Flavin Monooxygenase-Generated N-Hydroxypipecolic Systemic Immunity

Cell 173, 456-469.e16 DOI: 10.1016/j.cell.2018.02.049

Citation Report

#	Article	IF	CITATIONS
1	A critical role for Arabidopsis <scp>MILDEW RESISTANCE LOCUS</scp> O2 in systemic acquired resistance. Plant Journal, 2018, 94, 1064-1082.	2.8	28
2	Pipped at the Post: Pipecolic Acid Derivative Identified as SAR Regulator. Cell, 2018, 173, 286-287.	13.5	16
3	Recent Advances in Synthetic Chemical Inducers of Plant Immunity. Frontiers in Plant Science, 2018, 9, 1613.	1.7	72
4	Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells, 2018, 7, 252.	1.8	84
5	Arabidopsis thaliana Immunity-Related Compounds Modulate Disease Susceptibility in Barley. Agronomy, 2018, 8, 142.	1.3	14
6	A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. Plant Cell, 2018, 30, 2480-2494.	3.1	119
7	Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plant-Microbe Interactions, 2018, 31, 871-888.	1.4	350
8	Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. Plant and Cell Physiology, 2018, 59, 1592-1607.	1.5	31
9	<scp>l</scp> â€lysine metabolism to <i>N</i> â€hydroxypipecolic acid: an integral immuneâ€activating pathway in plants. Plant Journal, 2018, 96, 5-21.	2.8	88
10	Signals of Systemic Immunity in Plants: Progress and Open Questions. International Journal of Molecular Sciences, 2018, 19, 1146.	1.8	59
11	Plants Pack a Quiver Full of Arrows. Cell Host and Microbe, 2018, 23, 573-575.	5.1	8
12	<i>N</i> -hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4920-E4929.	3.3	187
13	Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Molecular Biology, 2018, 98, 121-135.	2.0	243
14	Deadlier than the malate. Cell Research, 2018, 28, 609-610.	5.7	1
15	Stressed Out About Hormones: How Plants Orchestrate Immunity. Cell Host and Microbe, 2019, 26, 163-172.	5.1	172
16	Chloroplasts as mediators of plant biotic interactions over short and long distances. Current Opinion in Plant Biology, 2019, 50, 148-155.	3.5	16
17	Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nature Communications, 2019, 10, 4810.	5.8	65
18	An engineered pathway for <i>N</i> -hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato. Science Signaling, 2019, 12, .	1.6	46

ARTICLE IF CITATIONS # Down regulation of cotton GbTRP1 leads to accumulation of anthranilates and confers resistance to 19 1.0 2 Verticillium dahliae. Journal of Cotton Research, 2019, 2, . Systemic acquired resistance networks amplify airborne defense cues. Nature Communications, 2019, 10, 3813. 5.8 Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. 21 1.8 65 International Journal of Molecular Sciences, 2019, 20, 4377. Pipecolic Acid Is Induced in Barley upon Infection and Triggers Immune Responses Associated with 1.4 24 Elevated Nitric Oxide Accumulation. Molecular Plant-Microbe Interactions, 2019, 32, 1303-1313. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences of the United States of America, 23 3.3 134 2019, 116, 15735-15744. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS ONE, 2019, 14, e0221358. 1.1 Unleashing the Synthetic Power of Plant Oxygenases: From Mechanism to Application. Plant 25 2.3 28 Physiology, 2019, 179, 813-829. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat's Responses to Colonization by <i>Bacillus velezensis</i> and <i>Gaeumannomyces graminis</i>, Both Separately and 1.4 26 Combined. Molecular Plant-Microbe Interactions, 2019, 32, 1336-1347 S-Alk(en)ylcysteine sulfoxides in the genus Allium: proposed biosynthesis, chemical conversion, and 27 2.4 73 bioactivities. Journal of Experimental Botany, 2019, 70, 4123-4137. Cell Death Triggered by the YUCCA-like Bs3 Protein Coincides with Accumulation of Salicylic Acid and 2.3 Pipecolic Acid But Not of Indole-3-Acetic Acid. Plant Physiology, 2019, 180, 1647-1659. Involvement of Salicylic Acid in Anthracnose Infection in Tea Plants Revealed by Transcriptome 29 29 1.8 Profiling. International Journal of Molecular Sciences, 2019, 20, 2439. The Emergence of a Mobile Signal for Systemic Acquired Resistance. Plant Cell, 2019, 31, 1414-1415. 3.1 30 WRKY transcription factors: evolution, binding, and action. Phytopathology Research, 2019, 1, . $\mathbf{31}$ 0.9 152 Bacterial infection systemically suppresses stomatal density. Plant, Cell and Environment, 2019, 42, 2.8 2411-2421. Arabidopsis mutant dnd2 exhibits increased auxin and abscisic acid content and reduced stomatal 33 2.8 10 conductance. Plant Physiology and Biochemistry, 2019, 140, 18-26. Arabidopsis mlo3 mutant plants exhibit spontaneous callose deposition and signs of early leaf senescence. Plant Molecular Biology, 2019, 101, 21-40. <i>NbALD1</i> mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic 35 acid and the ethylene pathway in <i>Nicotiana benthamiana</i>. Molecular Plant Pathology, 2019, 20, 2.0 23 990-1004. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant 334 Biology, 2019, 50, 29-36.

