hybrid Two-Dimensional Porous Materials. Chemistry of Materials, 0, , . 6.7 0 1438 A single transition metal atom anchored on Nb₂C as an electrocatalyst for the nitrogen 1440 5.6 reduction reaction. Nanoscale, 2023, 15, 17508-17515. $\hat{l} \propto \hat{l}_{z} S2$ nanoensembles prepared by a simple solvothermal route for hydrogen evolution reaction. 1441 0 5.6 FlatChem, 2023, 42, 100566. Noble Metal Single-Atom Coordinated to Nitrogen, Oxygen, and Carbon as Electrocatalysts for 1442 3.5 Oxygen Evolution. Catalysts, 2023, 13, 1378. Synergistic Niobium Doped Two-Dimensional Zirconium Diselenide: An Efficient Electrocatalyst for 1443 4.0 0 Ó₂ Reduction Reaction. ACS Physical Chemistry Au, 0, , . Covalent organic frameworks in supercapacitors: Unraveling the pros and cons for energy storage. Journal of Energy Storage, 2023, 74, 109405. 1444 8.1 Modulating the coordination environment of active site structure for enhanced electrochemical nitrogen reduction: The mechanistic insight and an effective descriptor. Applied Surface Science, 2024, 1445 6.1 5 644, 158799. First-principles calculations on Rh loaded BC3N2 for understanding the mechanism of 1446 1.9 electrocatalytic reduction of CO2. Materials Today Communications, 2023, 37, 107491. Carbon Capture by Metal Oxides., 2023, , . 0 1447 Synthesis and characterization of non-noble metal cathode electrocatalysts for PEM water 1448 5.2 electrolysis. Electrochimica Acta, 2024, 473, 143474. Manganese oxide and derivative-modified materials in advanced oxidation processes: A review of 1449 9.0 0 modification enhancement and activation mechanisms. Chinese Chemical Letters, 2024, 35, 109242. One-step electrodeposition of V-doped NiFe nanosheets for low-overpotential alkaline oxygen 3.3 evolution. Dalton Transactions, 2023, 52, 16963-16973. Modulation of two-dimensional Pt-based intermetallic nanoplates for fuel cells. Materials Express, 1451 0.5 0 2023, 13, 1813-1827. Key role of electron accessibility at the noble metal-free catalytic interface in hydrogen evolution 1452 10.4 reaction. Nano Research, O, , . Influence of antisite defects on two-dimensional polymeric material for improved hydrogen evolution 1453 7.1 0 reaction. International Journal of Hydrogen Energy, 2024, 51, 1306-1313. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chemical Reviews, 2023, 123, 1454 Improving the performance of anodized TA2O5 humidity sensors through surface modification with 1455 4.1 0 gold nanoparticles. Sensors and Actuators A: Physical, 2023, 364, 114788. Tuning the Functionality of Self-Assembled 2D Platelets in the Third Dimension. Journal of the 1456 American Chemical Society, 2023, 145, 25274-25282.

