Reconstructing the genetic history of late Neanderthals

Nature 555, 652-656

DOI: 10.1038/nature26151

Citation Report

#	Article	IF	CITATIONS
1	Genomics of Extinction. Population Genomics, 2018, , 393-418.	0.2	4
2	Quantifying and reducing spurious alignments for the analysis of ultra-short ancient DNA sequences. BMC Biology, 2018, 16, 121.	1.7	41
3	Outstanding questions in the study of archaic hominin admixture. PLoS Genetics, 2018, 14, e1007349.	1.5	50
4	Primate Paleogenomics. Population Genomics, 2018, , 353-373.	0.2	3
5	The female ancestor's tale: Longâ€ŧerm matrilineal continuity in a nonisolated region of Tuscany. American Journal of Physical Anthropology, 2018, 167, 497-506.	2.1	3
6	The evolutionary history of human populations in Europe. Current Opinion in Genetics and Development, 2018, 53, 21-27.	1.5	47
7	snpAD: an ancient DNA genotype caller. Bioinformatics, 2018, 34, 4165-4171.	1.8	52
8	Palaeoproteomics for human evolution studies. Quaternary Science Reviews, 2018, 190, 137-147.	1.4	42
9	The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature, 2018, 561, 113-116.	13.7	323
10	Something old, something borrowed: admixture and adaptation in human evolution. Current Opinion in Genetics and Development, 2018, 53, 1-8.	1.5	79
11	Neanderthals, Denisovans, and Hobbits., 2018, , 175-206.		0
12	Aspects of human physical and behavioural evolution during the last 1 million years. Journal of Quaternary Science, 2019, 34, 355-378.	1.1	63
13	A statistical model for reference-free inference of archaic local ancestry. PLoS Genetics, 2019, 15, e1008175.	1.5	31
14	A genetic analysis of the Gibraltar Neanderthals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15610-15615.	3.3	30
15	"Ghost Introgression―As a Cause of Deep Mitochondrial Divergence in a Bird Species Complex. Molecular Biology and Evolution, 2019, 36, 2375-2386.	3.5	69
18	Is Determinism Dead?. , 2019, , 23-49.		O
19	Incorporating New Methods I: The Stable Isotope Revolution. , 2019, , 50-74.		0
20	Incorporating New Methods III: Answering Palaeoeconomic Questions with Molecular Genetics. , 2019, , 99-122.		O

#	Article	IF	Citations
21	Integrated Case Study I: Early Farming in Central Europe., 2019,, 137-162.		0
25	Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals. Nature Communications, 2019, 10, 5003.	5.8	30
26	Integrated Case Study II: Horse Domestication and the Origins of Pastoralism in Central Asia. , 2019, , 163-194.		0
27	Incorporating New Methods II: Residue Chemistry. , 2019, , 75-98.		0
28	Incorporating New Methods IV: Phytoliths and Starch Grains in the Tropics and Beyond., 2019, , 123-136.		0
30	Balancing analytical goals and anthropological stewardship in the midst of the paleogenomics revolution. World Archaeology, 2019, 51, 560-573.	0.5	17
31	The repertoire of family A-peptide GPCRs in archaic hominins. Peptides, 2019, 122, 170154.	1.2	2
32	Inferred divergent gene regulation in archaic hominins reveals potential phenotypic differences. Nature Ecology and Evolution, 2019, 3, 1598-1606.	3.4	45
33	An early Aurignacian arrival in southwestern Europe. Nature Ecology and Evolution, 2019, 3, 207-212.	3.4	55
34	Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. Science Advances, 2019, 5, eaaw5873.	4.7	52
35	Searching for archaic contribution in Africa. Annals of Human Biology, 2019, 46, 129-139.	0.4	4
36	The evolutionary history of the human face. Nature Ecology and Evolution, 2019, 3, 726-736.	3.4	57
37	Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nature Protocols, 2019, 14, 1194-1205.	5. 5	54
38	Human Immunology through the Lens of Evolutionary Genetics. Cell, 2019, 177, 184-199.	13.5	105
39	The Promise of Paleogenomics Beyond Our Own Species. Trends in Genetics, 2019, 35, 319-329.	2.9	55
40	Skeletal Anomalies in The Neandertal Family of El Sidr \tilde{A}^3 n (Spain) Support A Role of Inbreeding in Neandertal Extinction. Scientific Reports, 2019, 9, 1697.	1.6	40
41	Exceptionally high \hat{l}' ¹⁵ N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4928-4933.	3.3	91
42	<i>admixr</i> â€"R package for reproducible analyses using ADMIXTOOLS. Bioinformatics, 2019, 35, 3194-3195.	1.8	111