#	Article	IF	CITATIONS
37	Methyl Salicylate Glucosylation Regulates Plant Defense Signaling and Systemic Acquired Resistance. Plant Physiology, 2019, 180, 2167-2181.	2.3	62
38	A gossypol biosynthetic intermediate disturbs plant defence response. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180319.	1.8	13
39	N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Current Opinion in Plant Biology, 2019, 50, 44-57.	3.5	107
40	The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics, 2019, 20, 149.	1.2	25
41	The Arabidopsis thaliana Nâ€recognin E3 ligase PROTEOLYSIS1 influences the immune response. Plant Direct, 2019, 3, e00194.	0.8	12
42	A Role for Tocopherol Biosynthesis in Arabidopsis Basal Immunity to Bacterial Infection. Plant Physiology, 2019, 181, 1008-1028.	2.3	49
43	Isolation of Open Chromatin Identifies Regulators of Systemic Acquired Resistance. Plant Physiology, 2019, 181, 817-833.	2.3	28
44	Protein kinaseâ€mediated signalling in priming: Immune signal initiation, propagation, and establishment of longâ€ŧerm pathogen resistance in plants. Plant, Cell and Environment, 2019, 42, 904-917.	2.8	34
45	The role of amino acid metabolism during abiotic stress release. Plant, Cell and Environment, 2019, 42, 1630-1644.	2.8	278
46	Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 2019, 9, 24.	1.6	135
47	Mitogen-Activated Protein Kinase Phosphatase 1 (MKP1) Negatively Regulates the Production of Reactive Oxygen Species During <i>Arabidopsis</i> Immune Responses. Molecular Plant-Microbe Interactions, 2019, 32, 464-478.	1.4	27
48	Plant immunity in signal integration between biotic and abiotic stress responses. New Phytologist, 2020, 225, 87-104.	3.5	267
49	Metabolic engineering advances and prospects for amino acid production. Metabolic Engineering, 2020, 58, 17-34.	3.6	177
50	Translational Regulation of Metabolic Dynamics during Effector-Triggered Immunity. Molecular Plant, 2020, 13, 88-98.	3.9	68
51	Redundant CAMTA Transcription Factors Negatively Regulate the Biosynthesis of Salicylic Acid and N-Hydroxypipecolic Acid by Modulating the Expression of SARD1 and CBP60g. Molecular Plant, 2020, 13, 144-156.	3.9	88
52	Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. Molecular Plant, 2020, 13, 157-168.	3.9	78
53	Calciumâ€dependent protein kinase 5 links calcium signaling with <i>N</i> â€hydroxyâ€ <scp>l</scp> â€pipecolic acid―and <i><scp>SARD</scp>1</i> â€dependent immune memory in systemic acquired resistance. New Phytologist, 2020, 225, 310-325.	3.5	46
54	Construction and applications of a B vitamin genetic resource for investigation of vitaminâ€dependent metabolism in maize. Plant Journal, 2020, 101, 442-454.	2.8	9