#	Article	IF	CITATIONS
1457	Si3C Monolayer as an Efficient Metal-Free Catalyst for Nitrate Electrochemical Reduction: A Computational Study. Nanomaterials, 2023, 13, 2890.	4.1	0
1458	Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives. , 0, 3, .		1
1459	Synthesis, Characterization, and Applications of Nanomaterials for Energy Conversion and Storage. Molecules, 2023, 28, 7383.	3.8	2
1460	2D layered double hydroxides and transition metal dichalcogenides for applications in the electrochemical production of renewable hydrogen. Materials Advances, 2023, 4, 6478-6497.	5.4	1
1461	Transition-metal sulfides with excellent hydrogen and oxygen reactions: A mini-review. Journal of Solid State Chemistry, 2024, 329, 124445.	2.9	0
1462	Recent Progress of Vertical Graphene: Preparation, Structure Engineering, and Emerging Energy Applications. Small, O, , .	10.0	0
1463	Sulfur-deficient edges as active sites for hydrogen evolution on MoS ₂ . Physical Chemistry Chemical Physics, 2023, 25, 32541-32548.	2.8	0
1464	Promising Ce single-atom-dispersed nitrogen-doped graphene catalysts for the hydrogen evolution reaction. Materials Advances, 2023, 4, 6498-6506.	5.4	0
1465	Quench-induced surface engineering of NiO/NiSe hybrid for highly enhanced electrochemical oxygen evolution reaction. International Journal of Hydrogen Energy, 2024, 51, 558-564.	7.1	0
1466	2D metallic vanadium dichalcogenides and related heterostructures. Materials Today Advances, 2024, 21, 100451.	5.2	0
1467	2023 Pioneers in Energy Research: Shizhang Qiao. Energy & Fuels, 2023, 37, 17618-17626.	5.1	2
1468	CO ₂ electro-reduction reaction <i>via</i> a two-dimensional TM@TAP single-atom catalyst. RSC Advances, 2023, 13, 35231-35239.	3.6	0
1469	Nanofertilizers: Types, Synthesis, Methods, and Mechanisms. Nanotechnology in the Life Sciences, 2024, , 61-98.	0.6	0
1470	Heterogeneous Cu incorporated into Ni6Fe2-LDH/rGO induces spin exchange interaction to enhance alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2024, 51, 1476-1485.	7.1	0
1471	Electron-Redistributed NiCo@NiFe-LDH Core–Shell Heterostructure for Significantly Enhancing Electrochemical Water Splitting. Inorganic Chemistry, 2023, 62, 20194-20201.	4.0	0
1472	2H–2M Phase Control of WSe ₂ Nanosheets by Se Enrichment Toward Enhanced Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2024, 36, .	21.0	1
1473	Alkaline water electrolysis performance of mixed cation metal phosphorous trichalcogenides. Materials Today Energy, 2024, 39, 101468.	4.7	0
1474	Recent Advances of Covalent Organic Frameworks as Water Splitting Electrocatalysts. Organic Materials, 0, , .	2.0	0

# 1475	ARTICLE Exploring the potential of cobalt hydroxide and its derivatives as a cost-effective and abundant alternative to noble metal electrocatalysts in oxygen evolution reactions: a review. Sustainable Energy and Fuels, 2024, 8, 422-459.	IF 4.9	Citations
1477	Synthesis of Carbon thin films using Aerosol-Assisted Chemical Vapour Deposition (AACVD). Journal of Zankoy Sulaimani - Part A, 2022, 24, 1-6.	0.1	0
1478	Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts. Chemical Record, 0, , .	5.8	1
1479	Polydopamineâ€Modified 2D Iron (II) Immobilized MnPS ₃ Nanosheets for Multimodal Imagingâ€Guided Cancer Synergistic Photothermalâ€Chemodynamic Therapy. Advanced Science, 2024, 11, .	11.2	0
1480	2D nanocomposite materials for HER electrocatalysts - a review. Heliyon, 2024, 10, e23450.	3.2	0
1481	Green energy harvesting from CO2 and NOx by MXene materials: Detailed historical and future prospective. Applied Catalysis B: Environmental, 2024, 344, 123585.	20.2	1