#	ARTICLE	IF	Citations
43	Volcanism and Settlement of the Northern Slope of the Central Caucasus in the Middle Paleolithic: New Data from Saradj-Chuko Grotto. Izvestiya - Atmospheric and Oceanic Physics, 2019, 55, 1667-1679.	0.2	2
44	Inbreeding, Allee effects and stochasticity might be sufficient to account for Neanderthal extinction. PLoS ONE, 2019, 14, e0225117.	1.1	25
45	The problem with petrous? A consideration of the potential biases in the utilization of <i>pars petrosa </i> for ancient DNA analysis. World Archaeology, 2019, 51, 574-585.	0.5	10
46	Living to fight another day: The ecological and evolutionary significance of Neanderthal healthcare. Quaternary Science Reviews, 2019, 217, 98-118.	1.4	33
47	Was inter-population connectivity of Neanderthals and modern humans the driver of the Upper Paleolithic transition rather than its product?. Quaternary Science Reviews, 2019, 217, 316-329.	1.4	42
48	Encounters with archaic hominins. Nature Ecology and Evolution, 2019, 3, 14-15.	3.4	6
49	Limits of long-term selection against Neandertal introgression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1639-1644.	3.3	151
50	Neuronal migration in the CNS during development and disease: insights from <i>in vivo</i> and <i>in vitro</i> models. Development (Cambridge), 2019, 146, .	1.2	110
51	Push-and-pull factors of the Middle to Upper Paleolithic transition in the Balkans. Quaternary International, 2020, 551, 47-62.	0.7	18
52	Conservation genomic analysis reveals ancient introgression and declining levels of genetic diversity in Madagascar's hibernating dwarf lemurs. Heredity, 2020, 124, 236-251.	1.2	16
53	A late Neanderthal tooth from northeastern Italy. Journal of Human Evolution, 2020, 147, 102867.	1.3	14
54	Reconstructing double-stranded DNA fragments on a single-molecule level reveals patterns of degradation in ancient samples. Genome Research, 2020, 30, 1449-1457.	2.4	7
55	A Neanderthal Sodium Channel Increases Pain Sensitivity in Present-Day Humans. Current Biology, 2020, 30, 3465-3469.e4.	1.8	33
56	Human Stem Cell Resources Are an Inroad to Neandertal DNA Functions. Stem Cell Reports, 2020, 15, 214-225.	2.3	18
57	Fostering Responsible Research on Ancient DNA. American Journal of Human Genetics, 2020, 107, 183-195.	2.6	57
58	Current Trends in Ancient DNA Study. , 2020, , 1-16.		0
59	Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science, 2020, 370, 584-587.	6.0	129
60	Denisovan ancestry and population history of early East Asians. Science, 2020, 370, 579-583.	6.0	57