Сітат	ion Report	
Article	IF	CITATIONS
<i>JMJ14</i> encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. New Phytologist, 2020, 225, 2108-2121.	3.5	29
Highâ€resolution expression profiling of selected gene sets during plant immune activation. Plant Biotechnology Journal, 2020, 18, 1610-1619.	4.1	21
Biosynthetic Pathways to Nonproteinogenic α-Amino Acids. Chemical Reviews, 2020, 120, 3161-3209.	23.0	94
Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. Molecular Plant, 2020, 13, 31-41.	3.9	98
FMO1 Is Involved in Excess Light Stress-Induced Signal Transduction and Cell Death Signaling. Cells, 2020, 9, 2163.	1.8	19
Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. Plant Cell, 2020, 32, 4002-4016.	3.1	87
Mitochondrial signalling is critical for acclimation and adaptation to flooding in <i>Arabidopsis thaliana</i> . Plant Journal, 2020, 103, 227-247.	2.8	51
Acibenzolar-S-Methyl Activates Stomatal-Based Defense Systemically in Japanese Radish. Frontiers in Plant Science, 2020, 11, 565745.	1.7	7
Mobile signals in systemic acquired resistance. Current Opinion in Plant Biology, 2020, 58, 41-47.	3.5	41
Endophytic Fungi Activated Similar Defense Strategies of Achnatherum sibiricum Host to Different Trophic Types of Pathogens. Frontiers in Microbiology, 2020, 11, 1607.	1.5	17
Transcriptional Response of Osmolyte Synthetic Pathways and Membrane Transporters in a Euryhaline Diatom During Longâ€ŧerm Acclimation to a Salinity Gradient. Journal of Phycology, 2020, 56, 1712-1728	8. 1.0	16
Analysis of melatonin regulation of germination and antioxidant metabolism in different wheat cultivars under polyethylene glycol stress. PLoS ONE, 2020, 15, e0237536.	1.1	18
CYP720A1 function in roots is required for flowering time and systemic acquired resistance in the foliage of Arabidopsis. Journal of Experimental Botany, 2020, 71, 6612-6622.	2.4	1
N-hydroxypipecolic acid: a general and conserved activator of systemic plant immunity. Journal of Experimental Botany, 2020, 71, 6193-6196.	2.4	3
RIN13-mediated disease resistance depends on the SNC1–EDS1/PAD4 signaling pathway in Arabidopsis Journal of Experimental Botany, 2020, 71, 7393-7404.	s. 2.4	8
Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Journal of Experimental Botany, 2020, 71, 6444-6459.	2.4	36
Putrescine elicits <scp>ROS</scp> â€dependent activation of the salicylic acid pathway in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2020, 43, 2755-2768.	2.8	40

73	A flavin-dependent monooxygenase catalyzes the initial step in cyanogenic glycoside synthesis in ferns. Communications Biology, 2020, 3, 507.	2.0	20
----	---	-----	----

#

#	Article	IF	CITATIONS
74	Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. Frontiers in Plant Science, 2020, 11, 590063.	1.7	43
75	The Lifecycle of the Plant Immune System. Critical Reviews in Plant Sciences, 2020, 39, 72-100.	2.7	68
76	The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Science Advances, 2020, 6, eaaz0478.	4.7	63
77	Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1â€dependent manner. New Phytologist, 2020, 228, 728-740.	3.5	32
78	The isoleucic acid triad: distinct impacts on plant defense, root growth, and formation of reactive oxygen species. Journal of Experimental Botany, 2020, 71, 4258-4270.	2.4	12
79	Structure and function of a flavin-dependent S-monooxygenase from garlic (Allium sativum). Journal of Biological Chemistry, 2020, 295, 11042-11055.	1.6	14
80	Salicylic acid: transport and long-distance immune signaling. Current Opinion in Virology, 2020, 42, 53-57.	2.6	30
81	Flavin-dependent N-hydroxylating enzymes: distribution and application. Applied Microbiology and Biotechnology, 2020, 104, 6481-6499.	1.7	34
82	The differential expression patterns of paralogs in response to stresses indicate expression and sequence divergences. BMC Plant Biology, 2020, 20, 277.	1.6	7
83	Evidence from stable-isotope labeling that catechol is an intermediate in salicylic acid catabolism in the flowers of Silene latifolia (white campion). Planta, 2020, 252, 3.	1.6	3
84	Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress. Frontiers in Plant Science, 2020, 11, 587.	1.7	47
85	The rice/maize pathogenCochliobolusspp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots. Plant Journal, 2020, 103, 412-429.	2.8	12
86	Microbial Engineering for Production of <i>Nâ€</i> Functionalized Amino Acids and Amines. Biotechnology Journal, 2020, 15, e1900451.	1.8	32
87	The "Green―FMOs: Diversity, Functionality and Application of Plant Flavoproteins. Catalysts, 2020, 10, 329.	1.6	26
88	Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. New Phytologist, 2020, 228, 1652-1661.	3.5	11
90	Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 2020, 11, 1298.	1.5	131
91	Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights. Plants, 2020, 9, 495.	1.6	48
92	Short―and longâ€distance signaling in plant defense. Plant Journal, 2021, 105, 505-517.	2.8	34