1482	Entropy-directed metal–organic frameworks drive solar-electrolytic water splitting. Chemical Engineering Journal, 2024, 480, 148017.	12.7	1
1483	High-performance artificial leaf: from electrocatalyst design to solar-to-chemical conversion. Materials Chemistry Frontiers, 2024, 8, 1300-1333.	5.9	0
1484	Nanoscale Design for High Entropy Alloy Electrocatalysts. Small, 0, , .	10.0	0
1485	Electronic modulation and reaction-pathway optimization on three-dimensional seaweed-like NiSe@NiMn LDH heterostructure to trigger effective oxygen evolution reaction. Journal of Colloid and Interface Science, 2024, 658, 528-539.	9.4	0
1486	Nanoarchitectonics of amorphous Fe–Ni–B nanosheets for high throughput overall water splitting reaction. International Journal of Hydrogen Energy, 2024, 53, 706-716.	7.1	1
1488	Highly Salt-tolerant hydrogen evolution reaction based on dendritic urchin-like MoC/MoS2 heterojunction in seawater. Chemical Engineering Journal, 2024, 480, 148085.	12.7	0
1489	Recent progress and advances in nickel (Ni) based amorphous metal alloys towards alkaline water splitting: A review. Journal of Alloys and Compounds, 2024, 976, 173211.	5.5	0
1490	TMDs-passivated MXenes as boosting electrocatalyst for hydrogen evolution reaction. Journal of Solid State Chemistry, 2023, , 124530.	2.9	0
1491	Monte Carlo Simulations Revealing Ground State Characteristics and Magnetic Hysteresis in Perylene-Like Nanostructure. Journal of Low Temperature Physics, 0, , .	1.4	0
1492	PdOs bimetallene for energy-saving hydrogen production coupled with ethanol electro-oxidation. Materials Today Energy, 2024, 40, 101493.	4.7	0
1493	Bifunctional 2D structured catalysts for air electrodes in rechargeable metal-air batteries. , 0, 4, .		0
1494	Exploration of metalâ \in free 2D electrocatalysts toward the oxygen electroreduction. Exploration, 0, , .	11.0	1

#	Article	IF	Citations
1495	Co-immobilization of enzymes and chemocatalysts for one-pot chemoenzymatic cascades: Scaffold engineering toward more efficient catalysis. Chem Catalysis, 2024, 4, 100894.	6.1	0
1496	A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction. Dalton Transactions, 2024, 53, 3959-3969.	3.3	1
1497	Preparation of Co-W-P-O/NF catalyst with crystalline-amorphous phase structure by electrodeposition and study on its water splitting properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684, 133195.	4.7	0
1498	Magnetic behavior of a ferrimagnetic MXene-like lattice: Monte Carlo study. Modern Physics Letters B, 0, , .	1.9	0
1500	Electro-, thermo-, and photocatalysis of versatile nanocomposites toward tandem process. IScience, 2024, 27, 108781.	4.1	0
1501	Molecularly Confined Topochemical Transformation of MXene Enables Ultrathin Amorphous Metal-Oxide Nanosheets. ACS Nano, 2024, 18, 2219-2230.	14.6	0
1502	Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis. Nano Energy, 2024, 121, 109268.	16.0	0
1503	Electroanalytical application of phenol-functionalized reduced graphene oxide produced using gallic acid in a single step. FlatChem, 2024, 44, 100605.	5.6	0
1504	Sm2O3 supported on conducting polymer (polypyrrole) as a highly potent electrocatalyst for water splitting. Journal of Sol-Gel Science and Technology, 0, , .	2.4	0
1505	Recent strategies for improving the catalytic activity of ultrathin transition metal sulfide nanosheets toward the oxygen evolution reaction. Materials Today Energy, 2024, 40, 101492.	4.7	1
1506	Effect of MoS2 and electrolyte temperature on the electrochemical performance of NiCoS@rGO-based electrode material for energy storage, oxygen reduction reaction and electrochemical glucose sensor. Materials Today Chemistry, 2024, 35, 101909.	3.5	0