#	Article	IF	Citations
61	AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biology, 2020, 21, 246.	3.8	31
62	The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science, 2020, 369, 1653-1656.	6.0	90
63	The last pieces of a puzzling early meeting. Science, 2020, 369, 1565-1566.	6.0	2
64	Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification. Earth-Science Reviews, 2020, 210, 103354.	4.0	35
65	The macroecology of macroeconomics in human evolution. Current Biology, 2020, 30, R1012-R1014.	1.8	0
66	New perspectives on Neanderthal dispersal and turnover from Stajnia Cave (Poland). Scientific Reports, 2020, 10, 14778.	1.6	21
67	Evolution of Human Brain Size-Associated NOTCH2NL Genes Proceeds toward Reduced Protein Levels. Molecular Biology and Evolution, 2020, 37, 2531-2548.	3.5	10
68	Non-destructive ZooMS identification reveals strategic bone tool raw material selection by Neandertals. Scientific Reports, 2020, 10, 7746.	1.6	34
69	A high-coverage Neandertal genome from Chagyrskaya Cave. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15132-15136.	3.3	176
70	Analysis of Haplotypic Variation and Deletion Polymorphisms Point to Multiple Archaic Introgression Events, Including from Altai Neanderthal Lineage. Genetics, 2020, 215, 497-509.	1.2	17
71	Multiple Genomic Events Altering Hominin SIGLEC Biology and Innate Immunity Predated the Common Ancestor of Humans and Archaic Hominins. Genome Biology and Evolution, 2020, 12, 1040-1050.	1,1	14
72	Presentâ€Day DNA Contamination in Ancient DNA Datasets. BioEssays, 2020, 42, e2000081.	1.2	31
73	The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature, 2020, 582, 78-83.	13.7	71
74	Triangulating Neanderthal cognition: A tale of not seeing the forest for the trees. Wiley Interdisciplinary Reviews: Cognitive Science, 2021, 12, e1545.	1.4	11
75	Applying high-throughput rRNA gene sequencing to assess microbial contamination of a 40-year old exposed archaeological profile. Journal of Archaeological Science, 2021, 126, 105308.	1.2	3
76	Origins of modern human ancestry. Nature, 2021, 590, 229-237.	13.7	166
77	Four-Field Co-evolutionary Model for Human Cognition: Variation in the Middle Stone Age/Middle Palaeolithic. Journal of Archaeological Method and Theory, 2021, 28, 142-177.	1.4	30
78	Deleterious variants in genes regulating mammalian reproduction in Neanderthals, Denisovans and extant humans. Human Reproduction, 2021, 36, 734-755.	0.4	5

#	ARTICLE	IF	CITATIONS
79	Reconstructing cranial evolution in an extinct hominin. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202604.	1.2	4
80	Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics, 2021, 217, .	1.2	84
82	A revised AMS and tephra chronology for the Late Middle to Early Upper Paleolithic occupations of Ortvale Klde, Republic of Georgia. Journal of Human Evolution, 2021, 151, 102908.	1.3	10
83	From stem and progenitor cells to neurons in the developing neocortex: key differences among hominids. FEBS Journal, 2022, 289, 1524-1535.	2.2	11
84	The morphology of the Late Pleistocene hominin remains from the site of La Cotte de St Brelade, Jersey (Channel Islands). Journal of Human Evolution, 2021, 152, 102939.	1.3	7
85	Reevaluating the timing of Neanderthal disappearance in Northwest Europe. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	43
86	Neandertal introgression and accumulation of hypomorphic mutations in the neuropeptide S (NPS) system promote attenuated functionality. Peptides, 2021, 138, 170506.	1.2	7
87	Neanderthal assimilation?. Nature Ecology and Evolution, 2021, 5, 711-712.	3.4	24
88	A genome sequence from a modern human skull over 45,000 years old from Zlatý kÅÅÅ in Czechia. Nature Ecology and Evolution, 2021, 5, 820-825.	3.4	69
89	Evolution, systematics, and the unnatural history of mitochondrial DNA. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2021, 32, 126-151.	0.7	5
90	Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments. Science, 2021, 372, .	6.0	86
91	Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature, 2021, 592, 253-257.	13.7	119
92	Paleogenomics of the prehistory of Europe: human migrations, domestication and disease. Annals of Human Biology, 2021, 48, 179-190.	0.4	20
93	Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of Archaic Admixture. Genome Biology and Evolution, 2021, 13, .	1.1	14
94	Human occupation continuity in southern Italy towards the end of the Middle Palaeolithic: a palaeoenvironmental perspective from Apulia. Journal of Quaternary Science, 2022, 37, 204-216.	1.1	3
95	Early ontogeny of humeral trabecular bone in Neandertals and recent modern humans. Journal of Human Evolution, 2021, 154, 102968.	1.3	8
97	Genomic selection signatures in autism spectrum disorder identifies cognitive genomic tradeoff and its relevance in paradoxical phenotypes of deficits versus potentialities. Scientific Reports, 2021, 11, 10245.	1.6	4
98	What Neanderthals and AMH ate: reassessment of the subsistence across the Middle–Upper Palaeolithic transition in the Vasco antabrian region of SW Europe. Journal of Quaternary Science, 2022, 37, 320-334.	1.1	11