# 93	ARTICLE Systemic propagation of immunity in plants. New Phytologist, 2021, 229, 1234-1250.	IF 3.5	Citations
94	Dissecting Contrasts in Cell Death, Hormone, and Defense Signaling in Response to Botrytis cinerea and Reactive Oxygen Species. Molecular Plant-Microbe Interactions, 2021, 34, 75-87.	1.4	7
95	An indigo-producing plant, Polygonum tinctorium, possesses a flavin-containing monooxygenase capable of oxidizing indole. Biochemical and Biophysical Research Communications, 2021, 534, 199-205.	1.0	17
96	A nonproteinaceous <i>Fusarium</i> cell wall extract triggers receptorâ€like proteinâ€dependent immune responses in Arabidopsis and cotton. New Phytologist, 2021, 230, 275-289.	3.5	9
97	Systemic acquired resistance (SAR)-associated molecules induce resistance in lab- and greenhouse-grown cucumber. Physiological and Molecular Plant Pathology, 2021, 113, 101592.	1.3	0
100	Natural variation in temperature-modulated immunity uncovers transcription factor bHLH059 as a thermoresponsive regulator in Arabidopsis thaliana. PLoS Genetics, 2021, 17, e1009290.	1.5	23
101	Where do the electrons go? How numerous redox processes drive phytochemical diversity. Phytochemistry Reviews, 2021, 20, 367-407.	3.1	11
102	How to achieve immune balance and harmony: glycosyltransferase UGT76B1 inactivates <i>N</i> -hydroxy-pipecolic acid to suppress defense responses. Plant Cell, 2021, 33, 453-454.	3.1	3
104	UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell, 2021, 33, 714-734.	3.1	47
105	Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. Journal of Biological Chemistry, 2021, 296, 100611.	1.6	10
106	ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. Journal of Experimental Botany, 2021, 72, 2710-2726.	2.4	18
107	Transcriptomic Analysis of Wheat Seedling Responses to the Systemic Acquired Resistance Inducer N-Hydroxypipecolic Acid. Frontiers in Microbiology, 2021, 12, 621336.	1.5	8
108	The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility. Plant Cell, 2021, 33, 1728-1747.	3.1	27
110	Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat. Molecular Biology Reports, 2021, 48, 1269-1279.	1.0	11
111	More stories to tell: <scp>NONEXPRESSOR OF PATHOGENESISâ€RELATED GENES1</scp> , a salicylic acid receptor. Plant, Cell and Environment, 2021, 44, 1716-1727.	2.8	38
112	Exogenous pipecolic acid modulates plant defence responses against <i>Podosphaera xanthii</i> and <i>Pseudomonas syringae</i> pv. <i>lachrymans</i> in cucumber (<i>Cucumis sativus</i> L.). Plant Biology, 2021, 23, 473-484.	1.8	7
113	A quest for long-distance signals: the epidermis as central regulator of pipecolic acid-associated systemic acquired resistance. Journal of Experimental Botany, 2021, 72, 2266-2268.	2.4	2
114	Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Molecular Plant, 2021, 14, 440-455.	3.9	44