1507	Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion. Gels, 2024, 10, 63.	4.5	0
1508	Two-dimensional crystal lattice confining atoms for electrocatalysis. Matter, 2024, 7, 305-319.	10.0	0
1509	Electrocatalytic Activation in ReSe ₂ â€VSe ₂ Alloy Nanosheets to Boost Waterâ€Splitting Hydrogen Evolution Reaction. Advanced Materials, 2024, 36, .	21.0	0
1510	Boosting the hydrogen evolution reaction on NiTe monolayers <i>via</i> defect engineering: a computational study. Inorganic Chemistry Frontiers, 2024, 11, 1279-1288.	6.0	1
1511	Electric hysteresis cycles and polarization plateaus in MXene-like lattices: Monte Carlo simulations. Modern Physics Letters B, 0, , .	1.9	0
1512	Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Advanced Materials, 2024, 36, .	21.0	1
1513	Efficient preparation of 2D-Si@C composite by gas-phase approach for lithium-ion storage. Electrochimica Acta, 2024, 484, 143829.	5.2	0

#	Article	IF	CITATIONS
1514	<i>In situ</i> assembly of Ni ₃ S ₂ nanosheets encapsulated with NiFe(oxy)hydroxides for efficient water oxidation. Chemical Communications, 2024, 60, 2086-2089.	4.1	0
1515	Research progress of industrial application of membrane electrolysis technology. Ionics, 2024, 30, 1223-1243.	2.4	0
1516	Layered Quasi-Nevskite Metastable-Phase Cobalt Oxide Accelerates Alkaline Oxygen Evolution Reaction Kinetics. ACS Nano, 2024, 18, 5029-5039.	14.6	0
1517	Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene. Journal of the American Chemical Society, 2024, 146, 3992-4000.	13.7	0
1518	Ultrathin two-dimensional medium-entropy oxide as a highly efficient and stable electrocatalyst for oxygen evolution reaction. Nano Research, 2024, 17, 2555-2562.	10.4	0
1519	Boosting Electrochemical Reduction of Nitrate to Ammonia by Constructing Nitrateâ€Favored Active Cu–B Sites on SnS ₂ . Small, 0, , .	10.0	0
1520	Recycling cobalt from spent lithium-ion batteries for designing the novel cobalt nitride followers: Towards efficient overall water splitting and advanced zinc-air batteries. Journal of Colloid and Interface Science, 2024, 662, 218-230.	9.4	0
1521	Direct correlation between electronic and optical properties of the XC monolayers (X= Si, Ge, and Sn) from first-principles calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2024, 159, 115925.	2.7	0
1522	Ultra-Efficient and Cost-Effective Platinum Nanomembrane Electrocatalyst for Sustainable Hydrogen Production. Nano-Micro Letters, 2024, 16, .	27.0	0
1523	The role of nickel cobalt sulphide MOFs hybrids in electrochemical hydrogen generation: A critical review. Materials Chemistry and Physics, 2024, 315, 129027.	4.0	0
1524	A review of research progress and prospects of modified two-dimensional catalysts based on black phosphorus in the oxygen reduction reaction. Catalysis Science and Technology, 2024, 14, 1105-1121.	4.1	0
1525	Enhanced photocatalytic water splitting and CO2 capture: Insights from in-situ spectro-electrochemical analysis of the graphene-nickel nano particle interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 687, 133415.	4.7	0
1526	A comparison between 2D and 3D cobalt–organic framework as catalysts for electrochemical CO2 reduction. Heliyon, 2024, 10, e26281.	3.2	0
1527	Integrated approach for H2-Rich syngas production from wastes using carbon-based catalysts and subsequent CO2 adsorption by carbon-based adsorbents: A review. International Journal of Hydrogen Energy, 2024, 59, 679-696.	7.1	0
1528	Surface Electronic Properties-Driven Electrocatalytic Nitrogen Reduction on Metal-Conjugated Porphyrin 2D-MOFs. ACS Applied Materials & Interfaces, 2024, 16, 8707-8716.	8.0	0
1529	Mesoporous Metal Nanomaterials: Developments and Electrocatalytic Applications. Chemistry - A European Journal, 2024, 30, .	3.3	0