#	ARTICLE	IF	Citations
99	Middle Pleistocene <i>Homo</i> behavior and culture at 140,000 to 120,000 years ago and interactions with <i>Homo sapiens</i> Science, 2021, 372, 1429-1433.	6.0	14
100	The evolution of brain size among the Homininae and selection at ASPM and MCPH1 genes. Biosis: Biological Systems, 2021, 2, 293-310.	0.3	0
101	<i>DLX5/6</i> GABAergic Expression Affects Social Vocalization: Implications for Human Evolution. Molecular Biology and Evolution, 2021, 38, 4748-4764.	3.5	8
102	Properties and unbiased estimation of $\langle i \rangle F \langle i \rangle$ - and $\langle i \rangle D \langle i \rangle$ -statistics in samples containing related and inbred individuals. Genetics, 2022, 220, .	1.2	2
103	A method for the temperature-controlled extraction of DNA from ancient bones. BioTechniques, 2021, 71, 382-386.	0.8	6
104	The discovery of an in situ Neanderthal remain in the Bawa Yawan Rockshelter, West-Central Zagros Mountains, Kermanshah. PLoS ONE, 2021, 16, e0253708.	1.1	17
105	Evolutionary genetics and acclimatization in nephrology. Nature Reviews Nephrology, 2021, 17, 827-839.	4.1	5
106	Neanderthal settlement of the Central Balkans during MIS 5: Evidence from Pešturina Cave, Serbia. Quaternary International, 2021, 610, 1-1.	0.7	5
107	New insights into human immunity from ancient genomics. Current Opinion in Immunology, 2021, 72, 116-125.	2.4	17
108	Spectral Neighbor Joining for Reconstruction of Latent Tree Models. SIAM Journal on Mathematics of Data Science, 2021, 3, 113-141.	1.0	1
109	Style, Function and Cultural Transmission. Vertebrate Paleobiology and Paleoanthropology, 2020, , 291-298.	0.1	12
119	A paradigm shift in our view of species drives current trends in biological classification. Biological Reviews, 2021, 96, 731-751.	4.7	34
120	Could There Have Been Human Families Where Parents Came from Different Populations: Denisovans, Neanderthals or Sapiens?. Scientia Et Fides, 2020, 8, 193.	0.3	1
121	A benchmarking of human mitochondrial DNA haplogroup classifiers from whole-genome and whole-exome sequence data. Scientific Reports, 2021, 11, 20510.	1.6	7
125	Did Human Reality Denial Breach the Evolutionary Psychological Barrier of Mortality Salience? A Theory that Can Explain Unusual Features of the Origin and Fate of Our Species. Evolutionary Psychology, 2019, , 109-135.	1.8	1
128	The Middle-Upper Paleolithic Transition: A Long-Term Biocultural Effect of Anatomically Modern Human Dispersal. Vertebrate Paleobiology and Paleoanthropology, 2020, , 157-186.	0.1	2
135	The earliest Denisovans and their cultural adaptation. Nature Ecology and Evolution, 2022, 6, 28-35.	3.4	19
137	Current Trends in Ancient DNA Study. , 2021, , 285-300.		0