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
115	Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592, 105-109.	13.7	590
117	Metabolomic Patterns of Septoria Canker Resistant and Susceptible <i>Populus trichocarpa</i> Genotypes 24 Hours Postinoculation. Phytopathology, 2021, 111, 2052-2066.	1.1	6
119	Engineering plant disease resistance against biotrophic pathogens. Current Opinion in Plant Biology, 2021, 60, 101987.	3.5	18
120	The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Plant Physiology, 2021, 186, 1679-1705.	2.3	39
121	UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance. Molecular Plant, 2021, 14, 544-546.	3.9	4
122	Signals in systemic acquired resistance of plants against microbial pathogens. Molecular Biology Reports, 2021, 48, 3747-3759.	1.0	21
123	Imine chemistry in plant metabolism. Current Opinion in Plant Biology, 2021, 60, 101999.	3.5	7
124	NHR-49/PPAR-α and HLH-30/TFEB cooperate for C. elegans host defense via a flavin-containing monooxygenase. ELife, 2021, 10, .	2.8	37
127	Rethinking of the Roles of Endophyte Symbiosis and Mycotoxin in Oxytropis Plants. Journal of Fungi (Basel, Switzerland), 2021, 7, 400.	1.5	11
128	Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. Nature Plants, 2021, 7, 814-825.	4.7	95
129	Salicylic Acid: Biosynthesis and Signaling. Annual Review of Plant Biology, 2021, 72, 761-791.	8.6	193
130	The immune components ENHANCED DISEASE SUSCEPTIBILITY 1 and PHYTOALEXIN DEFICIENT 4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis. Plant Journal, 2021, 107, 1447-1465.	2.8	19
131	WIND transcription factors orchestrate woundâ€induced callus formation, vascular reconnection and defense response in Arabidopsis. New Phytologist, 2021, 232, 734-752.	3.5	32
132	The flavin monooxygenase Bs3 triggers cell death in plants, impairs growth in yeast and produces H2O2 in vitro. PLoS ONE, 2021, 16, e0256217.	1.1	3
133	Unravelling Plant Responses to Stress—The Importance of Targeted and Untargeted Metabolomics. Metabolites, 2021, 11, 558.	1.3	21
134	Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors. Journal of Experimental Botany, 2021, 72, 7927-7941.	2.4	14
135	Metabolic regulation of systemic acquired resistance. Current Opinion in Plant Biology, 2021, 62, 102050.	3.5	69
136	An Emerging Role for Chloroplasts in Disease and Defense. Annual Review of Phytopathology, 2021, 59, 423-445.	3.5	30

#	Article	IF	CITATIONS
137	The scope of flavin-dependent reactions and processes in the model plant Arabidopsis thaliana. Phytochemistry, 2021, 189, 112822.	1.4	18
138	Epigenetics: a catalyst of plant immunity against pathogens. New Phytologist, 2022, 233, 66-83.	3.5	44
139	Free Amino Acids and Methylglyoxal as Players in the Radiation Hormesis Effect after Low-Dose γ-Irradiation of Barley Seeds. Agriculture (Switzerland), 2021, 11, 918.	1.4	11
140	N-hydroxypipecolic acid-induced transcription requires the salicylic acid signaling pathway at basal SA levels. Plant Physiology, 2021, 187, 2803-2819.	2.3	12
141	Plant immune networks. Trends in Plant Science, 2022, 27, 255-273.	4.3	140
142	Dissecting the metabolic reprogramming of maize root under nitrogen-deficient stress conditions. Journal of Experimental Botany, 2022, 73, 275-291.	2.4	12
143	Activation of TIR signalling boosts pattern-triggered immunity. Nature, 2021, 598, 500-503.	13.7	176
145	Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytologist, 2021, 232, 2491-2505.	3.5	9
146	Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnology Advances, 2021, 51, 107712.	6.0	78
147	Arabidopsis UGT76B1 glycosylates <i>N</i> -hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell, 2021, 33, 750-765.	3.1	48
148	The glycosyltransferase UGT76B1 modulates <i>N</i> -hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell, 2021, 33, 735-749.	3.1	71
149	Metabolic profiling reveals local and systemic responses of kiwifruit to <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Plant Direct, 2020, 4, e00297.	0.8	20
150	Plant Immunity: Danger Perception and Signaling. Cell, 2020, 181, 978-989.	13.5	520
162	Multi-Omics Revealed Molecular Mechanisms Underlying Guard Cell Systemic Acquired Resistance. International Journal of Molecular Sciences, 2021, 22, 191.	1.8	15
163	Metabolomics analysis identifies metabolites associated with systemic acquired resistance in Arabidopsis. PeerJ, 2020, 8, e10047.	0.9	9
164	How activated NLRs induce anti-microbial defenses in plants. Biochemical Society Transactions, 2021, 49, 2177-2188.	1.6	14
165	Gene flow, linked selection, and divergent sorting of ancient polymorphism shape genomic divergence landscape in a group of edaphic specialists. Molecular Ecology, 2022, 31, 104-118.	2.0	10
166	Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry, 2021, 168, 381-397.	2.8	78