1530	Emerging Two-Dimensional Carbonaceous Materials for Electrocatalytic Energy Conversions: Rational Design of Active Structures through High-Temperature Chemistry. ACS Nano, 2024, 18, 6111-6129.	14.6	0
1531	Dataâ€Driven Screening of Pivotal Subunits in Edgeâ€Anchored Single Atom Catalysts for Oxygen Reactions. Advanced Functional Materials, 0, , .	14.9	0

		OKT	
#	Article	IF	CITATIONS
1532	Pulsed laser deposition as an efficient tool to enhance the performance of electrocatalysis design, strategies and current perspectives. International Journal of Hydrogen Energy, 2024, 60, 668-687.	7.1	0
1533	In Situ Exfoliation Growth Strategy Realizing Controlled Synthesis of 3D to 2D MOF Materials as High-Performance Electrochemical Biosensors. Inorganic Chemistry, 2024, 63, 4636-4645.	4.0	0
1534	Tailoring bone microenvironment with 2D layered materials. Fundamental Research, 2024, , .	3.3	0
1535	Stability challenges and opportunities of NiFeâ€based electrocatalysts for oxygen evolution reaction in alkaline media. , 2024, 3, 172-198.		О
1536	Multi-dimensional MoS2/S-doped-CoP heterostructure nanoarrays as an efficient electrocatalyst for hydrogen evolution reaction. Ceramics International, 2024, 50, 18519-18527.	4.8	0
1537	Leveraging Dualâ€Atom Catalysts for Electrocatalysis Revitalization: Exploring the Structureâ€Performance Correlation. Advanced Energy Materials, 0, , .	19.5	0
1538	Subtle 2D/2D MXeneâ€Based Heterostructures for Highâ€Performance Electrocatalytic Water Splitting. Small Methods, 0, , .	8.6	0
1539	Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chemical Society Reviews, 2024, 53, 3829-3895.	38.1	0
1540	Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chemical Society Reviews, 2024, 53, 3774-3828.	38.1	0
1541	Mo-Based MXene-Supported Pt Nanoparticles for Highly Durable Oxygen Reduction in Acidic Electrolytes. ACS Applied Nano Materials, 2024, 7, 6305-6314.	5.0	0
1542	Multiscale confinement nitridation in molybdenum carbide for efficient hydrogen production. Journal of Energy Chemistry, 2024, 94, 61-69.	12.9	0
1543	Ternary (molybdenum disulfide/graphene)/carbon nanotube nanocomposites assembled via a facile colloidal electrostatic path as electrocatalysts for the oxygen reduction reaction: Composition and nitrogen-doping play a key role in their performance. Journal of Colloid and Interface Science, 2024, 664. 1056-1068.	9.4	0
1544	Emerging Doped Metal–Organic Frameworks: Recent Progress in Synthesis, Applications, and Firstâ€Principles Calculations. Small, 0, , .	10.0	0
1545	Defect engineering in two-dimensional Janus pentagonal noble metal sulfide MXY (M=Pd, Pt; X, Y S, Se,) Tj ETQq1 Journal of Hydrogen Energy, 2024, 62, 462-472.	1 0.78431 7.1	l4 rgBT /C 0
1546	Twoâ€Dimensional Crystalline Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemElectroChem, 0, , .	3.4	0
1547	In situ electrodeposition synthesis of CoP@NiFe LDH heterostructure as high-performance electrocatalyst for enhanced seawater electrolysis. International Journal of Hydrogen Energy, 2024, 62, 722-731.	7.1	ο
1548	Scaling up Simultaneous Exfoliation and 2H to 1T Phase Transformation of MoS ₂ . Advanced Functional Materials, 0, , .	14.9	0
1549	Recent Developments in Graphitic Carbon Nitride and Its Interfaces for Effective Water Splitting. Energy Technology, 2024, 12, .	3.8	0

Article IF Citations

1550 å⁻†åº¦æ³›å‡¼ç†è®ºåœ¨æ°®èį~原å庲"å,¬åŒ—å‰,设è®jä,çš"应ç"¨èᛠ展. Science China Materials, 2024, 67, 1d.01-11230

1551	Evolution of Metal Tellurides for Energy Storage/Conversion: From Synthesis to Applications. Small, O, , .	10.0	0	
------	--	------	---	--