#	Article	IF	CITATIONS
138	Ancient DNA Methods Improve Forensic DNA Profiling of Korean War and World War II Unknowns. Genes, 2022, 13, 129.	1.0	22
139	Exploring Late Pleistocene hominin dispersals, coexistence and extinction with agent-based multi-factor models. Quaternary Science Reviews, 2022, 279, 107391.	1.4	4
140	Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	41
141	Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Science Advances, 2022, 8, eabj9496.	4.7	76
142	Genetics and Material Culture Support Repeated Expansions into Paleolithic Eurasia from a Population Hub Out of Africa. Genome Biology and Evolution, 2022, 14, .	1.1	15
143	SINGLE AMINO ACID RADIOCARBON DATING OF TWO NEANDERTHALS FOUND AT ÅAL'A (SLOVAKIA). Radiocarbon, 2022, 64, 87-100.	0.8	1
144	A unified genealogy of modern and ancient genomes. Science, 2022, 375, eabi8264.	6.0	59
145	Being-with other predators: Cultural negotiations of Neanderthal-carnivore relationships in Late Pleistocene Europe. Journal of Anthropological Archaeology, 2022, 66, 101409.	0.7	12
146	Impact of Climatic Stresses and Volcanism on the Tendencies of the Cultural Process in the North Caucasus during the Late Pleistocene. Izvestiya - Atmospheric and Oceanic Physics, 2021, 57, 781-802.	0.2	6
147	Predicting Archaic Hominin Phenotypes from Genomic Data. Annual Review of Genomics and Human Genetics, 2022, 23, 591-612.	2.5	12
148	Oxytocin and vasotocin receptor variation and the evolution of human prosociality. Comprehensive Psychoneuroendocrinology, 2022, 11, 100139.	0.7	6
152	The Neanderthal brain: Biological and cognitive evolution. , 2022, , 89-108.		2
153	Methodological advances in Neanderthal identification, phylogeny, chronology, mobility, climate, and diet., 2022,, 303-320.		0
154	Updating Neanderthals: Taking stock of more than 160 years of studies. , 2022, , 1-15.		2
155	Neanderthals: Anatomy, genes, and evolution. , 2022, , 71-87.		0
156	Gregor Johann Mendel and the development of modern evolutionary biology. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
157	The evolutionary history of human spindle genes includes back-and-forth gene flow with Neandertals. ELife, 0, 11 , .	2.8	12
158	Genomic analysis of a novel Neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations. Scientific Reports, 2022, 12, .	1.6	5

#	Article	IF	CITATIONS
159	Midfacial Morphology and Neandertal–Modern Human Interbreeding. Biology, 2022, 11, 1163.	1.3	2
160	The contribution of Neanderthal introgression to modern human traits. Current Biology, 2022, 32, R970-R983.	1.8	15
161	Methodologies for Ancient DNA Extraction from Bones for Genomic Analysis: Approaches and Guidelines. Russian Journal of Genetics, 2022, 58, 1017-1035.	0.2	2
162	Using neuroimaging genomics to investigate the evolution of human brain structure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
163	Functional characterization of Mousterian tools from the Caucasus using comprehensive use-wear and residue analysis. Scientific Reports, 2022, 12, .	1.6	2
164	Optimal linear estimation models predict 1400–2900Âyears of overlap between Homo sapiens and Neandertals prior to their disappearance from France and northern Spain. Scientific Reports, 2022, 12, .	1.6	16
165	Genetic insights into the social organization of Neanderthals. Nature, 2022, 610, 519-525.	13.7	31
166	The MIS 4 environmental stress impact on hominin occupation in the northwestern Caucasus: New evidence from the Hadjoh 2 site. Journal of Archaeological Science: Reports, 2023, 47, 103781.	0.2	O
167	Thresholds for the presence of glacial megafauna in central Europe during the last 60,000Âyears. Scientific Reports, 2022, 12, .	1.6	4
168	Analyses of the 2022 Nobel Prize in Physiology or Medicine: Paleogenomics. Science and Technology Libraries, 2023, 42, 19-30.	0.8	1
169	Hypercementosis in Late Pleistocene Homo sapiens fossils from Klasies River Main Site, South Africa. Archives of Oral Biology, 2023, 149, 105664.	0.8	3
170	Cranial Form of the Hofmeyr Skull: Comparative 3D Geometric Morphometrics. Vertebrate Paleobiology and Paleoanthropology, 2022, , 143-150.	0.1	6
171	Were Neanderthals and Homo sapiens â€~good species'?. Quaternary Science Reviews, 2023, 303, 107975.	1.4	4
173	Back to the future: The advantage of studying key events in human evolution using a new high resolution radiocarbon method. PLoS ONE, 2023, 18, e0280598.	1.1	3
174	The extinction of Neanderthals. , 2023, , 515-531.		0
175	Evolutionary Origin of MUTYH Germline Pathogenic Variations in Modern Humans. Biomolecules, 2023, 13, 429.	1.8	2
176	Pathogenic Variants Associated with Rare Monogenic Diseases Established in Ancient Neanderthal and Denisovan Genome-Wide Data. Genes, 2023, 14, 727.	1.0	0
178	Archaeological evidence for two culture diverse Neanderthal populations in the North Caucasus and contacts between them. PLoS ONE, 2023, 18, e0284093.	1,1	2

Article IF Citations