		CITATION REPORT		
#	Article		IF	Citations
175	Zones of Defense? SA Receptors Have It Under Control. Plant Cell, 2020, 32, 3658-3659		3.1	1
176	A Novel Role of Pipecolic Acid Biosynthetic Pathway in Drought Tolerance through the A System in Tomato. Antioxidants, 2021, 10, 1923.	ntioxidant	2.2	19
177	Protein Phosphorylation Changes During Systemic Acquired Resistance in Arabidopsis th Frontiers in Plant Science, 2021, 12, 748287.	aliana.	1.7	11
178	Transcriptomic Changes in Internode Explants of Stinging Nettle during Callogenesis. In Journal of Molecular Sciences, 2021, 22, 12319.	cernational	1.8	1
179	Studies on regulation of plant physiology by pesticides. Journal of Pesticide Sciences, 20	21, 46, 393-398.	0.8	4
180	Immunity-associated volatile emissions of β-ionone and nonanal propagate defence resp neighbouring barley plants. Journal of Experimental Botany, 2022, 73, 615-630.	oonses in	2.4	25
181	Comparative Omics Analysis of Endophyte-Infected and Endophyte-Free Achnatherum Si Response to Pathogenic Fungi. SSRN Electronic Journal, 0, , .	biricum in	0.4	0
182	Mitogenâ€activated protein kinase cascades in plant signaling. Journal of Integrative Pla 64, 301-341.	nt Biology, 2022,	4.1	149
183	Zones of Defense? SA Receptors Have It Under Control. Plant Cell, 2020, 32, 3658-3659		3.1	2
185	Transcriptional Coactivators: Driving Force of Plant Immunity. Frontiers in Plant Science, 823937.	2022, 13,	1.7	7
186	Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filament pathogens. ELife, 2022, 11, .	ous	2.8	18
187	A flavin-dependent monooxygenase produces nitrogenous tomato aroma volatiles using nitrogen source. Proceedings of the National Academy of Sciences of the United States 2022, 119, .	cysteine as a of America,	3.3	18
188	Molecular innovations in plant TIR-based immunity signaling. Plant Cell, 2022, 34, 1479-	1496.	3.1	55
189	Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in <i>C sinensis</i> . Plant Physiology, 2022, 188, 1507-1520.	amellia	2.3	34
190	Exciting times in plant biotic interactions. Plant Cell, 2022, 34, 1421-1424.		3.1	3
191	Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids, 2	022, 54, 687-719.	1.2	3
192	Salicylic Acid and N-Hydroxypipecolic Acid at the Fulcrum of the Plant Immunity-Growth Frontiers in Plant Science, 2022, 13, 841688.	Equilibrium.	1.7	17
193	GIGANTEA regulates <i>PAD4</i> transcription to promote pathogen defense against <i>Hyaloperonospora arabidopsidis</i> in <i>Arabidopsis thaliana</i> . Plant Signaling ar 2022, 17, 2058719.	nd Behavior,	1.2	5

#	Article	IF	CITATIONS
194	Transcriptome analysis of asparagus in response to postharvest treatment with Yarrowia lipolytica. Biological Control, 2022, 169, 104906.	1.4	5
195	Plant Immune Memory in Systemic Tissue Does Not Involve Changes in Rapid Calcium Signaling. Frontiers in Plant Science, 2021, 12, 798230.	1.7	9
196	Metabolomics Insights into Chemical Convergence in Xanthomonas perforans and Metabolic Changes Following Treatment with the Small Molecule Carvacrol. Metabolites, 2021, 11, 879.	1.3	3
197	Extracellular vesicles: Their functions in plant–pathogen interactions. Molecular Plant Pathology, 2022, 23, 760-771.	2.0	22
198	Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses. Cell Reports, 2021, 37, 110125.	2.9	41
199	A plastidial retrograde signal potentiates biosynthesis of systemic stress response activators. New Phytologist, 2022, 233, 1732-1749.	3.5	4
200	Photoperiod Stress in Arabidopsis thaliana Induces a Transcriptional Response Resembling That of Pathogen Infection. Frontiers in Plant Science, 2022, 13, .	1.7	5
202	Multiâ€omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. Plant Journal, 2022, 111, 282-303.	2.8	11
203	The Kelchâ€Fâ€box protein SMALL AND GLOSSY LEAVES 1 (SAGL1) negatively influences salicylic acid biosynthesis in <i>Arabidopsis thaliana</i> by promoting the turnâ€over of transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). New Phytologist, 2022, 235, 885-897.	3.5	11
204	Activation of NLR-Mediated Autoimmunity in Arabidopsis Early in Short Days 4 Mutant. Frontiers in Plant Science, 2022, 13, .	1.7	1
205	Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. International Journal of Biological Macromolecules, 2022, 212, 381-392.	3.6	5
206	Protein Metabolism in Plants to Survive against Abiotic Stress. , 0, , .		2
208	Phased small RNAâ \in "mediated systemic signaling in plants. Science Advances, 2022, 8, .	4.7	19
209	Infection by endophytic Epichloë sibirica was associated with activation of defense hormone signal transduction pathways and enhanced pathogen resistance in the grass Achnatherum sibiricum. Phytopathology, 0, , .	1.1	2
210	PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar. International Journal of Biological Macromolecules, 2022, 214, 672-684.	3.6	9
211	Roles of AGD2a in Plant Development and Microbial Interactions of Lotus japonicus. International Journal of Molecular Sciences, 2022, 23, 6863.	1.8	0
212	New molecules in plant defence against pathogens. Essays in Biochemistry, 0, , .	2.1	11
213	Recent advancements on the synthesis and biological significance of pipecolic acid and its derivatives. Journal of Molecular Structure, 2022, 1268, 133719.	1.8	5

#	Article	IF	CITATIONS
214	UPLC-MS/MS Profile Combined With RNA-Seq Reveals the Amino Acid Metabolism in Zanthoxylum bungeanum Leaves Under Drought Stress. Frontiers in Nutrition, 0, 9, .	1.6	5
215	Effects of Domestication on Plant–Microbiome Interactions. Plant and Cell Physiology, 2022, 63, 1654-1666.	1.5	11
216	AIG2A and AIG2B limit the activation of salicylic acid-regulated defenses by tryptophan-derived secondary metabolism in Arabidopsis. Plant Cell, 2022, 34, 4641-4660.	3.1	6
217	News about amino acid metabolism in plant–microbe interactions. Trends in Biochemical Sciences, 2022, 47, 839-850.	3.7	38
218	Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays in Biochemistry, 2022, 66, 673-681.	2.1	6
219	Overexpression of the Arabidopsis MACPF Protein AtMACP2 Promotes Pathogen Resistance by Activating SA Signaling. International Journal of Molecular Sciences, 2022, 23, 8784.	1.8	7
220	Explorations of chemical molecules that increase plant disease resistance. Japanese Journal of Pesticide Science, 2022, 47, 51-55.	0.0	0
221	Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion in Plant Biology, 2022, 69, 102288.	3.5	18
222	Comparative omics analysis of endophyte-infected and endophyte-free Achnatherum sibiricum in response to pathogenic fungi. Biological Control, 2022, 175, 105040.	1.4	0
223	The ornithine cyclodeaminase/µ-crystallin superfamily of proteins: A novel family of oxidoreductases for the biocatalytic synthesis of chiral amines. Current Research in Biotechnology, 2022, 4, 402-419.	1.9	1
224	ldentification of a regiospecific <i>S</i> -oxygenase for the production of marasmin in traditional medicinal plant <i>Tulbaghia violacea</i> . Plant Biotechnology, 2022, 39, 281-289.	0.5	0
225	<i>In vivo</i> Imaging Enables Understanding of Seamless Plant Defense Responses to Wounding and Pathogen Attack. Plant and Cell Physiology, 2022, 63, 1391-1404.	1.5	2
226	Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. Frontiers in Plant Science, 0, 13, .	1.7	0
227	Translocation of acibenzolar, an active metabolic substance of acibenzolar-S-methyl, to distal leaves in cabbage and Japanese radish. Journal of General Plant Pathology, 0, , .	0.6	0
228	Transcriptomic and Metabolomic Analysis of a Pseudomonas-Resistant versus a Susceptible Arabidopsis Accession. International Journal of Molecular Sciences, 2022, 23, 12087.	1.8	1
229	<i>N</i> -Hydroxy pipecolic acid methyl ester is involved in Arabidopsis immunity. Journal of Experimental Botany, 2023, 74, 458-471.	2.4	5
230	Ozone and nitrogen dioxide regulate similar gene expression responses in Arabidopsis but natural variation in the extent of cell death is likely controlled by different genetic loci. Frontiers in Plant Science, 0, 13, .	1.7	2
231	<scp>PBS3</scp> : a versatile player in and beyond salicylic acid biosynthesis in <i>Arabidopsis</i> . New Phytologist, 0, , .	3.5	1

#	Article	IF	CITATIONS
232	OXIDATIVE SIGNALâ€INDUCIBLE1 induces immunity by coordinating Nâ€hydroxypipecolic acid, salicylic acid, and camalexin synthesis. New Phytologist, 2023, 237, 1285-1301.	3.5	3
233	Glutathione and neodiosmin feedback sustain plant immunity. Journal of Experimental Botany, 2023, 74, 976-990.	2.4	6
234	Genetic requirements for infection-specific responses in conferring disease resistance in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	2
235	Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. Science China Life Sciences, 2023, 66, 1119-1133.	2.3	7
236	Insights into metabolite biosynthesis and regulation in rice immune signaling. Trends in Microbiology, 2022, , .	3.5	0
238	Comparative Metabolomic and Transcriptomic Analyses of Phytochemicals in Two Elite Sweet Potato Cultivars for Table Use. Molecules, 2022, 27, 8939.	1.7	2
239	Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics, 2023, 12, 159.	1.5	0
240	Resting cytosol Ca2+ level maintained by Ca2+ pumps affects environmental responses in Arabidopsis. Plant Physiology, 2023, 191, 2534-2550.	2.3	8
241	Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance. Plant Pathology Journal, 2023, 39, 21-27.	0.7	2
242	Evaluation of negative effect of Naphthenic acids (NAs) on physiological metabolism and polycyclic aromatic hydrocarbons adsorption of Phragmites australis. Chemosphere, 2023, 318, 137909.	4.2	2
243	β-D-XYLOSIDASE 4 modulates systemic immune signaling in Arabidopsis thaliana. Frontiers in Plant Science, 0, 13, .	1.7	4
244	Plant Immunity: A Plastic System Operated Through Cell-Fate Transition. Journal of Plant Biology, 2023, 66, 193-206.	0.9	1
245	Nâ€hydroxypipecolic acid induces systemic acquired resistance and transcriptional reprogramming via TGA transcription factors. Plant, Cell and Environment, 2023, 46, 1900-1920.	2.8	8
246	Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. International Journal of Molecular Sciences, 2023, 24, 3803.	1.8	4
247	Punctaâ€localized <scp>TRAF</scp> domain protein <scp>TC1b</scp> contributes to the autoimmunity of <i>snc1</i> . Plant Journal, 2023, 114, 591-612.	2.8	0
248	Soybean transporter AAT <i>Rhg1</i> abundance increases along the nematode migration path and impacts vesiculation and ROS. Plant Physiology, 2023, 192, 133-153.	2.3	2
249	Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. International Journal of Molecular Sciences, 2023, 24, 4190.	1.8	1
250	Integrated Metabolome and Transcriptome Analysis Unveils the Underlying Molecular Response of Panax ginseng Plants to the Phytophthora cactorum Infection. Agriculture (Switzerland), 2023, 13, 509.	1.4	1

#	Article	IF	CITATIONS
251	Manipulation of plant metabolism by pathogen effectors: more than just food. FEMS Microbiology Reviews, 2023, 47, .	3.9	8
252	Pipecolic acid synthesis is required for systemic acquired resistance and plant-to-plant-induced immunity in barley. Journal of Experimental Botany, 0, , .	2.4	3
253	Evaluation of Amino Acid Profiles of Rice Genotypes under Different Salt Stress Conditions. Plants, 2023, 12, 1315.	1.6	6
254	Methyl jasmonate redirects the dynamics of carbohydrates and amino acids toward the lignans accumulation in Linum album cells. Plant Physiology and Biochemistry, 2023, 198, 107677.	2.8	2
261	Signaling Pathway of Reactive Oxygen Species in Crop Plants Under Abiotic Stress. , 2023, , 249-262.		0
292	Specialized metabolite modifications in Brassicaceae seeds and plants: diversity, functions and related enzymes. Natural Product Reports, 0, , .	5.2	0